
SIAM J. APPLIED DYNAMICAL SYSTEMS c© 2006 Society for Industrial and Applied Mathematics
Vol. 5, No. 1, pp. 1–11

Simultaneous Zip Bifurcation and Limit Cycles in Three Dimensional
Competition Models∗

Eduardo Sáez†, Eduardo Stange‡, and Iván Szántó†

Abstract. A three dimensional system is considered, which describes the competition of two predator species
for a single prey species. When the predators’ functional response is of generalized Holling III type,
we prove the simultaneous existence of a hyperbolic attracting limit cycle and a Farkas zip-type
bifurcation.
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1. Introduction. We consider two predator species competing for a single prey. The
functional response of the predators is assumed to be of a generalized Holling III type. The
Holling III functional response is of the form S2/(S2 + a2), where S is the prey density; it
has the property that up to a certain value the growth of S increases the predator efficiency
and, as a consequence, the predator has a stabilizing effect on the population. Above this
value, predator efficiency decreases (see May [5]). In this work the generalized Holling III-type
functional response is Sn/(Sn+an), where n > 1 is an arbitrary integer. We assume that one of
the predators could be identified as a K-strategist, and the other as an r-strategist. In simple
terms, an r-strategist is a species that tries to ensure its survival by having a relatively high
growth rate, and a K-strategist is a species that consumes less, has a lower growth rate, and is
able to raise its offspring on a scarce food supply. For a large class of three dimensional models,
Farkas [1, 2, 3, 4] introduced in 1984 the phenomenon of zip bifurcation. It was assumed that
the threshold densities of prey at which the predator growth rate became positive were equal.
We prove in this paper that the system has a one dimensional continuum of equilibria for
an open set in the parameter space. Moreover, when the system bifurcates, a hyperbolic
attracting limit cycle (in the two dimensional sense) and a zip bifurcation (contained in the
continuum of equilibria) appear simultaneously.

In the remainder of this section we introduce the model, in section 2 we establish the
conditions for which a zip bifurcation occurs, and finally in section 3 we present some computer
simulations.
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Let us consider the following system that describes the competition of the two predator
species for the prey: ⎧⎨

⎩
Ṡ = rS

(
1 − S

K

)
−

∑2
i=1 mixi

Sn

ani +Sn ,

ẋi = mixi
Sn

ani +Sn − dixi, i = 1, 2,
(1)

where the densities of prey and the two predators at time t will be denoted by S(t), x1(t), and
x2(t), respectively. The intrinsic growth rate of the prey and the carrying capacity will be
denoted by r and K, respectively, and the maximal birth rate, the half saturation constant,
and the death rate of predators i will be mi, ai, and di, respectively. All these constants are
supposed to be positive, and n ≥ 2 is an integer.

As the shape of the predator functional response is a sigmoidal one, then as S tends to
infinity, the per capita predator birth rate tends to mi. Furthermore, it is clear that for the
survival of predator i it is necessary that the maximal birth rate be larger than the death
rate:

bi :=
mi

di
> 1, i = 1, 2,

and this will be assumed in what follows. Therefore, we shall consider a predator with a low
half saturation constant a K-strategist. We assume that

a1 < a2.

The population of predator i begins to grow only if the right-hand side of the second equation
of (1) is positive. This is the case if S > Si := ai

n
√

di/(mi − di) = ai
n
√

1/(bi − 1). We shall
assume that

ST := S1 = S2 ⇒ an1d1

m1 − d1
=

an2d2

m2 − d2
.(2)

This means that ST is the minimum density of prey, which assures the growth of both preda-
tors.

The above conditions imply

b1 < b2.

We shall consider a species with a high ratio of maximal birth rate to death rate as an
r-strategist. Thus, in our system predator 1 may be considered a K-strategist, and predator 2
an r-strategist.

2. Main results. In order to simplify the study of the dynamic of (1) in the space of
the realistic variables Ω̄ = {(S, x1, x2) | S, xi ≥ 0, i = 1, 2}, let the change of time be
t → K

r (an1 + Sn)(an2 + Sn)t.

The model (1) is reduced to the polynomial vector field X̃η given by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ṡ = S(K − S)(an1 + Sn)(an2 + Sn) − m1K
r Sn(an2 + Sn)x1

− m2K
r Sn(an1 + Sn)x2,

ẋ1 = m1K
r Sn(an2 + Sn)x1 − d1K

r (an1 + Sn)(an2 + Sn)x1,

ẋ2 = m2K
r Sn(an1 + Sn)x2 − d2K

r (an1 + Sn)(an2 + Sn)x2.

(3)
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If in (3) the rescaling of the parameters {mi → r
Kmi, di → r

K di}, i = 1, 2, and the
linear transformation of coordinates {xi → xi

di
} are considered, then systems (1) and (3) are

equivalent to the polynomial system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ṡ = S(K − S)(an1 + Sn)(an2 + Sn) − m1
d1

Sn(an2 + Sn)x1

− m2
d2

Sn(an1 + Sn)x2,

ẋ1 = m1S
n(an2 + Sn)x1 − d1(a

n
1 + Sn)(an2 + Sn)x1,

ẋ2 = m2S
n(an1 + Sn)x2 − d2(a

n
1 + Sn)(an2 + Sn)x2.

(4)

Let us consider a new rescaling of the parameters {mi → midi}, i = 1, 2. Then the systems
(1), (3), and (4) are equivalent to the polynomial system⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ṡ = S(K − S)(an1 + Sn)(an2 + Sn) − x1m1S
n(an2 + Sn)

− x2m2S
n(an1 + Sn),

ẋ1 = x1d1(a
n
2 + Sn)[(m1 − 1)Sn − an1 ],

ẋ2 = x2d2(a
n
1 + Sn)[(m2 − 1)Sn − an2 ].

(5)

If X̄ denotes the vector field associated with the previous system and

X̄ = P
∂

∂S
+ Q1

∂

∂x1
+ Q2

∂

∂x2
,

then the set of singularities of X̄ in Ω̄ is given by

Sing(X̄) = P−1(0)

2⋂
i=1

Q−1
i (0)

⋂
Ω̄.

We can see by the previous rescaling that the equality S1 = S2 of (2) is transformed into
an1

m1−1 =
an2

m2−1 .

Lemma 1. Let
an1 d1

m1−d1
=

an2 d2

m2−d2
, mi > di, i = 1, 2. If λ = ai

n

√
di

mi−di
, the set of singularities

of (5) is given by

Sing(X̄) = {(0, 0, 0), (K, 0, 0)} ∪ Singλ, where

Singλ = {(S, x1, x2) | S = λ ≤ K, λ(K − λ) − x1 − x2 = 0, xi ≥ 0, i = 1, 2}.

Proof. To simplify the proof, we will consider a system topologically equivalent to (1).
This system can be obtained from (1) by rescaling parameters, rescaling coordinated axes,
and a change of time, as we show in the beginning of section 2. So, the hypotheses of the
lemma have the following equivalences:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

an1 d1

m1−d1
=

an2 d2

m2−d2
→ an1

m1−1 =
an2

m2−1 ,

mi > di → mi > 1,

λ = ai
n

√
di

mi−di
→ λ = ai

n√mi−1
.
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S x1

x2

•

•K

λ(K − λ) = x1 + x2

S = λ

Figure 1.

By direct substitution into (5), it is simple to verify that (0, 0, 0) and (K, 0, 0) are singularities
of the vector field.

If x1, x2 ≥ 0, from (5) it is easy to see that

Qi|
Sn=

ani
mi−1

≡ 0, i = 1, 2.

The plane H of equation S = λ in R
3 contains singularities of (5) if P−1(0) ∩ H ∩ Ω̄ 	= Φ.

Considering that (mi − 1)Sn = ani ⇒ ximiS
n = xi(S

n + ani ), i = 1, 2, and replacing them,
respectively, in the last two terms in the first equation of system (5), we obtain

Ṡ = (an1 + Sn)(an2 + Sn)[S(K − S) − x1 − x2].

If λ ≤ K (see Figure 1), we have

Singλ = {(S, x1, x2) | S = λ, λ(K − λ) − x1 − x2 = 0, xi ≥ 0, i = 1, 2}.

Lemma 2. Let us consider the vector field (5):

(i) In the coordinate system Sx1x2 of R
3, the coordinated axes and the coordinated planes

are invariant manifolds for (5).
(ii) The origin of the coordinated system is a hyperbolic saddle, and in a sufficiently small

neighborhood of the origin, the axis S is an unstable manifold of dimension one and the
two remaining axes xi, i = 1, 2, are stable manifolds that generate a stable manifold
of dimension two.

(iii) For λ 	= K, the singularity in the point (K, 0, 0) is a hyperbolic saddle. If λ < K, in a
sufficiently small neighborhood of (K, 0, 0), then there exists an unstable manifold of
dimension two and a stable manifold of dimension one (axis S).

Proof. (i) From (5), if the vector field is restricted to the coordinated axes and the
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coordinated planes, we obtain⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X̄(S, 0, 0) = S(K − S)(an1 + Sn)(an2 + Sn) ∂
∂S ,

X̄(0, x1, 0) = −x1d1a
n
1a

n
2

∂
∂x1

,

· · · = · · ·
X̄(0, x1, x2) = −x1d1a

n
1a

n
2

∂
∂x1

− x2d2a
n
1a

n
2

∂
∂x2

,

and part (i) of the lemma is demonstrated.
(ii) The proof is immediate since the linear part is given by

DX̄(0, 0, 0) = an1a
n
2

⎛
⎝ K 0 0

0 −d1 0
0 0 −d2

⎞
⎠, K, ai, di > 0, i = 1, 2.

(iii) At the singularity (K, 0, 0) of (5), the linear part is a triangular matrix of the form

DX̄(K, 0, 0) =

⎛
⎝ a11 a12 a13

0 a22 0
0 0 a33

⎞
⎠,

where

a11 = −K(an1 + Kn)(an2 + Kn) < 0,

a22 = d1(a
n
2 + Kn)[−an1 + (m1 − 1)Kn],

a33 = d2(a
n
1 + Kn)[−an2 + (m2 − 1)Kn].

As λn =
ani

mi−1 , λ < K, we have −ani + (mi − 1)Kn > 0, and then aii > 0, i = 2, 3.
Lemma 3. The system (1) is bounded in Ω.
Proof. Let us consider the function B(t) = S(t) + x1(t) + x2(t); then its derivative on the

orbits of (1) in Ω is given by

Ḃ = Ṡ + ẋ1 + ẋ2 = rS

(
1 − S

K

)
− d1x1 − d2x2 =

r

K
S(K − S) − d1x1 − d2x2.

If S ≥ K, we have Ḃ(t) < 0, and this proves that the trajectories of the system cross the
planes S + x1 + x2 = C from outside to inside if the constant C is sufficiently large; then (1)
is bounded in Ω.

Theorem 1. Let us consider
an1 d1

m1−d1
=

an2 d2

m2−d2
, mi > di, i = 1, 2, with a1 < a2 and λ =

ai
n

√
di

mi−di
:

(i) If (K − 2λ)m1 < n(K − λ)(m1 − d1), the set of singularities Singλ of (1) in Ω is
stable in the Liapunov sense.

(ii) If (K − 2λ)m1 > n(K − λ)(m1 − d1), there exists a point pz such that Singuλ ∪
{pz} ∪ Singsλ is a partition of Singλ, where the singularities of Singuλ and Singsλ
are respectively unstable and stable in the Liapunov sense. The system (1) has a zip
bifurcation.
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Proof. As in the proof of Lemma 1, we will consider a system topologically equivalent
to (1). This system can be obtained from (1) by rescaling parameters, rescaling coordinated
axes, and a change of time, as we show in the beginning of section 2. The hypotheses of this
theorem have the following equivalences:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

an1 d1

m1−d1
=

an2 d2

m2−d2
→ an1

m1−1 =
an2

m2−1 ,

mi > di → mi > 1,

(K − 2λ)m1 ≶ n(K − λ)(m1 − d1) → (K − 2λ)m1 ≶ n(K − λ)(m1 − 1),

λ = ai
n

√
di

mi−di
→ λ = ai

n√mi−1
.

Then as ani = (mi − 1)λn, i = 1, 2, the linear part of the vector field (5), restricted to a
any point of Singλ, is

DX̄(λ, x1, x2) =

⎛
⎝ a11 a12 a13

a21 0 0
a31 0 0

⎞
⎠,

where

a11 = −λ2n−1[λ{(2λ−K)m1m2 + (λ−K)n(m1 + m2)} + nm1(1 + m2)x1

+ nm2(1 + m1)x2],

a12 = −λ2nm1m2,

a13 = −λ2nm1m2,

a21 = λ2n−1d1(m1 − 1)m2nx1,

a31 = λ2n−1d2(m2 − 1)m1nx2.

Under the hypothesis λ(K−λ)−x1−x2 = 0, the eigenvalues of the singularities of the vector
field (5) in Singλ are the solutions of the characteristic equation

μ[μ2 − a11μ− a12a21 − a13a31] = 0.

Then in each singularity in Singλ there exists at least one central manifold of dimension one. If
μ1 and μ2 denote the roots of the above quadratic equation, we have μ1μ2 = −a12a21−a13a31

and μ1 + μ2 = a11.

As mi > 1, i = 1, 2, it is easy to see that μ1μ2 = λ4n−1m1m2n[d1(m1 − 1)m2x1 +
d2(m2 − 1)m1x2] > 0. Then μ1, μ2 	= 0 and SgnRe(μ1) = SgnRe(μ2).

Moreover, it is clear that a1 < a2 ⇒ m1 < m2; then if m1(K − 2λ) < n(m1 − 1)(K − λ),
we have

a11 = −λ2n−1(m2λ(n(m1 − 1)(K − λ) −m1(K − 2λ)) + nx2(m2 −m1)) < 0.

So, in each singularity in Singλ, Re(μ1) and thus Re(μ2) < 0, and the set Singλ is an attractor.
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x1

x2

x1 = A2λ(K−λ)+B
A2−A1

λ(K − λ)

λ(K − λ)

pz

•

•

•
l−1(0)

Singsλ

Singuλ

Figure 2.

In the coordinated space x1x2 of R
2
+, let us consider the system formed by the two straight

lines {
x1 + x2 = λ(K − λ),

l(x1, x2) = A1x1 + A2x2 + B = 0,
(6)

where

A1 = nm1(1 + m2),

A2 = nm2(1 + m1),

B = λ{(2λ−K)m1m2 + (λ−K)n(m1 + m2)}.

If m1(K − 2λ) > n(m1 − 1)(K − λ), then λ(K − λ) > A2λ(K−λ)+B
A2−A1

, and it follows that

l−1(0) ∩ Singλ = {pz} (see Figure 2). Then (6) has a solution in a single point pz ∈ Singλ,
and the set Singλ is divided by Singλ = Singuλ ∪ {pz} ∪ Singsλ, where the singularities
(λ(K − λ), 0, 0) ∈ Singuλ and (0, 0, λ(K − λ)) ∈ Singsλ. As a11 = −λ2n−1l(x1, x2)|Singsλ < 0
(resp., a11 = −λ2n−1l(x1, x2)|Singuλ > 0) and by the fact that Singuλ ⊂ l−1(−∞, 0) and
Singsλ ⊂ l−1(0,∞), we have Re(μ1), Re(μ2) < 0 (resp., > 0). This proves that the sets
Singuλ and Singsλ are respectively unstable and stable in the Liapunov sense. This proves that
Singλ undergoes a zip bifurcation introduced by Farkas in [1].

Theorem 2. If λ < K, m1 > d1, and λ = ai
n

√
di

mi−di
, then in Ω̃ = Ω∩{(S, x1, x2) | x2 = 0}

the vector field (1) has the following features:

(i) At the singularity λ(1,K−λ, 0), an attracting weak focus of order one if m1(2λ−K)+
n(K − λ)(m1 − d1) = 0.

(ii) A hyperbolic limit cycle generated by Hopf bifurcation that encloses the singularity
λ(1,K − λ, 0) if m1(2λ−K) + n(K − λ)(m1 − d1) < 0.
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Proof. As in the proof of Lemma 1, and with the same rescaling and change of coordinates,
the hypotheses of the this theorem have the following equivalences:⎧⎪⎪⎨

⎪⎪⎩
m1 > d1 → m1 > 1,

λ = ai
n

√
di

mi−di
→ λ = a1

n√m1−1
,

m1(2λ−K) + n(K − λ)(m1 − d1) ≤ 0 → m1(2λ−K) + n(K − λ)(m1 − 1) ≤ 0.

Then as x2 = 0 the system (5) is given by{
Ṡ = S(K − S)(an1 + Sn)(an2 + Sn) − x1m1S

n(an2 + Sn),

ẋ1 = x1d1(a
n
2 + Sn)[(m1 − 1)Sn − an1 ].

(7)

Let us consider in Ω̃ the rescaling of time t → t
an2 +Sn ; then we have

{
Ṡ = S(K − S)(an1 + Sn) − x1m1S

n,

ẋ1 = x1d1[(m1 − 1)Sn − an1 ].
(8)

By Lemma 1, in the plane Sx1 the set Singλ is reduced to the only singularity (λ, λ(K−λ)).
Considering the translation {S → S+λ, x1 → x1 +λ(K−λ)} of this singularity to the origin,
and by the fact that an1 = (m1 − 1)λn, we obtain

Z :

⎧⎪⎨
⎪⎩

Ṡ = (K − λ− S)(λ + S)[λn(−1 + m1) + (λ + S)n]

−m1(λ + S)n[(K − λ)λ + x1],

ẋ1 = d1(−1 + m1)[λ
n − (λ + S)n][−Kλ + λ2 − x1].

(9)

The linear part of the vector field Z at the origin is given by

DZ(0, 0) =

(
a10 a01
b10 b01

)
,

where

a10 = −λn[m1(2λ−K) + n(K − λ)(m1 − 1)],

a01 = −λnm1,

b10 = d1λ
n(K − λ)(m1 − 1)n,

b01 = 0.

As a consequence, it follows that{
detDZ(0, 0) = λ2nd1m1n(K − λ)(m1 − 1) > 0,

traDZ(0, 0) = −λn[m1(2λ−K) + n(K − λ)(m1 − 1)].

(i) The hypothesis m1(2λ − K) + n(K − λ)(m1 − 1) = 0 implies that 2λ − K < 0 and
detDZ(0, 0) = λ2nd1m1(K − 2λ) > 0; then the origin is monodromic. Let Li, i = 1, 2, be the
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first two Liapunov quantities at the origin of vector field (9). As the origin is monodromic,

then L1 ≡ 0 and m1 = n(K−λ)
2λ−K+n(K−λ) . Furthermore, it is known that the second Liapunov

quantity depends on the three-jet at the origin of (9). In order to calculate L2, we introduce

a new parameter A > 0 such that d1 = A2

K−2λ . Considering the transformation of coordinates

S = x and x1 = Ay and the rescaling of the time {t → 2λ−K+n(K−λ)
Aλn(K−λ)n t}, the vector field Z is

written as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = [(−K + 2λ + (K − λ)n)((K − λ− x)(λ + x)

(λn(−1 + ((K − λ)n)/(−K + 2λ + (K − λ)n)) + (λ + x)n)

− (K − λ)n(λ + x)n((K − λ)λ + Ay)

/(−K + 2λ + (K − λ)n))]/A(K − λ)λnn,

ẏ = [(−K + 2λ + (K − λ)n)(−1 + (K − λ)n/

(−K + 2λ + (K − λ)n))(λn − (λ + x)n)(−(Kλ) + λ2 −Ay)]

/(K − 2λ)(K − λ)λnn,

and the three-jet is given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = −y + −K2+3Kλ−4λ2+K2n−3Kλn+2λ2n
2A(K−λ)λ x2 − n

λxy

+ K2−4λ2−3K2n+6Kλn−6λ2n+2K2n2−6Kλn2+4λ2n2

6A(K−λ)λ2 x3 − n(n−1)
2λ2 x2y,

ẏ = x + n−1
2λ x2 + A

(K−λ)λxy + (n−1)(n−2)
6λ2 x3 + A(n−1)

2(K−λ)λ2x
2y.

Therefore, L2 = − (n−1)(3K−4λ)+4λ
16A(K−λ)λ < 0, and since 3K − 4λ = 3(K − 2λ) + 2λ > 0, the origin

is an attracting weak focus of order one.
(ii) Taking a small perturbation of the parameters λ, K, and m1 such that m1(2λ−K) +

n(K − λ)(m1 − 1) < 0, then

traDZ(0, 0) = −λn[m1(2λ−K) + n(K − λ)(m1 − 1)] > 0.

Then origin of vector field (9) changes its stability to a repelling hyperbolic focus, and
therefore an attracting hyperbolic limit cycle is generated by Hopf bifurcation. This completes
the proof of the theorem.

3. Computer simulations. In this section, using Runge–Kutta application of the Math-
ematica software [6], a numerical example of system (5) will be presented. The classical
Holling III functional response will be considered; i.e., n = 2 and the following parameter
values are chosen: d1 = 1, d2 = 1, m1 = 7/5, m2 = 8/5, a1 =

√
2/5, a2 =

√
3/5, λ = 1,

K = 4.
The initial conditions are S(0) = 1, x1(0) = 3.1, x2(0) = 0.01.
The next picture (Figure 3) is shown from the viewpoint (4.9, 2.9, 0.4) in the Sx1x2-

coordinate system. This allows us to give the conjecture that in the realistic three dimensional
space there is an attracting invariant manifold that is formed by a continuum of periodic orbits
(center in the space), whose border is the attracting limit cycle in the plane x2 = 0 and where
the cusp is the singularity pz.
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Figure 3.

4. Conclusions. Two predator species competing for a single prey species were studied. In
the absence of predation the prey species population follows a logistic dynamics. The predator
functional response is of the generalized Holling III type, and both of the two predators begin
to grow at the same threshold density of prey. Predator 1 is considered as a K-strategist, and
predator 2 an r-strategist.

The inequality in (i) of Theorem 1 means that, given an initial condition in a tubular
neighborhood of the continuum of singularities of (5) (which is topologically equivalent to (1))
in the open set Ω, the corresponding w-limit of the orbit is some point of that continuum, and
both predators coexist with the prey throughout time.

By the rescaling of the predators xi → xi
di

, i = 1, 2, in (3), the zip bifurcation of (5) is
C∞-equivalent to a zip bifurcation of (1) (see Figure 2). In this figure, the set Singλ is a
straight segment formed by a continuum of singularities with a distinguished singularity pz of
greater codimension. The singularity pz separates the change of stability of those stable and
unstable manifolds of the singularities of Singλ above and below the singularity pz.

Let us consider η = (H − 2λ)m1 − n(K − λ)(m1 − d1). For η = 0, pz reaches the inferior
boundary of the segment Singλ, which means that the r-strategist predators disappear. On
the other hand, the singularity pz in the plane x2 = 0 in Ω̄ is a weak focus of order one.
For η > 0, the point pz moves in Ω̄ along the segment Singλ from the plane x2 = 0 to
the plane x1 = 0. Furthermore, for a given initial condition in a tubular neighborhood of
Singλ, the three species coexist in time. Simultaneously, in the plane x2 = 0 a supercritical
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Hopf bifurcation takes place, generating an attracting hyperbolic limit cycle whose diameter
increases with η.
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manifolds in the vicinity of equilibrium points corresponding to Hamiltonian systems of m degrees
of freedom. The method is based on the use of generalized normal forms. Our goal is to show
the power of this technique by applying it to the study of one of the colinear equilibrium points
corresponding to the Hamiltonian system defined by the motion of a particle orbiting around a finite
straight segment. We make use of three different Lie transformations: (i) we calculate the Hamilton
function corresponding to the center manifold of the colinear equilibrium; (ii) we determine the
Hamiltonian related to the stable-unstable direction; and (iii) we obtain the Hamiltonian related to
one of the two stable-stable directions. By means of (i), we are able to parameterize the center, the
stable, and the unstable manifolds of the original system using the direct changes of coordinates of
the two transformations. We also compute the normally hyperbolic invariant manifold associated
with the equilibrium, together with its stable and unstable manifolds. Using (ii), we compute the
invariant 2-tori and quasi-periodic orbits in the neighborhood of the equilibrium chosen. Through
the normal form Hamiltonian obtained by (iii) we are able to determine some periodic orbits of the
initial Hamiltonian.

Key words. generalized normal forms, invariant structures, straight segment

AMS subject classifications. 34K19, 37G05, 37J15, 70H33

DOI. 10.1137/040614517

1. Introduction and normal forms.

1.1. Scope. The computation of asymptotic (formal) integrals in Hamiltonian systems
has received special attention during recent decades due to its utility from a qualitative stand-
point. The approach of extending an integral of the principal part of the Hamiltonian to higher
orders can be found in [15]. It generalizes the standard theory of normal forms for polynomial
Hamiltonians; see, for instance, [13]. The use of generalized normal forms allows one to get
a deeper insight into a Hamilton function through its different normal forms. Specifically,
one can use this theory for different purposes such as to approximate some invariant mani-
folds, to decide on the stability of an equilibrium solution, or to analyze the monodromy of a
Hamiltonian dynamical system [6]. Applications appear in various fields such as astrodynam-
ics [15] or atomic and molecular physics [24, 20]. Theory on generalized normal forms has been
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developed in [15]; see also [5, 6]. An algorithm for the case of Hamiltonians with m degrees of
freedom (DOF), together with some applications exhibiting the benefit of generalized normal
forms, has been detailed in [6].

We focus on Hamiltonians of the form

H(x) =

∞∑
n=0

εn

n!
Hn(x),(1.1)

where x is a 2m-dimensional vector in the coordinates x1, x2, . . . , xm and respective momenta
X1, X2, . . . , Xm. Each Hn is a homogeneous polynomial in x of degree n+2, and ε stands for
a small parameter.

First, we simplify (1.1) by reducing its number of DOF by at least one unit. This goal
is achieved through the introduction of a formal integral, that is, an integral up to a certain
order of approximation after truncating the tail of the normal form Hamiltonian. Furthermore,
when the standard normal form does not imply a decrease of the number of DOF, then our
generalized normal forms do it, and they can be used to reduce the number of DOF of the
original system.

Both classical and generalized normal forms are managed through normalizing procedures
that involve Lie transformations. After the transformation process is performed, the trans-
formed Hamiltonian obtained from (1.1) gives us information on the dynamics associated with
the original system from a qualitative point of view. We have taken advantage of this fact to
find out some periodic and quasi-periodic orbits of the original system as well as some other
invariant objects.

The article has four sections. First, in section 1 we give a summary of the normal form the-
ory. In section 2 we introduce our case study, the Hamiltonian modeling the rotating straight
segment. We apply the standard normal form technique, obtaining the stable, unstable, and
center manifolds related to one of the two colinear equilibria. Moreover, we determine the
normally hyperbolic invariant manifold of the equilibrium we have chosen and its stable and
unstable manifolds. In section 3 we use the generalized normal form approach, obtaining some
periodic and quasi-periodic orbits and invariant 2-tori. Finally, section 4 is devoted to the
conclusions of the work.

Within this paper we extend the results provided in [7], in the sense that here we work
out the computations in detail, emphasizing the role played by the different normal forms.
Furthermore, we have introduced a new normal form transformation, with the aim of obtaining
some new periodic orbits of the original Hamiltonian.

As stated by Guckenheimer and Vladimirsky [4], the task of constructing higher-dimen-
sional invariant manifolds for dynamical systems is computationally expensive. However, in
contrast to the numerical approaches followed by various authors towards the approximation
of some global invariant manifolds for vector fields (see, for instance, the papers [12, 9, 4]), we
proceed analytically, deriving explicit expressions for the (local approximation of) invariant
manifolds of the example we have chosen. Global approximations of our invariant manifolds
can be determined using either numerical continuation techniques or some methods based on
interpolation.
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1.2. Normal forms for polynomial Hamiltonians. This section deals with the simplifi-
cation of Hamiltonian systems through the construction of formal integrals. To achieve this
target we use the well-known normal form theorem [13, 21] and a generalization of normal
forms explained in [15, 16].

Let H be an m-DOF Hamiltonian of the type (1.1). It represents an analytic function
whose quadratic terms are given by H0(x) = 1

2 xtB x, where B corresponds to a symmetric
2m-matrix. Let J be the standard skew-symmetric matrix of dimension 2m,

J =

(
0 Im

−Im 0

)
,

where Im stands for the identity matrix of order m, and let A = J B be the matrix associated
with the system defined by H0.

Through the application of the normal form theorem [13, 21], we are able to decrease the
number of DOF of Hamiltonian systems by at least one unit, provided that the matrix A
is not nilpotent. More precisely, if A = S + N is decomposed as the sum of its semisimple
(S �= 0) and nilpotent (N) components, then the quadratic Hamiltonian IS(x) = −1

2 xt J S x
becomes a formal integral of the reduced system.

Let G be a homogeneous polynomial of degree j ≥ 1 commuting with H0 (that is, G is
a first integral of H0). Applying a generalization of the normal form theorem [15], we can
construct a normal form Hamiltonian such that the new Hamiltonian commutes with G up
to a given degree. By doing so we can construct a Hamiltonian normal form which has G
as a new first integral, and therefore one can reduce, by at least one, the number of DOF
of any Hamiltonian system, in principle even if the associated matrix A is nilpotent, i.e.,
if S = 0. This is usually achieved whenever the Hamiltonian H fulfills some nonresonant
hypotheses. Note that the formal integral does not coincide necessarily with IS(x), as G is
chosen regardless of the semisimple, nilpotent, or mixed semisimple and nilpotent character
of H0. In all situations, one obtains a symplectic change of variables x → y that transforms
H into the normalized Hamiltonian K, with

K(y; ε) =

L∑
i=0

εn

n!
Kn(y),(1.2)

where K0(y) ≡ H0(x) and each Kn is a homogeneous polynomial of degree n + 2 in y.
Truncating at order L, the error committed in the transformation is of the type O(εL+1).

The construction of K is done order by order (or, equivalently, degree by degree) in an
ascendent way from n = 1 to n = L. The homology equation

{Wn , H0 } + Kn = H̃n(1.3)

is solved with the extra condition {Kn , G } = 0 for n = 1, . . . , L so that each term Kn

commutes with G. Hence, in the end (i.e., when n = L), G becomes an integral of K after
truncation of higher order terms. The operator { , } denotes the usual Poisson bracket, and
the terms H̃n are those known from the previous orders. The solution of (1.3) is the pair
(Wn,Kn), where Wn denotes the generating function determined at order n. The Poisson
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bracket {Wn , H0 } is also written as LH0(Wn). This is the so-called Lie–Deprit method;
see [1] for more details.

The above can be extended somewhat if we assume that Hn = 0, for n = 1, . . . , k− 1, and
Hk �= 0 represents a homogeneous polynomial of degree k + 2. In this situation one still may
consider generalized normal forms, though the theory becomes more involved as we cannot
split Hk into semisimple and nilpotent terms.

The main drawback of the generalized method is that Wn is not necessarily a polynomial
function of degree n+2, as it occurs with the standard approach of polynomial normal forms.
Indeed Wn can involve rational, logarithmic, or arctangent functions or combinations of those.
Thus, we have to exclude the singularities from the domain of validity of the normal form.

The occurrence of polynomial generating functions in a specific normal form computation
may be known in advance (i.e., previous to the normal form computations) by analyzing the
dimensions of the kernels of various linear spaces of homogeneous polynomials. So, depending
on the choice of G, as well as on the form of H0 and the type of terms in the perturbation,
W could be a polynomial of degree n + 2. (In this optimal case, each term Wn belongs to
the linear space Rn corresponding to the spaces of homogeneous polynomials of degree n + 2
in x ∈ R2m.) These conditions have been settled in [15]. Nevertheless, we do not perform
this algebraic analysis previous to the computation of the normal form in the design of the
algorithm [6], because we have preferred to try first to solve the homological equation with a
homogeneous polynomial. When that is not possible, we resort to finding the solution of the
usual partial differential equation (PDE).

1.3. Choices of G. Taking into account the decomposition of A into its semisimple and
nilpotent components, we classify the types of reduction into three remarkable cases:

(a) semisimple case, A = S;
(b) semisimple plus nilpotent case, A = S + N with S,N �= 0;
(c) nilpotent case, A = N .

Next, according to the type of matrix one has at hand, we proceed as follows:
(a) We apply the normal form theorem with G(x) = H0(x). Therefore, the procedure

yields a polynomial generating function. If m > 1 and the reduced Hamiltonian
defines a system of zero DOF, we choose another G and apply the generalized method.

(b) We proceed with the normal form theorem, taking G(x) = IS(x).
(c) We perform the transformation, taking G(x) = H0. Obviously, we make use of the

generalized method laid out above. Besides, if H0 = 0, then we even could select G
among the integrals of Hk, provided that Hn = 0, for n = 1, . . . , k − 1.

Once we have chosen (or determined) G, the next step consists of performing the normal
form transformation, calculating K and W. Now G corresponds to an integral of K and

I(x; ε) = G(x) +
L∑

n=1

εn

n!
Ln
−W [G(x)]

becomes an asymptotic integral of H functionally independent of it, and up to an approx-
imation of O(εL+1). Here L−W refers to the Lie operator L−W : F −→ {W, F}, whereas
the composition operator Ln

−W(y) denotes the recurrence operator L−W(Ln−1
−W (y)) for n ≥ 2.

Function I(x; ε) is determined through the algorithm of the inverse for Lie transformations



16 J. F. PALACIÁN, P. YANGUAS, AND S. GUTIÉRREZ–ROMERO

due to Henrard [10]. The method proposed in that paper reduces the number of computations
compared with the usual method for the direct and inverse changes of variables proposed by
Deprit [1]. For a complete description of the method, see [6, 15] and references therein.

The main features of the approach described above are as follows:

(i) The algorithm is valid for any number of DOF, and it works not only with real coef-
ficients, but also with complex ones.

(ii) The polynomial Hamiltonian may be of any degree. We do not need to start with
H0 being a quadratic polynomial; see an application in [6].

(iii) If H0 is a quadratic polynomial, its associated matrix does not need to be in diagonal
form.

(iv) We can make a qualitative analysis of a certain system, such as the study of mono-
dromy, the nonlinear stability character of equilibria, the computation of periodic
solutions and other invariant manifolds, or the determination of versal deformations.

(v) This approach may be used to calculate different normalized Hamiltonians whose flows
lie on different reduced phase spaces. Thus, performing several reductions allows us
to analyze the original Hamiltonian from different points of view, getting a richer
knowledge of the initial system. The number of DOF of the normal form Hamiltonian
system depends on the first integral introduced through the transformation. This is
accomplished by a careful analysis based on Lie groups and invariant theory; see [14].

2. Application to a finite straight segment.

2.1. Hamiltonian of the problem. The case study we have chosen to apply the theory
of section 1 corresponds to a mechanical system dealing with the motion of a point mass
under the gravitational field of a massive finite segment. We broach this analysis within a
three-dimensional (3D) frame.

The dynamics around an elongated celestial body can be represented approximately by
using a massive segment as the representation of this kind of celestial object; see, for instance,
[8]. Within this context, the finite straight segment is a model used as an approximation
to the gravitational field of irregularly shaped bodies, such as asteroids, comet nuclei, and
planetary moons. For this potential, Riaguas [17], Riaguas, Elipe, and Lara [18], and Elipe,
Lara, and Riaguas [2] have computed several families of periodic orbits and bifurcations. In
addition to that, Riaguas, Elipe, and López–Moratalla [19] and Elipe and Riaguas [3] have
analyzed the nonlinear stability of the equilibria in two DOF and three DOF, respectively.

We consider a straight segment of length 2 � and mass M that rotates uniformly with
constant angular velocity ω about an axis perpendicular to the segment and fixed in space.
Then we fix the origin of a reference frame Ox1x2x3 at the center of mass O with the segment
lying on the axis Ox1, identifying the axis of rotation with Ox3. We stress that the reference
frame rotates with the straight segment with angular velocity ω.

We follow the approach of [17], [18], and [2] to get the initial Hamiltonian. After making
some arrangements and rescaling, the problem is represented in closed form by the Hamilton
function given by

H(x) =
1

2

(
X2

1 + X2
2 + X2

3

)
− (x1X2 − x2X1) + U(r),(2.1)
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where r = (x1, x2, x3) stands for the position of the particle while (X1, X2, X3) represents
their velocities or conjugate momenta. The potential U is defined through

U(r) = −k log

(
r1 + r2 + 1

r1 + r2 − 1

)
,

where r1, r2 are the distances of the particle to the end-points of the segment given by

r1 =
√

(x1 − 1/2)2 + x2
2 + x2

3, r2 =
√

(x1 + 1/2)2 + x2
2 + x2

3

and k = GM/(ω2(2�)3) ∈ (0,∞) stands for a dimensionless parameter that represents the
ratio of the gravitational acceleration to centrifugal acceleration, such that 0 < k < 1 means
fast rotation of the segment, whereas k > 1 means slow rotation.

Notice that Hamiltonian (2.1) defines a system of three DOF, as no integral other than H
is likely present in the equations of motion.

For our study, we have selected k = 3; that is, we are in the slow-rotation regime. In this
situation, the system has four equilibrium points, two of them located on the axis Ox1 at the
points (±3/2, 0, 0), the so-called colinear equilibria, and the other two placed on the axis Ox2,
specifically at the points (0,±3/2, 0). The momenta of the equilibria resting on the axis Ox1

are X1 = X3 = 0 and X2 = ±3/2, whereas the momenta corresponding to the equilibria in
the axis Ox2 are X1 = ∓3/2 and X2 = X3 = 0.

Next we choose the equilibrium point whose coordinates are r0 = (3/2, 0, 0) (or (3/2, 0,
0, 0, 3/2, 0) in the full phase space) and translate it to the origin by means of a linear (and
canonical) change of variables, say ψ. After this translation, we keep the same name for the
variables and for the Hamiltonian. Thereafter, we Taylor-expand U(r) around the equilibrium
up to degree eight in x1, x2, and x3, yielding

H(x) = H0 +

6∑
i=1

Hi(r).

We remark that for each i, Hi is a homogeneous polynomial in x of degree i+2, for i = 0, . . . , 6.
The next step consists of diagonalizing the main part of the quadratic term H0. This is

achieved by computing the eigenvalues of the matrix associated with H0. These are

±μ1ı, ±μ2ı, ±μ3,

where

μ1 =
3
√

2

4
, μ2 =

√
7 + 3

√
17

4
, μ3 =

√
−7 + 3

√
17

4
.

Now we can conclude that our point has a linearization of the type center × center × saddle
and is, therefore, unstable. The same applies to the equilibrium (−3/2, 0, 0, 0,−3/2, 0). On
the other hand, the two equilibria resting on the axis Ox2 have a linearization of the type
center × center × center and are linearly stable. Their nonlinear stability is analyzed in
[19] and [3]. In Figure 1 we have plotted the contours corresponding to the effective potential
W (r) = U(r) − (x2

1 + x2
2)/2 projected onto the plane Ox1x2.
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Figure 1. Contours of the function W (x1, x2, 0). The yellow squares correspond to the (linear) stable
equilibria, whereas the blue ones correspond to the unstable equilibria. The point under study is the right-most
equilibrium on the axis Ox1. The red line represents the straight segment.

At this point we need to perform a symplectic linear change of variables that we call ϕ,
such that H0 is transformed into

H0(ϕ(x)) =
1

2

(
X2

1 + X2
2 + X2

3

)
+

1

2

(
μ2

1x
2
1 + μ2

2x
2
2 − μ2

3x
2
3

)
.

By doing this, the quadratic Hamiltonian H0 is in normal form, and the subsequent computa-
tions will be carried out in an easier way. We rename H(ϕ) ≡ H in order to avoid cumbersome
notation and maintain the same name for the variables.

2.2. The standard normalization. We start by choosing G = H0, and our Hamiltonian
is ready to apply the Lie transformations explained in section 1. Thus, we may calculate the
normal form Hamiltonian up to order six, that is, up to polynomials of degree eight. We call
this Hamiltonian K, and it is a function of the new coordinates y = (y1, y2, y3, Y1, Y2, Y3).
If we define diagonal complex coordinates (q1, q2, q3, p1, p2, p3) through the linear change of
coordinates

y1 =
1√
2
(q1 + ı p1), y2 =

1√
2
(q2 + ı p2), y3 =

1√
2
(q3 − p3),

Y1 =
μ1√

2
(ı q1 + p1), Y2 =

μ2√
2
(ı q2 + p2), Y3 =

μ3√
2
(q3 + p3),

(2.2)

then K reads

K =
∑

0≤j,k,�≤4
1≤j+k+�≤4

a(j, k, �)(p1q1)
j(p2q2)

k(p3q3)
�,(2.3)

where the coefficients a(j, k, �) are given in Table 1.
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Table 1
Coefficients of the normal form Hamiltonian K.

a(1, 0, 0) 1.12500000000000000000000000000000000000000000000000000000000 ı

a(0, 1, 0) 1.21058230480331135309151434799513944221509985475755383144974 ı

a(0, 0, 1) 0.335582304803311353091514347995139442215099854757553831449744

a(2, 0, 0) 0.0120300043920961160646818800060450355145836481789330512316760

a(0, 2, 0) 0.066308730845837153713360708735727160836961568549103183918924 ı

a(0, 0, 2) −0.086345894109368605622561330565536170463916665996215216217999

a(1, 1, 0) −0.0091260021133349231199124676638744436649518477401912803208549

a(1, 0, 1) −0.095227013792664774628311803153716609682486568460503898763322 ı

a(0, 1, 1) −0.297252742477241851459623674892761250708685001551084154338222 ı

a(3, 0, 0) 0.00031839838485766222965662203759548575655815374450355668811357 ı

a(0, 3, 0) 0.027145488584395491344331454450057847512821281983895958135504 ı

a(0, 0, 3) −0.043692379682477334385578543306482135635541873260412713783267

a(2, 1, 0) 0.056036986263531688900510154521095706235718505605565692123365 ı

a(2, 0, 1) −0.0071810489715155783568164273960503999296451955943914627744720

a(1, 2, 0) −0.095445019140551020485391679319426103114361856110216448035834 ı

a(0, 2, 1) 0.065870615091316453833825737336039001085835666557418312095763

a(1, 0, 2) −0.0069276372536947157776504737290122128984637071687023333696577 ı

a(0, 1, 2) −0.106768591640445723910056439151573202462634068271821935291025 ı

a(1, 1, 1) 0.026918284311774477744419934897706660459522404408789952169848

a(4, 0, 0) 0.00008440431354122669117588066039602346786073314484074889931348

a(0, 4, 0) −0.021531391821351515200894612206090041439329157836071593974346

a(0, 0, 4) −0.037384835495131112197231667394596164922688566168369438454374

a(3, 1, 0) 0.044014722983883863944044280212617641063119768236126655716244

a(2, 2, 0) −0.44979297398601349894995044188414084387492122854577748244257

a(1, 3, 0) 0.32223939009691420074102781246813009337535451521397356059698

a(3, 0, 1) 0.00067709719540491575571353252900727889192914596702807597402365 ı

a(2, 0, 2) 0.0018687004751583393649050174131223126860930071701277944800576

a(1, 0, 3) −0.009596542258008953249177316578688008450271406582342195703274 ı

a(0, 3, 1) 0.08425985145467132051808111609224992403783360890407125101773 ı

a(0, 2, 2) 0.18807014204182989996115264013155278853137286969740229929619

a(0, 1, 3) −0.14982977931417368457116348346920165426769071289845378171150 ı

a(2, 1, 1) 0.013974751918553899340566685848616490545694007428879981221591 ı

a(1, 2, 1) −0.026153278416863235085351618444028681673631314704894494837680 ı

a(1, 1, 2) −0.022167757568694328712245961256391163513889189566623263026867

2.3. Invariant manifolds. Once we have carried out the transformation passing from H(x)
to K(y), we obtain the explicit expressions for the direct and inverse changes of coordinates.
The direct change is given by x = X(y), whereas the inverse one is y = Y (x). Note that
H(x(X(y))) = K(y).

Recalling that ψ and ϕ have been defined in section 2.1, the expressions of the local
invariant manifolds in the initial variables are computed as follows:

• The 1D stable manifold of the equilibrium under study is obtained after calculating
xS = ψ ϕX(0, 0, y3, 0, 0,−μ3y3).

• The 1D unstable manifold of our equilibrium point is computed through the successive
changes: xU = ψ ϕX(0, 0, y3, 0, 0, μ3y3).

• The 4D center manifold of the equilibrium is computed as xC = ψ ϕX(y1, y2, 0, Y1,
Y2, 0).
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The expressions xS , xU , and xC are polynomial approximations of the true stable, unsta-
ble, and center manifolds associated with the right-most equilibrium point on the axis Ox1

corresponding to Hamiltonian (2.1), as we know the true ones exist; see, for example, [13]. As
the normal form has been carried out up to degree eight, the expressions are of degree seven.
More accurate formulae could be obtained by pushing the computations to higher degrees;
however, the convergence is not guaranteed because of the divergent character of the normal
form computations.

The intersection of the center manifold with the energy surface H = h for a fixed value of h
gives the normally hyperbolic invariant manifold (NHIM) [23], which is 3D. This invariant
set has also its stable and unstable invariant manifolds, which are 4D. The NHIM bounds
a 4D surface called “transition state” in chemical reaction dynamics, which partitions the
energy surface into volumes characterized as “before” and “after” the transformation. The
4D stable and unstable manifolds associated with the 3D NHIM are impenetrable barriers
with the topology of multidimensional spherical cylinders. We have approximated all these
invariant objects using the normal form Hamiltonian K; see the details in [24, 20].

More specifically, given an energy value, h > 0, the NHIM associated with a Hamilton
vector field like (2.1), using (transformed) Cartesian coordinates, is

M3
h(y1, y2, Y1, Y2) =

{
(y1, y2, Y1, Y2)

∣∣
1
2

(
Y 2

1 + Y 2
2

)
+ 1

2

(
μ2

1y
2
1 + μ2

2y
2
2

)
+ f2(y1, y2, Y1, Y2) = h

}
,

(2.4)

where f2 represents polynomials of degree at least three; i.e., this term is responsible for
the nonlinear terms in the Hamiltonian vector field. The NHIM acts as a multidimensional
saddle “point.” The dynamics occurs in the 5D energy surface given by setting H in the
initial Hamiltonian to be a positive constant h. If we set y3 = Y3 = 0 in the vector field
associated with H, then ẏ3 = Ẏ3 = 0. Therefore y3 = Y3 = 0 is a 4D invariant manifold. Its
intersection with the 5D energy surface is the NHIM, given by (2.4). The nonlinear terms are
much smaller than the linear terms. Therefore, the NHIM is topologically a deformed sphere
for the nonlinear problem and has 4D stable and unstable manifolds in the 5D energy surface
since normal hyperbolicity is preserved under perturbations.

The stable and unstable manifolds of M3
h are known explicitly. Indeed, they are 4D

objects acting as multidimensional separatrices. Their expressions are given by

WS
(
M3

h

)
=

{
(y1, y2, y3, Y1, Y2, Y3)

∣∣ Y3 = −μ3 y3,
1
2

(
Y 2

1 + Y 2
2

)
+ 1

2

(
μ2

1y
2
1 + μ2

2y
2
2

)
+ f2(y1, y2, Y1, Y2) = h

}
,

WU
(
M3

h

)
=

{
(y1, y2, y3, Y1, Y2, Y3)

∣∣ Y3 = μ3 y3,
1
2

(
Y 2

1 + Y 2
2

)
+ 1

2

(
μ2

1y
2
1 + μ2

2y
2
2

)
+ f2(y1, y2, Y1, Y2) = h

}
.

(2.5)

In particular, using formulae (2.4) and (2.5), we obtain the expressions of the manifolds
in the original variables, arriving at the following:

• The 3D NHIM of the equilibrium point under study (e.g., the manifold M3
h) is obtained

as the following composition of the transformations: xNHIM = ψ ϕX(y1, y2, 0, Y1, Y2, 0),
to which we add the constraint K(y1, y2, 0, Y1, Y2, 0) = h.
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Figure 2. Surfaces defined by the components x1, x2, x3 of the center manifold; on the left we set Y1, Y2 = 0,
and on the right y1, y2 = 0.

• The 4D stable manifold of the NHIM, i.e., the object WS(M3
h), is given by xSNHIM =

ψ ϕX(y1, y2, y3, Y1, Y2,−μ3y3), with the constraint K(y1, y2, y3, Y1, Y2,−μ3y3) = h.
• The 4D unstable manifold of the NHIM given through WU (M3

h) is determined as
xUNHIM = ψ ϕX(y1, y2, y3, Y1, Y2, μ3y3) together with K(y1, y2, y3, Y1, Y2, μ3y3) = h.

The existence of true invariant sets (e.g., the true NHIM together with its stable and
unstable invariant manifolds) of H close to the ones we have computed can be guaranteed,
provided that the global error of the process is kept bounded; see more details on their
persistence in [20]. We remark that the expressions of xNHIM, xSNHIM, and xUNHIM are provided
through polynomials of degree seven, since Hamiltonian K has been calculated up to degree
eight.

As our problem at hand has two critical points of the type center × center × saddle, we
might determine the NHIM associated with the point whose coordinates are (−3/2, 0, 0, 0,
−3/2, 0). Then, using a procedure of Waalkens, Burbanks, and Wiggins [22], we could detect
possible heteroclinic connections between the stable manifold of the NHIM corresponding
to one of the two unstable equilibria and the unstable manifold of the NHIM of the other
equilibrium, as well as some homoclinic connections inside the stable manifold of the NHIM
for the two critical points. Note that the NHIMs control the phase space transport across an
equilibrium point of center × center × saddle stability type, which is a fundamental mechanism
for understanding the physics of the problem.

A projection of the (approximate) center manifold is depicted in Figure 2, whereas in
Figure 3 we draw two surfaces corresponding to the projection of the NHIM in the configu-
ration space and in the space of momenta, for a fixed value of h = 3× 10−3 and the integrals
(Y 2

1 + μ2
1y

2
1)/2 = 10−4 and (Y 2

2 + μ2
2y

2
2)/2 = 0.0029003790975507078.

In order to estimate the error committed after truncating the Lie transformation we have
used Mathematica, Version 5.1, with 60 digits of precision. All computations involved in the
linear changes of coordinates, in the Taylor expansions, and in the Lie transformations have
been performed within this precision. The global error committed when dropping the tail
of the transformation has been studied by estimating the difference E = |H(x) − K(Y (x))|
within B(0,δ), a ball centered at the colinear point of radius δ. Our study has been developed
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Figure 3. Left: projection of the NHIM onto the configuration space. Right: projection of the NHIM onto
the space defined by the axes X1, X2, X3.

Table 2
Error committed by the Lie transformation process, after truncating the tail of the normal form at orders

one to six, that is, after dropping the polynomials of degrees three and higher to degrees nine and higher.

Order 1 E = 0.000052784698125
Order 2 E = 0.000015958799870
Order 3 E = 7.175092835102288 × 10−7

Order 4 E = 1.561351100193047 × 10−7

Order 5 E = 1.1439383299375211 × 10−8

Order 6 E = 7.6559789904728368 × 10−9

in a neighborhood of radius δ = 10−2 around the equilibrium. We give the results in Table 2.

Another way of computing the center manifold, the NHIM, and its stable and unstable
sets is through the determination of the generalized normal form using the integral G =
(X2

3 − μ2
3 x

2
3)/2. This results in the so-called reduction to the center manifold; see [11]. The

strategy is similar to the approach we have followed, and both techniques give equivalent
results when the frequencies μ1 and μ2 are independent over the rational numbers. In case of
commensurability of μ1 and μ2 we could not have followed the approach of this paper, as we
would have been able to obtain one (or even two) formal integrals out of H, but the invariant
manifolds would have been determined very similarly to what we have done here; see, for
example, [20].

3. Other invariant sets of the segment.

3.1. Quasi-periodic orbits and invariant 2-tori. We may apply other normal form trans-
formations with the aim of calculating more local invariant manifolds related with the unstable
equilibrium point on which we have chosen to perform our analysis. The plan is to approximate
(true) periodic orbits and invariant 2-tori.

We choose this time the quadratic integral G = G1 + G2, with G1 = (X2
1 + μ2

1x
2
1)/2 and

G2 = (X2
2 +μ2

2x
2
2)/2. Thus we calculate the generalized normal form associated with G, say S,

and the corresponding direct change of coordinates x = X∗(y∗), up to degree four, that is,
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Table 3
Coefficients of the normal form Hamiltonian S.

b(1, 0, 0, 0) 1.12500000000000000000000000000000000000000000000000000000000 ı

b(0, 1, 0, 0) 1.21058230480331135309151434799513944221509985475755383144974 ı

b(0, 0, 1, 1) 0.335582304803311353091514347995139442215099854757553831449744

b(1, 0, 1, 0) 3.6348247076731864932504951023578858292673339155124898891180 ı

b(1, 0, 0, 1) −0.0807264478677156882819109584962963898872921097469527837000 ı

b(0, 1, 1, 0) −1.90356036537318988890446565329012882956856137657406717358988 ı

b(0, 1, 0, 1) 0.04227649995719275621740685640162670023398352003373788817113 ı

b(0, 0, 3, 0) 129.040864005748859507016198556538528233553736784577101088946

b(0, 0, 0, 3) −0.001413592970556240158304896755127595167352354829610932212

b(0, 0, 2, 1) 4.21589194217456670235498417099933841311336874465600342162 ı

b(0, 0, 1, 2) −0.09363147014144205357119167692886475258708843327123260002

b(2, 0, 0, 0) 0.88641009855184343461066940692082941381378000818584100788021

b(0, 2, 0, 0) 0.30611836488593149706028629948849030542698121970142077141797

b(1, 1, 0, 0) −0.92495299536564617037758633296511026060806104913629635661280

b(1, 0, 2, 0) −60.261329873355174731798372121243539876539773317904542556589 ı

b(0, 1, 2, 0) −15.2605899527418333058244835794097518792915488903532642237069 ı

b(1, 0, 1, 1) −4.151864997554668685742992182078910134548761524351851838826 ı

b(0, 1, 1, 1) 1.827211544962906181230889568250744289955895507169110007984 ı

b(1, 0, 0, 2) −0.029723740064180193376835465423773894953343523575710591735 ı

b(0, 1, 0, 2) −0.0075272452488955158111263751754959630134690468124010592919 ı

b(0, 0, 4, 0) −1213.70391084357696046492541637061826006574565810831722306415

b(0, 0, 0, 4) −0.00029528557890202676630563902392904300652934367548690390

b(0, 0, 3, 1) −134.7151700110161481432137240315265525981533158767306874147

b(0, 0, 2, 2) −5.2458976092801328454180908382012977811969571196896984906

b(0, 0, 1, 3) −0.0664478979226739470762923711400975461952655593517508055

taking into account second order terms.

In the diagonal complex coordinates defined through (2.2), but using y∗ instead of y, the
Hamilton function S reads

S =
∑

0≤j,k≤2, 0≤�,m≤4
2≤2j+2k+�+m≤4

b(j, k, �,m)(p1q1)
j(p2q2)

kp�3q
m
3 ,(3.1)

where the coefficients b(j, k, �,m) are given in Table 3.

This transformation has the following features:

(i) The reduction process associated with the normal form is regular, and therefore the
resulting phase space is a plane; see also [16].

(ii) In practice we have already introduced two symmetries in the system, i.e., G1 and G2;
that is, if we first apply the generalized normal form transformation, picking G1, and
then we apply another generalized normal form, extending the integral G2, we end up
with the same Hamiltonian S. Alternatively, we get the same result if we use first G2

and then G1.
(iii) Fixing a ball of radius δ = 10−2 and calling y∗ = Y ∗(x) the inverse change of

x = X∗(y∗), the error up to terms of degree four is E = |H(x) − S(Y ∗(x))| =
0.000056212888314.
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Next, after fixing the value for the integrals as G1 = j1 ≥ 0 and G2 = j2 ≥ 0, we arrive at
a Hamiltonian of one DOF. Now, the corresponding reduced Hamiltonian obtained from S is
named Q(y∗3, Y

∗
3 ; j1, j2). To calculate its relative equilibrium points we need to determine the

roots of the algebraic system (
∂Q
∂Y ∗

3

,
∂Q
∂y∗3

)
= (0, 0).(3.2)

The solution of this system of equations yields four nondegenerate equilibrium points:

(1, 2)
y∗3

1,2 =

(
b1 + b2

√
b3 ± b4

√
b3 b5 + b6

√
b3 ± b7

√
b5 + b6√

b3

)/
(b8

√
b3),

Y ∗
3

1,2 = c− 1
2

√
b3 ± 1

2

√
b5 + b6√

b3
,

(3, 4)
y∗3

3,4 =

(
−b1 + b2

√
b3 ± b4

√
b3 b5 − b6

√
b3 ∓ b7

√
b5 − b6√

b3

)/
(b8

√
b3),

Y ∗
3

3,4 = c + 1
2

√
b3 ± 1

2

√
b5 − b6√

b3
,

where the bi’s are polynomials of degree one or two in j1, j2, for i = 1, . . . , 8, and c is a negative
real constant. Now, we assume that b3, b8 �= 0. Depending on the signs of b3, b5, and b6, we
arrive at these situations:

• Whenever b3 > 0 and b5
√
b3 > |b6|, we get four different equilibria (y∗3

i, Y ∗
3
i), i =

1, . . . , 4, which correspond to four families of invariant 2-tori of H.
• If b3 > 0 and −|b6| < b5

√
b3 < |b6|, we find two different equilibrium points: either

(y∗3
1,2, Y ∗

3
1,2) when b6 > 0 or (y∗3

3,4, Y ∗
3

3,4) when b6 < 0. They correspond to two
families of invariant 2-tori of the original system.

• If b3 > 0 and b5
√
b3 = |b6| or b3 > 0 and b5

√
b3 = −|b6|, there are three equilibria.

More specifically, if b5
√
b3 = b6, we have that (y∗3

3, Y ∗
3

3) coincides with (y∗3
4, Y ∗

3
4),

whereas if b5
√
b3 = −b6, the point (y∗3

1, Y ∗
3

1) is the same as (y∗3
2, Y ∗

3
2). These equilibria

are related with three families of invariant 2-tori of the original system.
• Finally, when b3 < 0 or b5

√
b3 < −|b6|, there are no isolated critical points.

Now since the polynomials bi depend on j1 and j2, the conditions b5
√
b3 = |b6| and

b5
√
b3 = −|b6| correspond to bifurcation curves in the plane of parameters defined by j1 and j2.

By going back to the initial variables and undoing the Lie transformation and the other linear
changes, these curves correspond to bifurcation curves of invariant tori in the original system.

The approximate invariant tori and the quasi-periodic trajectories can be calculated ex-
plicitly as follows. First we compose the different changes of coordinates x = ψϕX∗(y∗).
Then we set

μ1 y
∗
1 =

√
j1 cos t, Y ∗

1 =
√
j1 sin t, μ2 y

∗
2 =

√
j2 cosu, Y ∗

2 =
√
j2 sinu,

with t, u ∈ [0, 2π). Thus, we arrive at an expression of the form y∗(t, u; j1, j2). This represents
a family of invariant 2-tori (depending on j1, j2 ≥ 0) in the phase space R6, parameterized by
u and t. To obtain a very accurate approximation of the invariant 2-tori we should carry out
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Figure 4. Left: a torus in the space of coordinates. Right: another view of the same torus.
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Figure 5. Two invariant 2-tori for two different values of (y∗
3 , Y

∗
3 ) (e.g., two roots of (3.2)) in the space

of coordinates.

the Lie transformation to a high order L. Two views of a single invariant 2-torus are depicted
in Figure 4.

Other invariant 2-tori are drawn in Figure 5.
Next, given a certain invariant 2-torus, fixing either the angle u or the angle t or putting

one of them in terms of the other, we obtain some quasi-periodic orbits confined in the torus.
We have depicted them in Figure 6.

3.2. Some periodic trajectories. We choose G = (X2
1 + μ2

1x
2
1)/2 and compute the cor-

responding generalized normal form T , together with its direct change of coordinates x =
X#(y#), up to terms of degree three, i.e., up to L = 1. Alternatively we could have chosen
G = (X2

2 + μ2
2x

2
2)/2, computing its corresponding normal form and analyzing the resulting

reduced Hamiltonian. This would lead to the approximation of other periodic trajectories.
The techniques are analogous to what we lay out below.

Hamiltonian T , written down in the diagonal complex coordinates (2.2) using now y#, is

T =
∑

0≤j≤1, 0≤k,�,m,n≤3
2≤2j+k+�+m+n≤3

c(j, k, �,m, n)(p1q1)
jpk2q

�
2p

m
3 qn3 ,(3.3)
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Figure 6. Two examples of quasi-periodic orbits confined in their corresponding invariant tori in the space
of coordinates.

Table 4
Coefficients of the normal form Hamiltonian T .

c(1, 0, 0, 0, 0) 1.1250000000000000000000000000000000000000000000000 ı

c(0, 1, 1, 0, 0) 1.2105823048033113530915143479951394422150998547575 ı

c(0, 0, 0, 1, 1) 0.33558230480331135309151434799513944221509985475755

c(1, 1, 0, 0, 0) −0.49146082483453738802994760391366965610524051917195

c(1, 0, 1, 0, 0) 0.49146082483453738802994760391366965610524051917195 ı

c(1, 0, 0, 1, 0) −0.080726447867715688281910958496296389887292109746952 ı

c(1, 0, 0, 0, 1) 3.6348247076731864932504951023578858292673339155124 ı

c(0, 3, 0, 0, 0) 1.3037446836172728935859113087508737031284263535789 ı

c(0, 0, 3, 0, 0) −1.3037446836172728935859113087508737031284263535789

c(0, 0, 0, 3, 0) −0.0014135929705562401583048967551275951673523548296109

c(0, 0, 0, 0, 3) 129.04086400574885950701619855653852823355373678457

c(0, 2, 1, 0, 0) −0.57574097507393795906313924392767431336262355155140

c(0, 2, 0, 1, 0) −0.16188942482724693423 − 0.27025265010926970431 ı

c(0, 2, 0, 0, 1) 7.28930476709861929725 − 12.16851522491159113007 ı

c(0, 1, 2, 0, 0) 0.57574097507393795906313924392767431336262355155140 ı

c(0, 0, 2, 1, 0) 0.16188942482724693423 − 0.27025265010926970431 ı

c(0, 0, 2, 0, 1) −7.28930476709861929725 − 12.16851522491159113007 ı

c(0, 1, 0, 2, 0) 0.02623363028509694515 + 0.01113260808600299924 ı

c(0, 0, 1, 2, 0) 0.01113260808600299924 + 0.02623363028509694515 ı

c(0, 0, 0, 2, 1) −0.093631470141442053571191676928864752587088433271232

c(0, 1, 0, 0, 2) −53.18554949587127053795 + 22.57003212828731801573 ı

c(0, 0, 1, 0, 2) 22.57003212828731801573 − 53.18554949587127053795 ı

c(0, 0, 0, 1, 2) 4.2158919421745667023549841709993384131133687446560

c(0, 1, 1, 1, 0) −0.11177522865336625682136432868978892034911288374302 ı

c(0, 1, 1, 0, 1) 5.0328408290779927327548602001617980717747142967096 ı

c(0, 1, 0, 1, 1) 1.9291384886007714460181481524100091615499514534361 ı

c(0, 0, 1, 1, 1) 1.9291384886007714460181481524100091615499514534361

where the coefficients c(j, k, �,m, n) are displayed in Table 4.

The reduction induced by the normal form computation is regular and, after fixing the
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Figure 7. An approximate periodic orbit in the space of coordinates (left) and in the space of momenta
(right). We have fixed the value of integral j1 = 1/50.

value for the integral, G = j1 ≥ 0, we arrive at a Hamiltonian of two DOF defined on the
reduced phase space, which this time is isomorphic to R4. Now, the corresponding reduced
Hamiltonian obtained from T is called U(y#

2 , y#
3 , Y #

2 , Y #
3 ; j1). Hence, the roots of the algebraic

system (
∂U
∂y#

2

,
∂U
∂y#

3

,
∂U
∂Y #

2

,
∂U
∂Y #

3

)
= (0, 0, 0, 0)(3.4)

give the relative equilibria of U and are indeed in correspondence with some periodic trajec-
tories of H. Note that system (3.4) depends on the parameter j1, so we obtain a family of
approximate periodic trajectories around the colinear equilibrium point we have chosen param-
eterized by j1. Once we have calculated an isolated root of (3.4), say e# = (ȳ#

2 , ȳ#
3 , Ȳ #

2 , Ȳ #
3 ),

we can determine the approximation of a closed orbit computing the direct change of vari-
ables, replacing y#

2 , y#
3 , Y #

2 , and Y #
3 by the particular values they have in e#, and (y#

1 , Y #
1 )

by ((
√

2j1/μ1) cos t,
√

2j1 sin t). We present a single periodic orbit of the Hamiltonian H in
Figure 7.

The existence of exact periodic orbits for H close to the ones calculated above is guaranteed
using an approach based on the implicit function theorem [14]. See also the many examples
in the book by Meyer and Hall [13], where they prove the existence of families of periodic
trajectories through implicit mapping theorems.

Finally, if we choose a ball of radius 10−2 centered at the colinear point, the global error
up to terms of order L = 1 is maintained below 1.6 × 10−3.

4. Conclusions. We apply (three) different normal form transformations to the problem
of a particle orbiting around a straight segment, with the aim of determining some invariant
objects in the vicinity of the unstable colinear equilibrium points.

By using the methodology of generalized normal forms [15, 16] and choosing G = H0, we
have computed high order approximations of the center, the stable, and the unstable manifolds
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of one of the colinear equilibrium points. We also have obtained the NHIM associated with
such an equilibrium, as well as its stable and unstable manifolds.

Selecting G = (X2
1 + μ2

1x
2
1)/2 + (X2

2 + μ2
2x

2
2)/2, we have determined some invariant 2-tori

and quasi-periodic orbits of the original Hamiltonian, obtaining furthermore the conditions
that some parameters must hold to achieve various bifurcations.

We have also taken G = (X2
1 + μ2

1 x
2
1)/2, obtaining some periodic orbits of the original

Hamiltonian as a result of the computation of the relative equilibria of the corresponding
normal form Hamiltonian, for different values of the parameter G = g introduced through the
transformation.

As we give the explicit expressions of the three Hamiltonians, K, S, and T , corresponding
to the three normal forms, and since it is straightforward to determine H (the Hamiltonian
previous to the three normalizations) up to terms of degree eight, one could obtain the direct
and inverse changes of coordinates. Thus, one can recover the periodic and quasi-periodic
orbits, the invariant 2-tori, the NHIM, and its associated manifolds up to a high order of
approximation.

We have not described the algorithms applied to compute the three different normal forms
and their corresponding changes of coordinates, as they are given in full detail in [6].

Our approach provides a methodology to approximate invariant sets of an equilibrium
point for a (polynomial) Hamilton function, using techniques based on generalized normal
forms. The technique can be applied for Hamiltonians of m DOF (with m ≥ 1) and generalized
to the computation of the invariant manifolds associated with an invariant d-torus, d > 0.

We emphasize that the integral G of H0 is chosen previously and it does need to be the
part of H0 whose associated matrix is semisimple. It means that this technique can be applied
to calculate formal integrals of polynomial Hamiltonians whose dominant parts are related to
nilpotent matrices, A, at the price of introducing nonpolynomial generating functions in many
cases.

Acknowledgment. The authors thank the remarks and suggestions made by Dr. Vı́ctor
Lanchares (Universidad de La Rioja) on a previous version of the paper.
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Compound Laser Modes of Mutually Delay-Coupled Lasers∗

Hartmut Erzgräber†, Bernd Krauskopf‡, and Daan Lenstra§

Abstract. We consider a model of two mutually delay-coupled semiconductor lasers (SLs) in a face to face
configuration. The lasers are coherently coupled via their optical fields, where the time delay τ
arises from the finite propagation time of the light from one laser to the other. This system is
described well by single mode rate equations, which are a system of delay differential equations
(DDEs) with one fixed delay.

We study the compound laser modes (CLMs) of the system, where both lasers operate at an
identical, time-independent frequency. By making use of numerical continuation applied to the
full DDEs, we present a comprehensive geometrical picture of how CLMs depend on the two main
physical parameters, namely, the coupling phase and the detuning between the two lasers. The
different branches of CLMs are organized by unfoldings of pitchfork bifurcations that exist for zero
detuning. As a function of the detuning, different branches of CLMs connect, split, or disappear in
transitions through codimension-one singularities in the surface of CLMs.

Key words. mutually delay-coupled lasers, delay differential equations (DDEs), numerical continuation, sym-
metry breaking, singularity
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1. Introduction. In this paper we consider a simple setup of two mutually delay-coupled
semiconductor lasers (SLs) in a face to face configuration. The system is sketched in Figure 1
and has recently attracted quite some attention, both experimentally and theoretically. It is
seen as a prototype system for understanding the dynamics of coupled SLs. This is crucial
because of the present technological trend of integrating SLs on-chip into more complicated
optical systems. In particular, coupled lasers are thought to be important devices for use in
future all-optical signal processing. Due to the small sizes of SLs and the typical distances
between the lasers, one is generally dealing with substantial delay in the coupling.

An SL on its own behaves simply as a damped oscillator, characterized by its relaxation
oscillation with a typical frequency in the order of a few GHz; note that this damped oscillation
is quite harmonic and should not to be confused with relaxation oscillations in slow-fast
systems. However, due to a combination of the material properties of the semiconductor
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κe−iCpE1(t − τ)

Figure 1. Sketch of two mutually delay-coupled lasers.

active material and the low reflectivities of the mirrors, this type of laser is very sensitive
to external optical influences [18, 20, 30]. For example, it is well known that delayed optical
feedback may destabilize the SL. While this is undesirable in applications such as optical data
storage, more recently destabilized SL systems are being considered and studied as broadband
light sources for applications such as private communication [8].

The above discussion shows that the SL system we consider here can be seen, more gener-
ally, as a prototype of two mutually delay-coupled nonlinear oscillators. There has been quite
a lot of interest recently in delay-coupled oscillators in different fields, including arrays of
quasi-optical oscillators [43, 39], as well as chemical oscillations, biological clocks, and neural
networks; see, for example, [34, 33, 26]. On one hand, delayed coupling of stable subsystems
can result in instabilities and even chaos [32]. On the other hand, time delayed coupling
can be used to stabilize chaotic systems. Recently studied phenomena in delay-coupled sys-
tems include multistabilities, amplitude death, or chaos synchronization in conjunction with
symmetry breaking [31, 27, 14, 41].

SLs have the advantage that they can be controlled well, so that different dynamics and
bifurcations can be studied experimentally. In the setup of Figure 1 the coupling is achieved
by injecting a part of the emitted light of one laser into the respective other laser. We
consider here the case of two SLs which are identical, except for a possible detuning between
the two lasers. The detuning is the difference in their solitary optical frequencies, that is,
the frequency the lasers choose when they are not coupled to each other. Note that SLs
can be characterized well and then hand selected, so that the assumption that they have
identical material properties can be guaranteed to very good approximation in an experiment.
Furthermore, the frequencies of the lasers can be controlled and measured very accurately [1].

SL systems are also very fascinating to study theoretically. They can be modeled well
by single mode rate equations for the electric field E and the inversion N inside the laser
cavity. (The inversion is given by the number of electron-hole pairs, which can recombine
to produce one photon each.) External optical influences are modeled by extra terms that
lead to a mathematical description in the form of a delay differential equation (DDE), if
delay is a feature. Typically, this involves a single fixed delay τ . The best known and most
studied laser DDEs are the Lang–Kobayashi equations for an SL subject to optical feedback
from a mirror at some fixed distance from the laser [25, 22]. The mutually delay-coupled SLs
studied here can also be modeled by rate equations in the same spirit; see section 2 for details.
An important feature of the rate equation model is a number of symmetries, especially an
S1-symmetry of rotation of the electric fields of both lasers.

Since DDEs have an infinite-dimensional phase space, they are quite a difficult class of
dynamical systems to study. While linear stability analysis and local bifurcation theory for
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equilibria of DDEs with fixed delays are well established [2, 12], it is nevertheless quite a
challenge to perform a bifurcation analysis of a DDE arising in a specific application. The
equations for equilibria and their stability are typically complicated implicit transcendental
expressions that need to be solved numerically. The alternative approach is to use numeri-
cal continuation techniques—which are well established for the study of ordinary differential
equations—directly for the bifurcation study of a given DDE. This is now possible with the
recently developed MATLAB package DDE-BIFTOOL [4], which allows one to find and fol-
low equilibria and periodic orbits. Furthermore, DDE-BIFTOOL finds stability information,
which is computed by continuing appropriate monodromy operators. In this way, bifurcations
of equilibria and periodic orbits can be detected and studied as a function of system param-
eters. The study of delay effects in SLs has been a major motivation and test case for the
further development of numerical continuation tools for DDEs [18].

DDE-BIFTOOL is an essential tool for the case study presented here, as it allows us to
study the basic solutions (and their stability), called compound laser modes (CLMs), of two
mutually delay-coupled SLs as modeled by rate equations with a single fixed delay. CLMs are
special types of periodic orbits where the motion is only in the direction of the S1-symmetry.
Physically, they correspond to both lasers lasing with constant, but possibly different, inten-
sities at the same optical frequency. We concentrate on the short delay regime, where the
coupling time is of the same order of magnitude as the relaxation oscillation period. From
the dynamical systems point of view this intermediate regime between ultrashort delay and
long delay times is of particular interest because one can expect rich dynamics due to the
competition between the relaxation oscillation frequency and the round-trip frequency. Ad-
ditionally it has the advantage that the number of CLMs is small, so that their individual
behavior can be studied. Also from the experimental point of view this regime is interesting.
Reference [7] contains an experimentally observed characteristic bifurcation scenario within
the locking region, which exists for small detuning between the two lasers. This scenario in-
volves multistability of CLMs, as was further confirmed with a limited theoretical bifurcation
study.

In this paper we take a dynamical systems point of view and present a comprehensive
geometric picture of the CLM structure of the system. We show how different types of CLMs
coexist, interact, change their stability, and bifurcate over a wide range of the two main param-
eters, namely, the coupling phase and the detuning between the two lasers. For zero detuning
the system has the additional phase-space symmetry of exchanging the two lasers, and we find
that certain types of CLMs appear and disappear in pitchfork bifurcations. In fact, the case of
zero detuning organizes the bifurcation diagram: when the detuning is “switched on” the pitch-
fork bifurcations for zero detuning unfold into saddle-node bifurcations. This results, globally,
in branches of CLMs in the form of horseshoes. When the detuning is increased further dif-
ferent branches of CLMs connect, split, or disappear in transitions through codimension-one
singularities in the surface of CLMs. Finally, a simple limiting situation is reached.

The overall bifurcation diagram of CLMs is an intriguing structure of bifurcations and
transitions through singularities of solution surfaces. It forms the “backbone” of constant-
intensity solutions, around which the dynamics evolves. Therefore, it forms the basis for
understanding the behavior of two mutually delay-coupled SLs. On the other hand, the CLM
structure stems from and bears the signature of various underlying symmetries and, as such,
is of interest in the more general context of delay-coupled oscillators.
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We finish this introduction with a brief overview of the recent literature on the system of
two mutually delay-coupled SLs. A theoretical study of the system in the limit of zero delay
was performed in [42], while the limit for very large delay is the focus of theoretical studies
in [17, 37]. Chaos synchronization and symmetry breaking has been reported for long delay
times in [14]. An experimental and numerical study of the onset of chaos synchronization
for different coupling strengths and injection currents can be found in [24]. In [28] numerical
simulations are performed and an analytical formula is derived for the oscillation frequency
in the mode beating regime for short delays. Numerical investigations and an approximate
thermodynamic potential are the subject of [24, 36]. In [15, 16, 41] it is shown that for a
short delay time τ , in the order of the relaxation oscillation period, frequency locking with
continuous wave emission and regular intensity oscillations is dominant. A characteristic
scenario, consisting of optical frequency locking leading toward successive states of periodic
intensity oscillations, as a function of the detuning between the two lasers, has recently been
demonstrated in [41].

The paper is organized as follows. The rate equation model and its properties are discussed
in section 2. In section 3 the CLMs are introduced. How CLMs can be continued numerically
is explained in section 4. For the case of zero detuning we derive analytical expressions for the
CLMs and present a detailed continuation study. In section 6.1 we consider the effect of small
detuning. In section 6.2 we further increase the detuning, which results in the restructuring
of branches of CLMs due to saddle singularities. We discuss the limit of large detuning in
section 6.3. The results are presented in condensed form in section 6.3 as plots of the surface
of CLMs over the two-dimensional parameter space. Finally, section 7 contains a discussion
of avenues for future work.

2. Rate equation model. Our theoretical analysis is based on a set of Lang–Kobayashi-
type rate equations for the normalized complex slowly varying envelope of the optical fields
E1,2 = Re[E1,2] + i Im[E1,2] and the normalized inversions N1,2. The Lang–Kobayashi equa-
tions [22] are an established model to describe a single mode SL that receives conventional
optical feedback. In this situation a part of the emitted light is reflected by a mirror at some
fixed distance and is then fed back into the laser. The Lang–Kobayashi equations can be
extended for the case of two delay-coupled single mode SLs as considered here; for a detailed
derivation see [23].

We write the equations in the reference frame of rotation with the averaged optical angular
frequency of the two lasers. This means that the optical fields of the lasers are represented by
E1,2(t)e

iΩ0t, where Ω0 = 1
2(Ω1 + Ω2) is the average of the lasers’ optical angular frequencies

Ω1,2, respectively. In nondimensional form the equations can be written as

dE1(t)

dt
= (1 + iα)N1(t)E1(t) + κe−iCpE2(t− τ) − iΔE1(t),(2.1)

dE2(t)

dt
= (1 + iα)N2(t)E2(t) + κe−iCpE1(t− τ) + iΔE2(t),(2.2)

T
dN1(t)

dt
= P −N1(t) − (1 + 2N1(t))|E1(t)|2,(2.3)

T
dN2(t)

dt
= P −N2(t) − (1 + 2N2(t))|E2(t)|2.(2.4)
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In (2.1)–(2.4) time t is measured in units of the photon lifetime, which for an SL has a typical
value on the order of 10 picoseconds. The parameter α is the linewidth enhancement factor. It
is typical for SLs and describes the coupling between the phase and the amplitude of the optical
fields E. The parameter T is the normalized carrier lifetime. These are material properties
of the laser. The parameter P describes the amount of electrical current used to pump the
semiconductor active material. For all parameters we adopt the physically meaningful values
given in Table 1.

Table 1
Laser parameters and their values.

Symbol Laser parameter Value

α linewidth enhancement factor 2.5
T electron decay rate 392.0
P pump parameter 0.23
τ coupling time 20.0
κ coupling rate 0.1

Furthermore, the mutual coupling is accounted for by the second term on the right-hand
side of (2.1) and (2.2), where τ is the delay time, κ the coupling rate, Cp the coupling phase,
and Δ the detuning.

The delay time τ is an intrinsic feature of this coupling, due to the finite propagation time
of the light between the spatially separated lasers. We consider here the case of a relatively
short distance between the lasers, in the order of centimeters. This is still long compared to
the length of the SL cavities of typically a few hundred micrometers. Finally, the coupling
rate κ is the fraction of photons coupled into the other laser per unit time.

Our main parameters are the coupling phase Cp and the detuning Δ. In the reference
frame of (2.1)–(2.4) Cp depends on the average optical frequency, namely, Cp = Ω0τ . The
parameter Δ measures the difference between the optical frequencies of the two uncoupled
lasers with respect to the average frequency, that is, Δ = 1

2(Ω2 − Ω1). We consider Cp

and Δ as independent parameters; this is convenient for the analysis and quite common in
the field. The coupling phase Cp can be changed accurately in an experiment by changing the
distance between the two lasers on the scale of the optical wavelength, or by exploiting the
temperature or pump current dependency of Ω0 [1]; these changes are so small that the other
laser parameters remain unchanged within the experimental accuracy. The detuning Δ can
be changed by increasing Ω2 and decreasing Ω1 by the same magnitude, so that the average
frequency and, hence, Cp = Ω0τ remain constant. However, it may be more convenient in
an experiment to change the optical frequency of only one of the two lasers. For this case
(2.1)–(2.4) can be rewritten in the frame where one laser has fixed optical frequency [42].
However, then the symmetry of exchanging laser 1 with laser 2 has a more complicated
expression.

Equations (2.1)–(2.4) are a system of DDEs with a single fixed delay. As such they have
an infinite-dimensional phase space, namely, the space C([−τ, 0],R6) of continuous functions
over the delay interval [−τ, 0] with values in (E1, E2, N1, N2)-space. Thus, in contrast to
ordinary differential equations, a single initial condition x0 ∈ R

6 is not enough to determine
the future evolution of the system. Indeed it is required to prescribe initial data on the entire
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interval [−τ, 0]. We refer to [2, 12] as general references on delay equations; see also [10] for
a background section on DDEs in the context of an SL with delayed feedback.

Crucial for what follows are a number of symmetries of (2.1)–(2.4). First, there is the
continuous S1-symmetry

(E1, E2, N1, N2) → (E1e
ib, E2e

ib, N1, N2).(2.5)

This phase-space symmetry is a typical feature of Lang–Kobayashi-type equations, provided
that no phase conjugation is involved [21]. Any solution of (2.1)–(2.4) is invariant under
any phase shift of both electric fields E1 and E2. The S1-symmetry motivates the ansatz
(3.1)–(3.4) of the CLMs of section 3 with a common frequency for both lasers.

Second, there is the reflection symmetry

(E1, E2, N1, N2,Δ) → (E2, E1, N2, N1,−Δ)(2.6)

of interchanging the two lasers, which results in a sign change of Δ. For zero detuning, that
is, for Δ = 0.0, this symmetry is a Z2-symmetry in phase space. When the detuning Δ is
then “switched on” this phase-space symmetry is broken, which has important consequences
for the organization of the CLMs; see section 6.1.

Third, there is the 2π-translational symmetry

(E1, E2, N1, N2, Cp) → (E1, E2, N1, N2, Cp + 2π)(2.7)

in the feedback phase Cp. As a consequence, the parameter Cp is a circle. We refer to this
symmetry as the 2π-translational symmetry. It is often useful to show bifurcation diagrams
in the covering space R of the circle, that is, over several fundamental domains (of length 2π)
of the symmetry (2.7).

Fourth, there is the symmetry

(E1, E2, N1, N2, Cp) → (E1,−E2, N1, N2, Cp + π),(2.8)

which is a π-translational symmetry in the feedback phase Cp, combined with a sign change
in the optical field of one laser, say, E2. Due to the S1-symmetry (2.5) one could alternatively
change the sign of E1. We refer to this symmetry as the π-translational symmetry. As we will
see in section 5, it provides a link between different types of CLMs.

3. Compound laser modes. The basic solutions of (2.1)–(2.4) are called the compound
laser modes (CLMs); they are of the form

E1(t) = Rs
1e

iωst,(3.1)

E2(t) = Rs
2e

iωst+iσ,(3.2)

N1(t) = N s
1 ,(3.3)

N2(t) = N s
2 ,(3.4)

where Rs
i , N

s
i , ωs, and σ are time-independent and real valued. Additionally, Rs

i are taken
to be positive without loss of generality. We allow different amplitudes Rs

i and different
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steady state inversions N s
i . However, the lasers must have the same frequency ωs, which is

implied by the S1-symmetry (2.5). Here ωs is the deviation between the average solitary
laser frequency Ω0 and the frequency of the coupled laser system. There may also be some
time-independent phase shift σ between the lasers. Mathematically, CLMs are periodic orbits,
with frequencies that depend on other parameters, where the rotation is in the direction of
the symmetry group only. This property of the CLMs must be taken into account when one
wants to continue them numerically; see section 4. Physically, CLMs are frequency locked
states, in which the lasers operate with constant, but possibly different, intensities.

Note that we consider here the situation that the pump current is sufficiently large, so
that the overall system is in the “on-state,” that is, the optical fields have nonzero amplitude.
Mathematically, this means that the “off-state” given by (E1, E2, N1, N2) = (0, 0, P, P ) is
unstable.

Inserting the ansatz (3.1)–(3.4) into (2.1)–(2.4) gives the set of six coupled nonlinear
transcendental equations for the six unknowns:

0 = Rs
1N

s
1 + κRs

2 cos(−Cp − ωsτ + σ),(3.5)

(ωs + Δ) = αN s
1 + κ

Rs
2

Rs
1

sin(−Cp − ωsτ + σ),(3.6)

0 = Rs
2N

s
2 + κRs

1 cos(−Cp − ωsτ − σ),(3.7)

(ωs − Δ) = αN s
2 + κ

Rs
1

Rs
2

sin(−Cp − ωsτ − σ),(3.8)

0 = P −N s
1 − (1 + 2N s

1 )|Rs
1|2,(3.9)

0 = P −N s
2 − (1 + 2N s

2 )|Rs
2|2.(3.10)

There is no obvious analytical strategy for solving for the unknowns in some closed form that
allows one to create an overall picture of how the CLMs depend on parameters, for example,
on Cp and Δ. In fact, the situation is a lot more complicated than for the case of the Lang–
Kobayashi equations of an SL with feedback, for which a partial analytical picture is now
emerging [29]. It is of course possible to find individual solutions of (3.5)–(3.10) numerically,
for example, by root solving with Newton’s method. Such roots can then be followed in
relevant parameters with standard continuation software, such as AUTO [3].

The approach we take here is in this spirit, but we find and follow CLMs in the full
DDE (2.1)–(2.4) by using the package DDE-BIFTOOL [4]. This has the advantage that we
obtain stability information along branches of CLMs; see section 4 for details of the numerical
procedure.

Furthermore, we gain insight into special cases of CLMs by a study of some special cases
of (3.5)–(3.10). Of special interest is the relationship between the frequency ωs and the phase
difference σ. We eliminate the unknown variables R1, R2, N1, N2 from (3.5)–(3.8), which
results in the transcendental equation

(ωs)2 = κ2(1 + α2)[sin(Cp + ωsτ + σ + arctan(α))

× sin(Cp + ωsτ − σ + arctan(α))] − Δ2.(3.11)

As we will see in section 5, this equation allows us to identify certain CLMs as solutions of an
associated Lang–Kobayashi equation for a laser with optical feedback.
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4. Continuation of CLMs. The package DDE-BIFTOOL provides MATLAB routines for
the numerical continuation analysis of DDEs [4]. From a starting solution, such as a steady
state or a periodic orbit, DDE-BIFTOOL is able to follow a solution branch in one parameter.
Furthermore, stability information in the form of eigenvalues or Floquet multipliers can be
computed along the branch. In this way, local codimension-one bifurcations can be detected;
some of them can be followed in two parameters.

In order to use DDE-BIFTOOL to follow branches of CLMs in (2.1)–(2.4), one needs to
realize that CLMs are periodic orbits. However, CLMs are special types of periodic orbits:
Rs

1,2 and N s
1,2 are constant, so that the periodic motion is purely in the direction of the

continuous S1-symmetry, with constant speed ωs and a time-independent phase difference σ;
one also speaks of CLMs as group orbits of the S1-symmetry. The situation is conceptually
the same as that for the external cavity modes (ECMs) of the Lang–Kobayashi equations
[21, 11].

We can exploit the special nature of the CLMs to continue them as equilibria with DDE-
BIFTOOL of an appropriately amended equation; see also [11, 19]. The idea is to move into
the frame that is rotating with the speed given by the unknown frequency ωs. (Recall that ωs is
different for different CLMs, so that the S1-symmetry cannot be divided out globally [21].) In
order to use DDE-BIFTOOL, this can be done by introducing the new parameter b, replacing
E1,2(t) in (2.1) and (2.2) with

E1,2(t)e
ibt.(4.1)

This gives the new equations

dE1

dt
= (1 + iα)N1E1 + κe−iCpE2(t− τ) − i(b + Δ)E1,(4.2)

dE2

dt
= (1 + iα)N2E2 + κe−iCpE1(t− τ) − i(b− Δ)E2,(4.3)

while (2.3) and (2.4) remain unchanged. During the continuation b is an additional free
parameter that is then fixed to b = ωs, so that the respective CLM is now an equilibrium
of (4.2), (4.3), (2.3), and (2.4). Because of the S1-symmetry, the CLM gives rise to a whole
family of nonisolated equilibria in this setup. To obtain an isolated solution one needs to fix
the phase, which can be done, for example, by requiring that Im(E1) = 0.

Along a branch of CLMs stability information is computed using DDE-BIFTOOL in the
usual way but with one exception: there is always one extra zero-eigenvalue due to direction
of group action, which is neutral. Thus, we can detect codimension-one bifurcations as for any
equilibrium, namely, saddle-node bifurcations, pitchfork bifurcations, and Hopf bifurcations.
For the interpretation of the results it is important to keep in mind that we are actually
dealing with bifurcations of CLMs, which are group orbits of the S1-symmetry of the respective
equilibria. While saddle-node and pitchfork bifurcations simply lead to the creation of different
branches of CLMs, Hopf bifurcations actually lead to bifurcating tori in phase space.

In what follows we use DDE-BIFTOOL to derive a comprehensive picture of the CLMs,
including stability information, as a function of the feedback phase Cp and the detuning Δ.
To this end, we first consider the case of zero detuning in section 5 and then the influence of
nonzero detuning in section 6.



38 H. ERZGRÄBER, B. KRAUSKOPF, AND D. LENSTRA

5. CLMs for zero detuning. For zero detuning, Δ = 0, the two lasers would operate with
the same solitary optical frequency. While the detuning is experimentally easily accessible
and can be controlled with good accuracy [13], one may argue that Δ = 0 is not attainable
exactly in an experiment. However, it turns out that this special case organizes the dynamics
even for small nonzero detuning.

For Δ = 0 the symmetry (2.6) of exchanging the two lasers is a reflectional symmetry in
phase space. In particular, (3.11) reduces to

(ωs)2 = κ2(1 + α2)[sin(Cp + ωsτ + σ + arctan(α))

× sin(Cp + ωsτ − σ + arctan(α))].(5.1)

For the special choices σ = 0 and σ = π we obtain

ωs = ∓κ
√

1 + α2 sin(Cp + ωsτ arctan(α))(5.2)

with the respective choice of ∓.
We call solutions of (5.2) the constant-phase CLMs, where we distinguish further between

in-phase CLMs with σ = 0 and antiphase CLMs with σ = π. Equation (5.2) is in fact the
determining equation for the ECMs of the Lang–Kobayashi equations describing a laser with
conventional optical feedback from a mirror at half the distance between the two lasers, except
for allowing for both signs ∓. As an immediate consequence, the constant-phase CLMs lie
on an ellipse in the (ωs, N s)-plane. In particular, for constant-phase CLMs one has Rs

1 = Rs
2

and N s
1 = N s

2 , which means that both lasers operate with the same intensity. In-phase CLMs
have zero phase difference, σ = 0, and are described by (5.2) with a minus sign. Physically,
this is the case of constructive interference between the optical fields of the two lasers. On
the other hand, for antiphase CLMs with a phase difference of σ = π, there is destructive
interference between the optical fields of the two lasers, as is expressed by the plus sign in (5.2).
Mathematically, the in-phase CLMs are related to the antiphase CLMs by the π-translational
symmetry (2.8).

The constant-phase CLMs are the most obvious solutions of (3.5)–(3.10) for zero detuning.
However, a bifurcation analysis with numerical continuation shows that even for zero detuning
there are additional CLMs where σ is not constant but some function of Cp. We call these
solutions intermediate-phase CLMs. For this type of CLM one finds that Rs

1 �= Rs
2 and

N s
1 �= N s

2 , which means that the two lasers operate with different intensities.
Figure 2 shows curves of CLMs in the (ωs, N s)-plane. The projection is the representation

of choice in the physics literature (also for the Lang–Kobayashi equations) because in effect,
it “hides” the 2π-translational symmetry of the parameter Cp. All CLMs lie on closed curves.
Furthermore, the frequency ωs is a quantity that can be measured in an experiment and N s is
directly related to the laser intensity. Each curve is parameterized by the feedback phase Cp,
meaning that it represents all CLMs of a given type that exist for any choice of Cp. The
symbols in Figure 2 indicate points where saddle-node, pitchfork, and Hopf bifurcations take
place along the different branches as Cp is changed. The constant-phase CLMs form the
purple ellipse. The bifurcating intermediate-phase CLMs lie on the green closed curve which
also has the shape of an ellipse for our choice of parameters. Additionally, there is a separate
branch of intermediate-phase CLMs, namely, the two orange islands. For a given Cp, there is
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Figure 2. Curves of CLMs for zero detuning in the (ωs, Ns)-plane. For the constant-phase CLMs (purple
curve) the inversions of both lasers are identical, while for the bifurcating intermediate-phase CLMs (green
curve) they are different. There is another disconnected branch of CLMs (orange curves), where the inversion
of the two lasers are on two different curves, one for larger values of Ns. (Note the different scale of the vertical
axis.) Throughout the paper saddle-node bifurcations are marked by pluses (+), Hopf bifurcations by stars (∗),
and pitchfork bifurcations by diamonds (�); stable regions are plotted as bold curves. Note that saddle-node
bifurcations do not coincide with folds with respect to ωs.

a fixed number of CLMs, which lie on the respective curves. This is illustrated in Figure 3
for Cp = 0, where circles (◦) mark the inversion of laser 1 and crosses (×) the inversion of
laser 2. There is a second set of solutions due to the reflection symmetry (2.6), which can be
obtained by interchanging crosses (×) with circles (◦).

We now describe how the different types of CLMs move over the respective curves as
Cp is decreased; compare Figures 2 and 3 and the accompanying animation (61995 01.gif).
Constant-phase CLMs move over the purple ellipse. In-phase CLMs and antiphase CLMs
are born in pairs in the saddle-node bifurcation in the low-inversion region. The saddle-node
bifurcations are close to the folds with respect to ωs, but they do not take place exactly
at the folds because ωs is not a bifurcation parameter. When Cp is decreased, the saddle is
moving on the upper half and the node is moving on the lower half of the purple ellipse toward

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/61995_01.gif
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Figure 3. The curves of CLMs for zero detuning in the (ωs, Ns)-plane as in Figure 2, but with CLMs for
Cp = 0. Crosses (×) mark the inversion of laser 1 and circles (◦) that of laser 2. A second set of solutions,
with crosses and circles interchanged, exists as a result of the second reflection symmetry (2.6). Clicking on
the above image displays the accompanying animation (61995 01.gif [1.7MB]).

the high-inversion region. Eventually they coalesce and disappear in the second saddle-node
bifurcation in the high-inversion region. Along the way, the constant-phase CLMs change
their stability several times, mostly in Hopf bifurcations. The constant-phase CLMs in the
boldfaced region of the purple ellipse are stable. In this region the two lasers show stable
emission with the same intensity and, depending on the exact range of Cp, a phase difference
of either zero or π. This stable region is bounded by a saddle-node bifurcation on the left and
by a Hopf bifurcation on the right.

The pitchfork bifurcation is responsible for the creation of a pair of intermediate-phase
CLMs, which lie on the green ellipse in Figures 2 and 3. For intermediate-phase CLMs
N s

1 �= N s
2 . In fact, the inversion of, say, laser 1 can be found on the lower half of the green

ellipse, whereas the inversion of laser 2 is on the upper half; due to symmetry there is a second
solution with laser 1 and laser 2 exchanged. For decreasing Cp, the intermediate-phase CLMs
travel along their ellipse from the low-inversion region toward the high-inversion region, where
they coalesce and disappear in the second pitchfork bifurcation. We can distinguish between

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/61995_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/61995_01.gif
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intermediate-phase CLMs that are born in a pitchfork bifurcation of an in-phase CLM and
intermediate CLMs that are born in a pitchfork bifurcation of an antiphase CLM, which we
call increasing-phase CLMs and decreasing-phase CLMs, respectively.

Finally, there is the set of intermediate-phase CLMs on the separate orange islands. Being
intermediate-phase CLMs, they also have nonidentical inversions, N s

1 �= N s
2 , and nonidentical

amplitudes, Rs
1 �= Rs

2. The inversion of, say, laser 1 takes values around its solitary value,
corresponding to the origin in Figures 2 and 3, whereas the inversion of laser 2 has significantly
higher values of the inversion, as can be seen in the upper panels of these figures. Again due to
symmetry there is a second solution with laser 1 and laser 2 exchanged. When decreasing Cp,
these intermediate-phase CLMs are born in pairs in a saddle-node bifurcation on the left side
of the curve, that is, for negative ωs. Then they move along the orange, ellipse-like curves,
one on the upper ellipse and the other one on the lower ellipse, and eventually coalesce and
disappear in the second saddle-node bifurcation.

A disadvantage of the projection from the bifurcation theory point of view is that neither
N s nor ωs is a bifurcation parameter, so that Figure 2 is not a bifurcation diagram. In
particular, we already mentioned that the saddle-node bifurcations do not coincide with the
folds with respect to ωs. Therefore, we now study the CLMs as a function of Cp, which is
a main bifurcation parameter we consider here. To this end, we show in Figures 4 and 5
different curves of CLMs as a function of Cp. This representation makes all the symmetries
explicit and allows us to discuss in detail how the different types of CLMs depend on the
bifurcation parameter Cp and how they interact. The number and location of CLMs for a
given Cp can simply be read off by considering all intersections of curves of CLMs with a
vertical line corresponding to the value of Cp; for example, the CLMs in Figure 3 correspond
to the intersection with the line {Cp = 0}; in this projection the saddle-node bifurcations
are the folds with respect to Cp. It is convenient to show the respective curves of CLMs
over several multiples of 2π, meaning that we consider several fundamental domains of the
2π-translational symmetry (2.7).

In Figure 4 we show the constant-phase and bifurcating intermediate-phase CLMs in the
(Cp, N

s)-plane. Panel (a) shows the constant-phase CLMs, namely, the in-phase CLMs in pink
and the antiphase CLMs in purple. Both form a single, self-intersecting curve, and the image
is indeed 2π-translationally invariant. A translation by π transforms the pink into the purple
curve and vice versa, which represents the relation between the in-phase and the antiphase
CLMs as given by (2.8). Panel (b) of Figure 4 shows the intermediate-phase CLMs that
bifurcate in the pitchfork bifurcations from the constant-phase CLMs, where the increasing-
phase CLMs are shown in light green and the decreasing-phase CLMs in dark green. There
are infinitely many closed curves that appear to have the shape of an ellipse. The image is
again invariant under a translation by 2π, while a translation by π transforms the light green
into the dark green curves, that is, increasing-phase into decreasing-phase CLMs.

Figure 5 illustrates how the constant-phase and the bifurcating intermediate-phase CLMs
interact when seen as a function of Cp. Panel (a) simply shows both sets of curves plotted
together in the (Cp, N

s)-plane. The intersections of curves marked by a diamond (�) are the
pitchfork bifurcations; all other intersections are due to projection. This image clearly shows
how the infinitely many ellipse-like curves of intermediate-phase CLMs provide the connection
between the two single curves of constant-phase CLMs. This point is further brought out in
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Figure 4. CLMs for zero detuning from Figure 2 plotted in the (Cp, N
s)-plane. The constant-phase CLMs

form two infinitely long, self-intersecting curves (a). The in-phase CLMs (pink curve) and the antiphase CLMs
(purple curve) are each other’s image under the π-translational symmetry (2.8). The intermediate-phase CLMs,
on the other hand, form infinitely many closed curves (b). The increasing-phase CLMs (light green curves)
and the decreasing-phase CLMs (dark green curves) are each other’s image under the π-translational symmetry
(2.8).

panel (b) of Figure 5, where we show the same CLMs in the (Cp, σ)-plane; notice the additional
2π-symmetry of the figure in the phase difference σ. In this representation the constant-phase
CLMs trace out a straight line at σ = 0 for the in-phase CLMs and at σ = ±π for the
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Figure 5. The constant-phase CLMs and the bifurcating intermediate-phase CLMs from Figure 3 plotted
together in the (Cp, N

s)-plane (a) and in the (Cp, σ)-plane (b). The intersections marked by diamonds (�) are
the pitchfork bifurcations.

antiphase CLMs. The different ellipse-like curves of intermediate-phase CLMs in Figure 4,
on the other hand, lead to an intriguing array of additional curves in the (Cp, σ)-plane. Let
us concentrate on the rightmost dark green curve with a pitchfork bifurcation of an in-phase
CLM at (Cp, σ) ≈ (2.8π, 0). For decreasing Cp, two branches emerge from this point; one is
going upward toward higher σ, and the other is going downward toward lower σ. While Cp

decreases, the two intermediate-phase CLMs gain an additional phase shift of ±π. Eventually
they both intersect with the branch of antiphase CLMs at around (Cp, σ) = (−0.5π,±π). This
is the point of the second pitchfork bifurcation, where this particular pair of intermediate-
phase CLMs disappears. Due to the 2π-symmetry in σ the antiphase CLM at σ = −π is
identical to the one at σ = π. All other green branches connect in-phase and antiphase CLMs
in a similar way. The relationship between light green and dark green branches is again given
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Figure 6. The other intermediate-phase CLMs from Figure 2 plotted in the (Cp, N
s)-plane for one laser

(a1) and the other laser (a2), and in the (Cp, σ)-plane (b).

by the symmetry (2.8), which in the (Cp, σ)-plane is given by (Cp, σ) → (Cp + π, σ + π).

We end this section by considering in Figure 6 the other intermediate-phase CLMs cor-
responding to the orange curve in Figure 2. Panels (a1), (a2), and (b) show these CLMs
in the (Cp, N

s)-plane. Since the inversions of the two lasers are very different we plot them
in different panels; note also the difference in the vertical scales. These intermediate-phase
CLMs trace out two curves—one for N s around zero and one for N s around 0.222. The image
in Figure 6 is not only invariant under translation by 2π but also under translation by π.
This means that for this type of intermediate-phase CLM one cannot distinguish two different
types that are each other’s counterparts under exchanging laser 1 and laser 2. Panel (b) of
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Figure 6 shows the phase difference σ of these intermediate-phase CLMs, which are born in
pairs in saddle-node bifurcations, corresponding to folds of the branches. The different orange
curves are each other’s image under the symmetries (2.8) and (2.7), which in the (Cp, σ)-plane
are given by (Cp, σ) → (Cp + π, σ + π) and (Cp, σ) → (Cp + 2π, σ + 2π), respectively. Note
that, in contrast to the other type of intermediate-phase CLM in Figure 5, these intermediate-
phase CLMs do not remain in a finite interval of Cp values. Instead, as a function of Cp they
continuously gain (or lose) in phase difference σ.

6. CLMs for nonzero detuning. In this section we study in detail how the structure of the
CLMs discussed in the last section changes with the detuning. Due to the symmetry (2.6), we
may restrict our attention to Δ > 0. We first consider in section 6.1 the case of relatively small
Δ, which can be seen as being “organized” by the CLMs for zero detuning. Indeed Δ �= 0
breaks the phase-space symmetry of exchanging the two lasers. As a result, the pitchfork
bifurcations for Δ = 0 unfold to saddle-node bifurcations leading to an interesting global
organization of the different branches of CLMs. Note that, locally, small detuning has only
little effect and to some extent one still can speak of identical lasers. In section 6.2 we show
that for intermediate Δ there are further interactions between different branches of CLMs due
to transitions through saddles and extrema of the surface of CLMs in the three-dimensional
(Cp,Δ, N s)-space. Finally, we consider the limit of very large Δ in section 6.3.

6.1. Perturbation from zero detuning. As an entry point to the analysis of the CLMs
for nonzero detuning we present in Figure 7 again the “representation” of the CLMs in the
(ωs, N s)-plane. The colors now refer to the two different lasers: red corresponds to laser 1,
which is “detuned to the red” with respect to the average optical frequency, and blue cor-
responds to laser 2, which is “detuned to the blue” with respect to the average optical fre-
quency. Recall that (2.1)–(2.4) are written in the reference frame of average optical frequency
1
2(Ω1 + Ω2); the system can be detuned without changing the coupling phase Cp.

For nonzero detuning the inversions of the lasers are no longer identical; that is, N s
1 �= N s

2 .
Thus, different curves can be seen for laser 1 and laser 2, respectively. We first concentrate
on the two large closed curves in the shape of horseshoes. Their structure can be understood
by the unfolding of the pitchfork bifurcations for zero detuning. Depending on the sign of
the unfolding parameter, there are two generic possibilities of locally unfolding a pitchfork
bifurcation, each consisting of a saddle-node bifurcation and a separated branch [34]. In the
coupled laser system both possibilities exist, one in the low-inversion region and one in the
high-inversion region. Globally, for the chosen set of parameters, the unfolding of the pitchfork
bifurcations leads to the formation of the red and the blue horseshoes.

Furthermore, the small ellipses originate from the two separate ellipses of intermediate-
phase CLMs for zero detuning. Each of them is now split up into a red and a blue ellipse. A
single CLM for fixed Cp now corresponds to one point on a red curve and another point on
the blue curve. This is illustrated in Figure 8 for Cp = 0, where circles (◦) mark the inversion
of the red laser 1 and crosses (×) that of the blue laser 2.

When Cp is decreased, CLMs move over the different pairs of red and blue branches;
compare Figures 7 and 8 and the accompanying animation (61995 02.gif). CLMs are formed
in saddle-node bifurcations in the low-inversion region, travel along the horseshoes, and then
disappear in the high-inversion region in another saddle-node bifurcation. Similarly, for the

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/61995_02.gif
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Figure 7. CLMs for Δ = 0.025 in the (ωs, Ns)-plane, where we distinguish between the red detuned laser 1
(red curves) and the blue detuned laser 2 (blue curves).

separate ellipses the associated CLMs are formed in saddle-node bifurcations on the low fre-
quency side of the respective ellipse and disappear in saddle-node bifurcations on the high
frequency side. Again, a CLM for fixed Cp corresponds to one point on a red curve and one
point on the corresponding blue curve.

The connection with the case of zero detuning is obviously given by decreasing Δ back
to zero. Then the two horseshoes move closer together and in the limit form the two ellipses
of the constant-phase and bifurcating intermediate-phase CLMs. Similarly, the ellipses of
separate intermediate-phase CLMs move together and then form only two ellipses; compare
Figures 7 and 2 and see the accompanying animation (61995 03.gif).

We now consider the CLMs for (small) nonzero detuning in dependence on the parame-
ter Cp, that is, in the (Cp, N

s)-plane. Figure 9 shows the curves that correspond to the red
and blue horseshoes for three different values of increasing Δ; panel (a) is actually for the
data in Figure 7. Both the curve for the red laser and that for the blue laser are closed curves
with a single self-intersection. Note that we plot only one such curve each; there are, in fact,
infinitely many copies due to the translational symmetries (2.8) and (2.7). As the detuning is
increased, the curves of the red and the blue lasers move further apart, but the structure of
the branches remains topologically the same in Figure 9.

Figure 10 shows the curves of CLMs of Figure 9 in the (Cp, N
s)-plane (left column)

and the (Cp, σ)-plane (right column), but now with the same color coding of these different

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/61995_02.gif
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Figure 8. CLMs for Δ = 0.025 in the (ωs, Ns)-plane for fixed value of Cp = 0. Crosses (×) mark the
inversion of laser 1 and circles (◦) that of laser 2. Clicking on the above image displays the accompanying
animation (61995 02.gif [1.1MB]).

branches as in Figure 6. Note that for nonzero detuning there are no constant-phase CLMs.
Nevertheless, we see that there are two substantial sections of the branch where the CLM has
an almost constant phase of σ ≈ 0 and σ ≈ π. These parts are connected by sections where the
phase increases and decreases, respectively. These different sections can be identified as the
reminders of corresponding constant-phase and intermediate-phase CLMs for zero detuning,
which is clearly brought out by the coloring. Considering the right column and decreasing Cp,
a pair of CLMs is born in the saddle-node bifurcation at Cp ≈ 2.7π. The purple branch has
an almost constant phase σ ≈ π, while the dark green branch has a decreasing phase σ. A
second pair of CLMs is born in the saddle node at Cp ≈ 1.8π. The pink branch has an almost
constant phase σ ≈ 0, while the light green branch has an increasing phase σ. The decreasing-
phase and the increasing-phase branches cross, and the branches come together differently in
the other two saddle-node bifurcations on the left. This scenario corresponds to moving over
the respective branches of the same color in the left column of Figure 10.

Clearly, Figure 10(a1)–(c1) and Figure 10(a2)–(c2) are a perturbation, resulting in un-
foldings of the pitchfork bifurcations, of the respective plots for zero detuning in Figure 5(a)
and (b). To show in detail which branches interact in this unfolding of the pitchfork bifur-
cations, Figure 11 shows enlarged views in the (Cp, N

s)-plane. The left column shows the
situation for zero detuning, where the constant-phase CLMs (pink and purple curves) have

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/61995_02.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/61995_02.gif
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Figure 9. Detuning sequence of CLMs in the (Cp, N
s)-plane. Panel (a) shows the CLMs for Δ = 0.025 from

Figure 2, while in panel (b) and (c) Δ takes the values 0.05 and 0.075, respectively. See also the accompanying
animations (61995 03.gif [1.4MB] and 61995 04.gif [1.7MB]) in the (ωs, Ns)-plane.
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Figure 10. The detuning sequence in the (Cp, N
s)-plane from Figure 9 shown in the (Cp, N

s)-plane (left
column) and in the (Cp, σ)-plane (right column). The different branches are color coded as in Figure 5 to
identify (approximate) in-phase, antiphase, increasing-phase, and decreasing-phase CLMs.

N s
1 = N s

2 . The inversions of the intermediate-phase CLMs (dark green and light green curves)
lie on the same curve but at different positions because N s

1 �= N s
2 . Consequently, as was

discussed earlier, every branch that exists for nonzero detuning “doubles” in the presence of
detuning, as can be seen in the right column of Figure 11. The different rows show clearly
how different branches connect locally near the pitchfork bifurcations, which globally leads to
the structure of CLMs in Figure 10.

6.2. Intermediate values of detuning. As we see now, branches of CLMs connect or
disconnect for larger values of the detuning Δ. In Figure 12 all branches of CLMs are shown
in the (ωs, N s)-plane, for three different intermediate values of Δ. This figure reveals a
pinching-off of the red horseshoe, while the blue horseshoe transforms into two concentric
circles. Figure 12(b) shows a transversal crossing of the respective parts of the red and blue
curves.

The transition can be understood in terms of the corresponding red and blue surfaces in
(Cp,Δ, N s)-space. In fact, Figure 12(b) already shows that we are dealing with a crossing
through a saddle singularity of this surface with respect to Δ. This is a classic codimension-
one singularity of this surface [9] that leads locally to a different reconnection of the branches
involved. In Figure 13 we show how this manifests itself in the (Cp, N

s)-plane in terms
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Figure 11. Enlarged views of branches of CLMs for Δ = 0 (left column) and for Δ = 0.025 (right column)
in the (Cp, N

s)-plane near the unfoldings of pitchfork bifurcations showing how different types of branches
connect.

of the inversions of the red and blue lasers. Panel (a) shows the situation for Δ = 0.075,
which corresponds to Figure 9(a). As the saddle-singularity is approached, two π-translational
symmetry related CLM branches approach each other. After the singularity there are two
separate branches of CLMs, that is, pairs of red and blue branches. They are plotted in
Figure 13(b) and (c), respectively.

In Figure 14 we plot the curves of CLMs of Figure 13 in the (Cp, N
s)-plane (left column)

and the (Cp, σ)-plane (right column), again with the same color coding indicating the different
branches in terms of their phase difference σ. Furthermore, we now plot in panel (a) all copies
of branches under the translational symmetries. As the saddle-singularity is approached, two
π-translational symmetry related CLM branches approach each other; see the region around
(Cp, σ) = (−1.8, 0) in Figure 14(a1). After the transition we see that the first CLM branch in
Figure 14(b) is formed by connecting the upper dark green branch with the lower pink branch,
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Figure 12. Detuning sequence of CLMs in the (ωs, Ns)-plane showing the inversions of the red and blue
lasers during a transition through a saddle singularity. From (a) to (c) Δ takes the values 0.075, 0.080, and
0.085. See also the accompanying animations (61995 03.gif [1.4MB] and 61995 04.gif [1.7MB]).
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Figure 13. Panel (a) shows the curves of CLMs from Figure 12 in the (Cp, N
s)-plane before the transition

for Δ = 0.075, while panels (b) and (c) show two types of curves of CLMs for Δ = 0.085 that are created in
the saddle transition.
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Figure 14. The curves of CLMs from Figure 13 in the (Cp, N
s)-plane (left column) and in the (Cp, σ)-plane

(right column), where the different branches are color coded as in Figure 5 to identify (approximate) in-phase,
antiphase, increasing-phase, and decreasing-phase CLMs.

while the second CLM branch in Figure 14(b) is formed by connecting the lower dark green
branch with the upper pink branch. Note that both branches do not have a bounded phase
difference as a function of Cp.

The physical interpretation of this transition through a saddle-singularity is as follows.
Detuning has the tendency to pull the inversions of the two lasers apart, whereas the coupling
ties them together. Before the saddle-singularity the system can unify both tendencies in a
single branch of CLMs; see Figures 13(a) and 14(a). However, after the saddle-singularity there
are two different branches of CLMs. The branch in Figures 13(b) and 14(b) corresponds to the
“pulling-apart tendency” of the detuning, while the one in Figures 13(c) and 14(c) corresponds
to the “tying-together tendency” of the coupling. Note that at the saddle-singularity we are
dealing with two CLMs with the same inversion, which is also known as the Petermann–Tager
condition in the context of a laser with conventional optical feedback [35, 40].

When Δ is increased even further we encounter a second saddle-singularity. However, this
time the global organization of the branches of CLMs is such that this results in the merging of
two separate branches. In Figure 15 all branches of CLMs are shown in the (ωs, N s)-plane, for
two different values of detuning, one before and one after this second saddle-singularity. While
the exact shape and position of the different branches of CLMs have changed, the situation
in Figure 15(a) is topologically the same as that in Figure 12(c). After the bifurcation the
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Figure 15. Detuning sequence of CLMs in the (ωs, Ns)-plane for the red and blue lasers before (a) and
after (b) a further transition through a saddle singularity; the detuning Δ takes the values 0.10 and 0.105,
respectively. See also the accompanying animations (61995 03.gif [1.4MB] and 61995 04.gif [1.7MB]).

two separate red branches merge into a “boomerang-like” structure, while the two innermost
concentric blue curves form a new horseshoe.

In the (Cp, N
s)-plane this transition manifests itself as shown in Figure 16 in terms of

the inversions of the red and blue lasers. Figure 17 again shows the branches of CLMs in the
(Cp, N

s)-plane and the (Cp, σ)-plane in the color coding in terms of the phase difference σ.
Before the saddle-singularity there are exactly two distinct branches of CLMs, that is, pairs
of red and blue curves in Figure 16. As the singularity is approached the low-inversion branch
of the red laser hits the high-inversion branch from below. Then these two branches connect
differently to form infinitely many closed red curves, and the two blue curves undergo a similar
transition to infinitely many bounded, closed curves; see Figure 16(b) and also Figure 17(b1).
In the process, the phase difference between the two lasers becomes bounded, as is shown in

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/61995_03.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/61995_04.gif
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Figure 16. The curves of CLMs from Figure 15 in the (Cp, N
s)-plane (left column) and in the (Cp, σ)-plane

(right column), where the different branches are color coded as in Figure 5 to identify (approximate) in-phase,
antiphase, increasing-phase, and decreasing-phase CLMs.

Figure 17(b2).

6.3. The limit of very large detuning. When Δ is increased even further, as is shown
in Figure 18 in the (ωs, N s)-plane, a pair of red and blue islands, that is, a separate branch
of CLMs, shrinks down to two points and disappears. This happens in another classical
codimension-one singularity of the surface of CLMs, namely, a transition through an ex-
tremum [9] (specifically, a maximum with respect to Δ). After this last singularity transition
the situation remains topologically the same. However, the remaining two pairs of isolas be-
come smaller and they center around the points (ωs, N s) ≈ (±Δ, 0) and (ωs, N s) ≈ (±Δ, P ).

This behavior can be explained by considering the limit of Δ going to infinity. Clearly,
Rs

1,2, N
s
1,2, ω

s, and σs in (3.5)–(3.10) depend on Δ; we denote their limiting values for Δ → ∞
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Figure 17. The curves of CLMs from Figure 15 in the (Cp, N
s)-plane.

by R
s
1,2, N

s
1,2, ω

s, and σs, respectively. By solving (3.11) for 1/Δ2 we conclude that (ωs)2

grows as Δ2. In other words, in the limit Δ → ∞ we have that

ωs = ±Δ.(6.1)

Due to the symmetry (2.6) it is sufficient to consider only the case Δ = ωs. We use (3.5)
and (3.6) for ωs = Δ to eliminate N s

1 and obtain

2Δ = κ
√

(1 + α2)
Rs

2

Rs
1

sin(−Cp − Δτ + σ −Aα),(6.2)

where Aα = arctanα. Taking reciprocals and letting Δ → ∞, we conclude that

R
s
1

R
s
2

= 0.(6.3)

Inserting this limit into (3.7) gives, for ωs = Δ,

N
s
2 = 0.(6.4)

Finally, combining (3.9) and (3.10) gives

|Rs
1|2

|Rs
2|2

=
(1 + 2N s

2 )(P −N s
1 )

(1 + 2N s
1 )(P −N s

2 )
,(6.5)

from which we conclude with (6.3) and (6.4) that

N
s
1 = P.(6.6)

The amplitudes Rs
1 and Rs

2 are computed from (3.9) and (3.10) as

R
s
1 = 0 and R

s
2 = P.(6.7)

Recall that Rs
1 and Rs

2 are defined to be positive.
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Figure 18. Detuning sequence of CLMs in the (ωs, Ns)-plane for the red and blue lasers toward the limit
of large detuning; from (a) to (c) Δ takes the values 0.17, 0.1875, and 0.625. Notice the transition through a
maximum between panels (a) and (b) in which a pair of closed branches disappears. See also the accompanying
animations (61995 03.gif [1.4MB] and 61995 04.gif [1.7MB]).
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This result on the limit Δ → ∞ can be interpreted physically as follows. Because of
the mismatch in their free-running optical frequencies, the electric field of one laser has a
decreasing influence on the electric field of the other laser. When Δ grows, the two lasers
become more detuned. Concentrating on the solution on the positive side of the ωs-axes in
Figure 18, it can be seen that the red detuned laser operates around its detuned free-running
optical frequency. Due to the coupling the blue laser is forced to also operate at this frequency;
that is, it is far away from its detuned free-running optical frequency. Therefore, the blue laser
operates around its off-state. In turn this means that the effective coupling between the lasers
is small and the red laser is only perturbed a little. In the limit Δ → ∞ the two lasers are
completely independent. This is expressed in (2.1)–(2.4) as two solutions: the red laser is on
and the blue laser is off, or vice versa.

6.4. The surface of CLMs. To get an overall impression of the CLM structure we give
in Figure 19 an impression of the corresponding surfaces in (Δ, ωs, N s)-space. As before, the
inversion of laser 1 is plotted in red and that of laser 2 in blue; the projection of the surface
of CLMs onto the (Δ, ωs)-plane is shown in black. The image is built up from 150 Δ-slices
that were computed with DDE-BIFTOOL which also form the frames of the accompanying
animation (61995 04.gif). Panel (a) shows the whole structure for Δ ∈ [−0.6, 0.6]. The blue
surface is mapped to the red surface and vice versa by the symmetry (2.6) of exchanging the
two lasers and changing the sign of Δ. The two surfaces intersect for Δ = 0. For small Δ this
surface has a complicated, nested structure. This can be seen in panel (b), where an enlarged
view for positive Δ is shown. For increasing (or decreasing) detuning the nested structure
starts to disentangle. Indeed this process proceeds as described in section 6.2 with transitions
through saddle-singularities. A saddle can be seen clearly on the blue surface in Figure 19(b).
Furthermore, one clearly notices the extremum, specifically a maximum with respect to Δ, on
the same blue surface where the surface “bends back” to decreasing Δ. The limiting behavior
of the CLMs, as discussed in section 6.3, is brought out well by Figure 19(a).

The black projection onto the (Δ, ωs)-plane shows the parameter region where CLMs exist.
As explained in the previous section, ωs is not a bifurcation parameter, so the boundaries of
the projection are not saddle-node bifurcations. Nevertheless, the saddle-node bifurcations are
close to the folds with respect to ωs. Figure 20 shows the curves of saddle-node bifurcations
(blue) and the curve of the first Hopf bifurcation (red) that forms a boundary of the region
of stable CLMs for small detuning. Panel (a) shows the (Δ, ωs)-plane for Δ ∈ [−0.7, 0.7] and
panel (b) is an enlarged view around the stable region (green).

Figure 21 shows the same bifurcation curves in the (Δ, Cp)-plane. In panel (a) we plot
the basic structure only once, while in panel (b) we also show all its images under the
π-translational symmetry of the system. There is a complicated structure of different regions,
especially near the stable region, as can be seen in the further enlargement in panel (c). Over-
all, there are two closed curves of saddle-node bifurcations. The first branch of saddle-node
bifurcations is limited to a detuning interval of Δ ≈ [−0.23, 0.23]; it arises in the unfolding of
the pitchfork bifurcation of intermediate-phase CLMs (green curves in Figures 2–5). Indeed
this shows that the saddle-node bifurcations of the constant-phase CLMs (purple curves in
Figures 2–5) are connected with the second set of intermediate-phase CLMs (orange curves
in Figures 2, 3, and 6). The second branch of saddle-node bifurcations traces out the large
“triangular” curve. There are a number of cusp bifurcations on the saddle-node curves, so

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/61995_04.gif
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Figure 19. The surface of CLMs in (Δ, ωs, Ns)-space for Δ ∈ [−0.6, 0.6] as built up from 150 equidistant
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Figure 20. Two-parameter bifurcation diagram in the (Δ, ωs)-plane with saddle-node bifurcation curves
(blue) and the curve of the first Hopf bifurcation (red). The region where CLMs exist is shaded in gray and the
region of stable CLMs is plotted in green. Panel (b) shows an enlarged view of panel (a).

that different branches correspond to saddle-node bifurcations of different CLMs. Note that
the cusp points do not appear as cusps in the projection onto the (Δ, ωs)-plane in Figure 20.

7. Outlook. We presented here a comprehensive geometric picture of the CLMs of two
identical delay-coupled lasers as a function of the feedback phase and the detuning. This
revealed a complicated structure of different types of CLMs, which form the “backbone” of
all dynamics in the system. We considered here the case that the SLs are pumped well above
their threshold. While this situation is quite typical in experiments, the question of what
happens when the lasers are pumped close to threshold arises. It is known that the overall
number of CLMs that can be sustained by the system and the frequency of the characteristic
relaxation oscillations depend on the pump current. How the CLM structure presented here
changes with pump current is discussed in [5].
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62 H. ERZGRÄBER, B. KRAUSKOPF, AND D. LENSTRA

.

−2 0 2

−0.1

0

0.1

−2 0 2

−0.1

0

0.1

(a)

max|Ns|

(b)

max|Ns|

Cp/π

Figure 22. Branches of periodic solutions (red) in the (Cp, N
s)-plane. Plotted is the amplitude of the

periodic solution; stable parts are boldfaced. Periodic solutions emerge from Hopf bifurcations (∗) of CLMs and
destabilize in torus bifurcations (�). The branches of in-phase, antiphase, increasing-phase, and decreasing-
phase CLMs are shown in lighter colors; compare with Figure 5.

After the CLM structure is known, the next logical step is to consider solutions of non-
constant intensity of the lasers. First, it is now possible to consider the periodic orbits that
are born in Hopf bifurcations. Near the stable region of constant-phase CLMs one finds
stable oscillations of the power that can then bifurcate further. To give an idea, we present
in Figure 22 branches of periodic orbits in the (Cp, N

s)-plane that bifurcate from branches
of constant-phase CLMs, in panel (a), and from branches of intermediate-phase CLMs, in
panel (b). The branches of constant-phase and intermediate-phase CLMs are repeated from
Figure 5 and plotted in a lighter color. The constant-phase CLMs exhibit four different Hopf
bifurcation points in total; the symmetric copies are not taken into account. These Hopf
bifurcations are connected in pairs by branches or “bridges” of periodic orbits. Branches
of periodic orbits (red curves) are represented by plotting the maximum amplitude of the
oscillation; stable parts are boldfaced. A similar picture emerges for the intermediate-phase
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CLMs plotted in Figure 22(b). They also exhibit four different Hopf bifurcations, which are
pairwise connected by branches of periodic orbits.

The situation for the constant-phase CLMs is similar to the case of the Lang–Kobayashi
equations for a laser with conventional optical feedback where one finds “bridges” of periodic
orbits that connect different branches of ECMs [11]. However, in the present situation it
emerges that such bridges of periodic orbits provide a connection between different types
of CLMs. Concentrating on the smaller branch of periodic orbits emerging from the Hopf
bifurcation of the constant-phase CLMs, it can be seen that this branch connects two Hopf
bifurcations that are located near the intersection of an in-phase CLM branch and an antiphase
CLM branch, respectively. This branch of periodic orbits is unstable throughout, but there
is a torus bifurcation point on it. The longer branch of periodic orbits connects two Hopf
bifurcations near the intersection of an in-phase CLM with an antiphase CLM; one Hopf
bifurcation is on the branch of the in-phase CLM and the other one is on the branch of
the antiphase CLM. This branch of periodic orbits is initially stable, so that one observes
stable oscillations of the power of the two lasers. As Cp is decreased it destabilizes in a torus
bifurcation, giving rise to stable quasi-periodic or locked oscillations of the laser power. This
torus then breaks up and gives rise to a region of chaotic fluctuations. A more detailed study
of connecting bridges and associated routes to chaos is an interesting topic of ongoing research.

Another important question is how similar the two lasers need to be. Indeed, it is practi-
cally impossible to produce two identical lasers. On the other hand, present experiments [6, 7,
38] show good agreement with the model as studied here. In other words, apparently it is suffi-
cient that the lasers are similar enough in terms of their material properties. By performing a
bifurcation study in the parameters α and T it is possible to study this question systematically.
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Abstract. We consider the Hamiltonian first-order coupled-mode system that occurs in nonlinear optics, pho-
tonics, and atomic physics. Spectral stability of gap solitons is determined by eigenvalues of the lin-
earized coupled-mode system, which is equivalent to a four-by-four Dirac system with sign-indefinite
metric. In the special class of symmetric nonlinear potentials, we construct a block-diagonal repre-
sentation of the linearized equations, when the spectral problem reduces to two coupled two-by-two
Dirac systems. The block-diagonalization is used in fast numerical computations of eigenvalues with
the Chebyshev interpolation algorithm.

Key words. Hamiltonian first-order coupled-mode systems, gap solitons, spectral stability, invariant subspaces,
eigenvalues

AMS subject classifications. 34L16, 37K45, 34L40, 35Q51

DOI. 10.1137/050629781

1. Introduction. Various applications in nonlinear optics [1], photonics band-gap engi-
neering [2], and atomic physics [3] call for systematic studies of the coupled-mode system, which
is expressed by two first-order semilinear PDEs in one space and one time dimensions. In non-
linear optics, the coupled-mode system describes counter-propagating light waves, which inter-
act with a linear grating in an optical waveguide [4]. In photonics, the coupled-mode system is
derived for coupled resonant waves in stop bands of a low-contrast three-dimensional photonic
crystal [5]. In atomic physics, the coupled-mode system describes matter-wave Bose–Einstein
condensates trapped in an optical lattice [6]. Existence, stability, and nonlinear dynamics
of gap solitons, which are localized solutions of the coupled-mode system, are fundamental
problems of interest in the aforementioned physical disciplines.

In the context of spectral stability of gap solitons, it has been discovered that the lin-
earized coupled-mode system is equivalent to a four-by-four Dirac system with sign-indefinite
metric, where numerical computations of eigenvalues represent a difficult numerical task. The
pioneer work in [7, 8] showed that spurious unstable eigenvalues originate from the continuous
spectrum in the Fourier basis decomposition and the Galerkin approximation. A delicate but
time-consuming implementation of the continuous Newton method was developed to differen-
tiate true unstable eigenvalues from the spurious ones [8]. Similar problems were discovered
in the variational method [9, 10] and in the numerical finite-difference method [11, 12].

While some conclusions on instability bifurcations of gap solitons in the coupled-mode
equations can be drawn on the basis of perturbation theory [7] and Evans function methods
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[13, 14], the numerical approximation of eigenvalues was an open problem until recently. New
progress was made with the use of exterior algebra in the numerical computations of the Evans
function [15], when the results of [7] on instability bifurcations of gap solitons were recovered.
A similar shooting method was also applied to gap solitons in a more general model of a
nonlinear Schrödinger equation with a periodic potential [6].

Our work addresses the problem of numerical approximations of eigenvalues in the lin-
earized coupled-mode system with a different objective. We will show that the linearized
system with a symmetric potential function can be block-diagonalized into two coupled two-
by-two Dirac systems. The two Dirac systems represent the linearized Hamiltonian of the
coupled-mode equations and determine instability bifurcations and unstable eigenvalues of
gap solitons.

The main purpose of block-diagonalization is to optimize a numerical algorithm based on
Chebyshev interpolation (see a recent application of Chebyshev interpolation to a system of
coupled nonlinear Schrödinger equations in [16]). The algorithm computes the entire spectrum
of the linearized coupled-mode system. It also allows us to control the spurious eigenvalues
at least near the end points of continuous spectrum, where instability bifurcations occur
[7, 15]. Due to block-diagonalization, the algorithm requires two times less memory compared
to the standard discretization of the full linearized system, and computations of eigenvalues
within the same tolerance bound are accelerated approximately twice as much. We report
applications of the numerical algorithm to an example of the linearized coupled-mode system
with a symmetric quartic potential function.

The paper is organized as follows. Section 2 describes the model and its symmetries.
Section 3 gives the construction and properties of gap solitons in the nonlinear coupled-
mode system. Section 4 presents block-diagonalization of the linearized coupled-mode system.
Section 5 contains numerical computations of the spectrum of the block-diagonalized system.
The appendix deals with exact solutions for gap solitons in the coupled-mode system with
symmetric homogeneous potential functions.

2. Coupled-mode system. We consider the Hamiltonian first-order coupled-mode system
in the form {

i(ut + ux) + v = ∂ūW (u, ū, v, v̄),
i(vt − vx) + u = ∂v̄W (u, ū, v, v̄),

(2.1)

where (u, v) ∈ C
2, x ∈ R, t ≥ 0, and W (u, ū, v, v̄) is real-valued. We assume that the potential

function satisfies the following three conditions:
1. W is invariant with respect to the gauge transformation (u, v) �→ eiα(u, v) for all

α ∈ R.
2. W is symmetric with respect to the interchange (u, v) �→ (v, u).
3. W is analytic in its variables near u = v = 0, such that W = O(4).

The first condition is justified by the standard derivation of the coupled-mode system
(2.1) with an envelope approximation [5]. The second condition defines a class of symmetric
nonlinear potentials. Although it is somewhat restrictive, symmetric nonlinear potentials are
commonly met in physical applications of the system (2.1). The third condition is related
to the normal form analysis [17], where the nonlinear functions are approximated by Taylor



68 MARINA CHUGUNOVA AND DMITRY PELINOVSKY

polynomials. Since the quadratic part of the potential function W is accounted for in the
left-hand side of the system (2.1) and the cubic part of W violates the gauge transformation
and analyticity assumptions, the Taylor polynomials of W start with quartic terms denoted
as O(4).

We find a general representation of the function W (u, ū, v, v̄) that satisfies the conditions
1–3 and list all possible (four-parameter) quartic terms of W .

Lemma 2.1. If W ∈ R and condition 1 is satisfied, such that

W (u, ū, v, v̄) = W
(
ueiα, ūe−iα, veiα, v̄e−iα

)
∀α ∈ R,(2.2)

then W = W (|u|2, |v|2, ūv + uv̄).
Proof. The statement is a special case of Theorem 1.2 on page 450 of [18]. For the

readers’ convenience, we give a simplified proof based on the symmetry generator for the
gauge transformation. By differentiating (2.2) in α and setting α = 0, we derive the relation
on W ∈ R:

DW ≡ i

(
u
∂

∂u
− ū

∂

∂ū
+ v

∂

∂v
− v̄

∂

∂v̄

)
W (u, ū, v, v̄) = 0.(2.3)

Consider the set of quadratic variables

z1 = |u|2, z2 = |v|2, z3 = ūv + uv̄, z4 = u2 + v2,

which is independent for any u �= 0 and v �= 0 in the sense that the Jacobian is nonzero.
It is clear that Dz1,2,3 = 0 and Dz4 = 2iz4. Therefore, DW = 2iz4∂z4W = 0, such that
W = W (z1, z2, z3).

Lemma 2.2. If W ∈ R and conditions 1–3 are satisfied, then W = W (|u|2 + |v|2, |u|2|v|2,
uv̄ + vū).

Proof. By Lemma 2.1 and condition 2, we can reorder the arguments of W as W =
W (|u| + |v|, |u||v|, uv̄ + vū). By analyticity in condition (3), W may depend only on |u|2 and
|v|2 rather than on |u| and |v|.

Corollary 2.3. The only quartic potential function W ∈ R that satisfies conditions 1–3 is
given by

W =
a1

2
(|u|4 + |v|4) + a2|u|2|v|2 + a3(|u|2 + |v|2)(vū + v̄u) +

a4

2
(vū + v̄u)2,(2.4)

where (a1, a2, a3, a4) are real-valued parameters. It follows then that{
∂uW = a1|u|2u + a2u|v|2 + a3

[
(2|u|2 + |v|2)v + u2v̄

]
+ a4

[
v2ū + |v|2u

]
,

∂vW = a1|v|2v + a2v|u|2 + a3
[
(2|v|2 + |u|2)u + v2ū

]
+ a4

[
u2v̄ + |u|2v

]
.

The potential function (2.4) with a1, a2 �= 0, and a3 = a4 = 0 represents a standard
coupled-mode system for a subharmonic resonance, e.g., in the context of optical gratings
with constant Kerr nonlinearity [1]. When a1 = a3 = a4 = 0, this system is integrable with
inverse scattering and is referred to as the massive Thirring model [19]. When a1 = a2 = 0
and a3, a4 �= 0, the coupled-mode system corresponds to an optical grating with varying,
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mean-zero Kerr nonlinearity, where a3 is the Fourier coefficient of the resonant subharmonic
and a4 is the Fourier coefficient of the nonresonant harmonic [5] (see also [4]).

We rewrite the coupled-mode system (2.1) as a Hamiltonian system in complex-valued
matrix-vector notation:

du

dt
= J∇H(u),(2.5)

where u = (u, ū, v, v̄)T ,

J =

⎡
⎢⎢⎢⎣

0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

⎤
⎥⎥⎥⎦ = −JT ,

and H(u, ū, v, v̄) =
∫
R
h(u, ū, v, v̄)dx is the Hamiltonian functional with the density

h = W (u, ū, v, v̄) − (vū + uv̄) +
i

2
(uūx − uxū) − i

2
(vv̄x − vxv̄).

The Hamiltonian H(u, ū, v, v̄) is constant in time t ≥ 0. Due to the gauge invariance, the
coupled-mode system (2.1) has another constant of motion Q(u, ū, v, v̄), where

Q =

∫
R

(
|u|2 + |v|2

)
dx.(2.6)

Conservation of Q can be checked by direct computation:

∂

∂t
(|u|2 + |v|2) +

∂

∂x
(|u|2 − |v|2) = DW = 0,(2.7)

where the operator D is defined in (2.3). Due to the translational invariance, the coupled-mode
system (2.1) has yet another constant of motion P (u, ū, v, v̄), where

P =
i

2

∫
R

(uūx − uxū + vv̄x − vxv̄) dx.(2.8)

In applications, the quantities Q and P are referred to as the power and momentum of the
coupled-mode system.

3. Existence of gap solitons. Stationary solutions of the coupled-mode system (2.1) take
the form {

ust(x, t) = u0(x + s)eiωt+iθ,
vst(x, t) = v0(x + s)eiωt+iθ,

(3.1)

where (s, θ) ∈ R
2 are arbitrary parameters, while the solution (u0, v0) ∈ C

2 on x ∈ R and the
domain for parameter ω ∈ R are to be found from the nonlinear ODE system{

iu′0 = ωu0 − v0 + ∂ū0W (u0, ū0, v0, v̄0),
−iv′0 = ωv0 − u0 + ∂v̄0W (u0, ū0, v0, v̄0).

(3.2)
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Stationary solutions are critical points of the Lyapunov functional

Λ = H(u, ū, v, v̄) + ωQ(u, ū, v, v̄),(3.3)

such that variations of Λ produce the nonlinear ODE system (3.2).
Lemma 3.1. Assume that there exists a decaying solution (u0, v0) of the system (3.2) on

x ∈ R. If W ∈ R and conditions 1–3 are satisfied, then u0 = v̄0 (modulo to an arbitrary
phase).

Proof. It follows from the balance equation (2.7) for the stationary solutions (3.1) that

|u0|2 − |v0|2 = C0 = 0 ∀x ∈ R,

where the constant C0 = 0 is found from decaying conditions at infinity. Let us represent the
solutions (u0, v0) in the form {

u0(x) =
√
Q(x)eiΘ(x)+iΦ(x),

v0(x) =
√
Q(x)e−iΘ(x)+iΦ(x),

(3.4)

such that {
iQ′ − 2Q(Θ′ + Φ′) = 2ωQ− 2Qe−2iΘ + 2ū0∂ū0W (u0, ū0, v0, v̄0),
−iQ′ − 2Q(Θ′ − Φ′) = 2ωQ− 2Qe2iΘ + 2v̄0∂v̄0W (u0, ū0, v0, v̄0).

(3.5)

Separating the real parts, we obtain{
Q(cos(2Θ) − ω − Θ′ − Φ′) = Re [ū0∂ū0W (u0, ū0, v0, v̄0)] ,
Q(cos(2Θ) − ω − Θ′ + Φ′) = Re [v̄0∂v̄0W (u0, ū0, v0, v̄0)] .

(3.6)

It follows from Lemma 2.2 that(
u
∂

∂u
+ ū

∂

∂ū
− v

∂

∂v
− v̄

∂

∂v̄

)
W (u, ū, v, v̄)

∣∣∣∣
|u|2=|v|2

= 0.(3.7)

As a result, we have Φ′ ≡ 0, such that Φ(x) = Φ0.
Corollary 3.2. Let u0 = v̄0. The ODE system (3.2) reduces to the planar Hamiltonian form

d

dx

(
p
q

)
=

(
0 −1

+1 0

)
∇h(p, q),(3.8)

where p = 2Θ, q = Q, and

h = W̃ (p, q) − 2q cos p + 2ωq, W̃ (p, q) = W (u0, ū0, v0, v̄0).(3.9)

Proof. In variables (Q,Θ) defined by (3.4) with Φ(x) = Φ0 ≡ 0, we rewrite the ODE
system (3.5) as follows:{

Q′ = 2Q sin(2Θ) + 2Im [ū0∂ū0W (u0, ū0, v0, v̄0)] ,
QΘ′ = −ωQ + Q cos(2Θ) − Re [ū0∂ū0W (u0, ū0, v0, v̄0)] .

(3.10)
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The system (3.10) is equivalent to the Hamiltonian system (3.8)–(3.9) if{
∂pW̃ (p, q) = i [u0∂u0 − ū0∂ū0 ]W (u0, ū0, v0, v̄0),

q∂qW̃ (p, q) = [u0∂u0 + ū0∂ū0 ]W (u0, ū0, v0, v̄0).
(3.11)

The latter equation follows from (2.3), (3.4), and (3.7) with the chain rule.
Remark 3.3. The family of stationary solutions (3.1) can be extended to the family of

traveling solutions of the coupled-mode system (2.1) by means of the Lorentz transformation
[15]. When the boosted variables are applied to the form (3.1),

X =
x− ct√
1 − c2

, T =
t− cx√
1 − c2

, U =

(
1 − c

1 + c

)1/4

u, V =

(
1 + c

1 − c

)1/4

v,

where c ∈ (−1, 1), the family of traveling solutions (U0, V0) satisfies the constraint |U0|2 = |V0|2
from the balance equation (2.7). However, the representation (3.4) results no longer in the
relation U0 = V̄0, since the relation (3.7) fails for the potential function W in boosted variables
(U, Ū , V, V̄ ).

Decaying solutions of the system (3.2) with a homogeneous polynomial function W (u, ū, v, v̄)
are analyzed in the appendix. Conditions for their existence are identified for the quartic po-
tential function (2.4). Decaying solutions may exist in the gap of the continuous spectrum of
the coupled-mode system (2.1) for ω ∈ (−1, 1). We introduce two auxiliary parameters

μ =
1 − ω

1 + ω
, β =

√
1 − ω2,(3.12)

such that 0 < μ < ∞ and 0 < β ≤ 1. When a1 = 1, a2 = ρ ∈ R, and a3 = a4 = 0, we obtain
in the appendix the decaying solution u0(x) in the explicit form

u0 =

√
2(1 − ω)

1 + ρ

1

(coshβx + i
√
μ sinhβx)

.(3.13)

When ω → 1 (such that μ → 0 and β → 0), the decaying solution (3.13) becomes small
in absolute value and approaches the limit of sech-solutions sech(βx). When ω → −1 (such
that μ → ∞ and β → 0), the decaying solution (3.13) remains finite in absolute value and
approaches the limit of the algebraically decaying solution:

u0 =
2√

1 + ρ(1 + 2ix)
.

When a1 = a2 = 0, a3 = 1, and a4 = s ∈ R, the decaying solution u0(x) exists in two sub-
domains: 0 < ω < 1, s > −1 and −1 < ω < 0, s < 1. When 0 < ω < 1, s > −1, the solution
takes the form

u0 =

√
1 − ω

2

(coshβx− i
√
μ sinhβx)√

Δ+(x)
,(3.14)

where

Δ+ = [(s− 1)μ2 − 2sμ + (s + 1)] cosh4(βx) + 2[sμ− (s− 1)μ2] cosh2(βx) + (s− 1)μ2.
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When −1 < ω < 0, s < 1, the solution takes the form

u0 =

√
1 − ω

2

(sinhβx− i
√
μ coshβx)√

Δ−(x)
,(3.15)

where

Δ− = [(s + 1) − 2sμ− (s− 1)μ2] cosh4(βx) + 2[s + 1 − sμ] cosh2(βx) − (s + 1).

In both limits ω → 1 and ω → −1, the decaying solutions (3.14) and (3.15) approach the
small-amplitude sech-solution sech(βx). In the limit ω → 0, the decaying solutions (3.14) and
(3.15) degenerate into a nondecaying bounded solution with |u0(x)|2 = 1

2 .

4. Block-diagonalization of the linearized system. Linearization of the coupled-mode
system (2.1) at the stationary solutions (3.1) with s = θ = 0 is defined as follows:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u(x, t) = eiωt
(
u0(x) + U1(x)eλt

)
,

ū(x, t) = e−iωt
(
ū0(x) + U2(x)eλt

)
,

v(x, t) = eiωt
(
v0(x) + U3(x)eλt

)
,

v̄(x, t) = e−iωt
(
v̄0(x) + U4(x)eλt

)
,

(4.1)

where v0 = ū0, according to Lemma 3.1. Let (f ,g) be a standard inner product for f ,g ∈
L2(R,C4). Expanding the Lyapunov functional (3.3) into Taylor series near u0 = (u0, ū0, v0, v̄0)

T ,
we have

Λ = Λ(u0) + (U,∇Λ|u0) +
1

2
(U, HωU) + · · · ,(4.2)

where U = (U1, U2, U3, U4)
T ,∇Λ|u0 = 0, and Hω is the linearized energy operator in the

explicit form

Hω = D(∂x) + V (x),(4.3)

where

D =

⎛
⎜⎜⎜⎝

ω − i∂x 0 −1 0
0 ω + i∂x 0 −1
−1 0 ω + i∂x 0
0 −1 0 ω − i∂x

⎞
⎟⎟⎟⎠(4.4)

and

V =

⎛
⎜⎜⎜⎜⎜⎝

∂2
ū0u0

∂2
ū2
0

∂2
ū0v0

∂2
ū0v̄0

∂2
u2
0

∂2
u0ū0

∂2
u0v0

∂2
u0v̄0

∂2
v̄0u0

∂2
v̄0ū0

∂2
v̄0v0

∂2
v̄2
0

∂2
v0u0

∂2
v0ū0

∂2
v2
0

∂2
v0v̄0

⎞
⎟⎟⎟⎟⎟⎠W (u0, ū0, v0, v̄0).(4.5)
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The linearization (4.1) reduces the nonlinear coupled-mode system (2.1) to the linear eigen-
value problem in the form

HωU = iλσU,(4.6)

where σ is a diagonal matrix of (1,−1, 1,−1). Due to the gauge and translational symmetries,
the energy operator Hω has a two-dimensional kernel with the eigenvectors:

U1 = σu0(x), U2 = u′
0(x).(4.7)

The eigenvectors U1,2 represent derivatives of the stationary solutions (3.1) with respect to
parameters (θ, s).

Due to the Hamiltonian structure, the linearized operator σHω has at least a four-
dimensional generalized kernel with the eigenvectors (4.7) and two generalized eigenvec-
tors (see [20] for details). The eigenvectors of the linearized operator σHω satisfy the σ-
orthogonality constraints

(σu0, σU) =

∫
R

(ū0U1 + u0U2 + v̄0U3 + v0U4) dx = 0,(4.8)

(u′
0, σU) =

∫
R

(
ū′0U1 − u′0U2 + v̄′0U3 − v′0U4

)
dx = 0.(4.9)

The constraints (4.8) and (4.9) represent first variations of the conserved quantities Q and P
in (2.6) and (2.8) at the linearization (4.1).

When the constraint u0 = v̄0 holds, the potential part (4.5) has additional symmetry
relations:

∂2
u0ū0

W = ∂2
v0v̄0

W, ∂2
ū2
0
W = ∂2

v2
0
W, ∂2

u0v0
W = ∂2

ū0v̄0
W.(4.10)

It follows from the explicit form of Hω and the relations (4.10) that the eigenvalue problem
HωU = μU has two reductions:

(i) U1 = U4, U2 = U3, (ii) U1 = −U4, U2 = −U3.(4.11)

Our main result on the block-diagonalization of the energy operator Hω and the linearized
operator σHω is based on the reductions (4.11).

Theorem 4.1. Let W ∈ R and conditions 1–3 are satisfied. Let (u0, v0) be a decaying
solution of the system (3.2) on x ∈ R with the constraint v0 = ū0. There exists an orthogonal
similarity transformation S, such that S−1 = ST , where

S =
1√
2

⎛
⎜⎜⎜⎝

1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

⎞
⎟⎟⎟⎠ ,

that simultaneously block-diagonalizes the energy operator Hω,

S−1HωS =

(
H+ 0
0 H−

)
≡ H,(4.12)
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and the linearized operator σHω

S−1σHωS = σ

(
0 H−
H+ 0

)
≡ iL,(4.13)

where H± are two-by-two Dirac operators:

H± =

(
ω − i∂x ∓1
∓1 ω + i∂x

)
+ V±(x)(4.14)

and

V± =

(
∂2
ū0u0

± ∂2
ū0v̄0

∂2
ū2
0
± ∂2

ū0v0

∂2
u2
0
± ∂2

u0v̄0
∂2
ū0u0

± ∂2
u0v0

)
W (u0, ū0, v0, v̄0).(4.15)

Proof. Applying the similarity transformation to the operator D(∂x) in (4.4), we have
the first term in Dirac operators H±. Applying the same transformation to the potential
V (x) in (4.5) and using the relations (4.10), we have the second term in Dirac operators H±.
The same transformation is applied similarly to the linearized operator σHω with the result
(4.13).

Corollary 4.2. (a) The coupled eigenvalue problem (4.6) is equivalent to the block-diagonalized
eigenvalue problems

σ3H−σ3H+V1 = γV1, σ3H+σ3H−V2 = γV2, γ = −λ2,(4.16)

where V1,2 ∈ C
2 and σ3 is Pauli’s diagonal matrix of (1,−1).

(b) Let u0 = (u0, ū0) ∈ C
2 and (f ,g) be a standard inner product for f ,g ∈ L2(R,C2).

Dirac operators H± have simple kernels with the eigenvectors

H+u′
0 = 0, H−σ3u0 = 0,(4.17)

while the vectors V1,2 satisfy the constraints

(σ3u0, σ3V1) = 0, (u′
0, σ3V2) = 0.(4.18)

Remark 4.3. Block-diagonalization described in Theorem 4.1 has nothing in common
with the explicit diagonalization used in the reduction (9.2) of [14] for the particular po-
tential function (2.4) with a1 = a2 = a4 = 0 and a3 = 1. Moreover, the reduction (9.2) of [14]
does not work for ω �= 0, while gap solitons do not exist in this particular model for ω = 0.

We apply Theorem 4.1 to the linearized coupled-mode system with the quartic potential
function (2.4). When a1 = 1, a2 = ρ, and a3 = a4 = 0, the decaying solution u0(x) is given by
(3.13) and the potential matrices V±(x) in the Dirac operators H± in (4.14)–(4.15) are found
in the explicit form

V+ = (1 + ρ)

(
2|u0|2 u2

0

ū2
0 2|u0|2

)
, V− =

(
2|u0|2 (1 − ρ)u2

0

(1 − ρ)ū2
0 2|u0|2

)
.(4.19)
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When a1 = a2 = 0, a3 = 1, and a4 = s, the decaying solution u0(x) is given by either (3.14)
or (3.15) and the potential matrices V±(x) take the form

V+ = 3

(
u2

0 + ū2
0 2|u0|2

2|u0|2 u2
0 + ū2

0

)
+ s

(
2|u0|2 u2

0 + 3ū2
0

ū2
0 + 3u2

0 2|u0|2

)
,(4.20)

V− =

(
u2

0 + ū2
0 −2|u0|2

−2|u0|2 u2
0 + ū2

0

)
+ s

(
0 −u2

0 − ū2
0

−u2
0 − ū2

0 0

)
.(4.21)

Numerical computations of eigenvalues of the Dirac operators H± and the linearized operator
L in (4.12) and (4.13) are developed for the explicit examples (4.19) and (4.20)–(4.21).

5. Numerical computations of eigenvalues. Numerical discretization and truncation of
the linearized system (4.6) leads to an eigenvalue problem for large matrices [21]. Parallel
software libraries were recently developed for computations of large eigenvalue problems [22].
We shall use the Scalapack library and distribute computations of eigenvalues of the system
(4.6) for different parameter values between parallel processors of the SHARCnet cluster Idra
using Message Passing Interface.1

We implement a numerical discretization of the linearized system (4.6) using the Cheby-
shev interpolation method [23]. Given a function u(z) defined on the discrete grid of Cheby-
shev points zj = cos(jπ/N), j = 0, 1 . . . N, we obtain a discretization of the first derivative
u′(z) as a multiplication of the vector for values of u(z) on the discrete grid by an (N + 1)-

by-(N + 1) matrix, which we denote by D
(1)
N . If the rows and columns of the differentiation

matrix D
(1)
N are indexed from 0 to N , the entries of D

(1)
N are (see [24] for details)

(D
(1)
N )00 =

2N2 + 1

6
, (D

(1)
N )NN = −2N2 + 1

6
,

(D
(1)
N )jj =

−zj
2(1 − z2

j )
, j = 1, . . . , N − 1,

and

(D
(1)
N )ij =

ci
cj

(−1)i+j

(zi − zj)
, i �= j, i, j = 0, . . . , N,

where c0 = cN = 2 and ci = 1, i = 1, . . . , N − 1. To transform the Chebyshev grid from
the interval z ∈ [−1, 1] to the infinite domain x ∈ R we will use the exponential map f(z) =
L tanh−1 z, such that xj = f(zj), j = 0, 1, . . . , N . This map is efficient in our case because
the potential matrices V±(x) decay exponentially as |x| → ∞. The constant L sets the length
scale of the map and we pick up the values of L such that the localization of matrix potentials
V±(x) has a sufficient resolution on the discrete grid points.

Using the chain rule, we represent differentiation of u(x) on the discrete grid with the
matrix multiplication

p =

[(
∂f−1(xi)

∂x
D

(1)
N

)
u(zj), j = 0, 1, . . . , N

]
≡ DN+1u,

1Cluster Idra is a part of the SHARCnet network of parallel processors distributed between eight universities
in southern Ontario, including McMaster University.
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Table 1
Maximum real part of eigenvalues M = max |Re(λ)| versus the number of Chebyshev polynomials N for

two computational intervals |Im(λ)| < 2 and |Im(λ)| < 10.

N M|Imλ|<2 M|Imλ|<10

100 0.085 0.75
200 0.0095 0.52
400 0.0053 0.21
800 7.12 · 10−4 0.12
1200 2.34 · 10−4 0.09
2500 3.91 · 10−5 0.06

where u is the vector for values of u(x) and p is the vector for values of u′(x) on the discrete
grid. The discretization of the Dirac operators H± is defined by

H± =

(
ωIN+1 − iDN+1 ∓IN+1

∓IN+1 ωIN+1 + iDN+1

)
+ diagV±(xi),(5.1)

where IN+1 is the identity (N + 1)-by-(N + 1) matrix.
The continuous spectrum for the linearized coupled-mode system (4.6) can be found from

the no-potential case V (x) ≡ 0. It consists of two pairs of symmetric branches on the imaginary
axis λ ∈ iR for |Im(λ)| > 1 − ω and |Im(λ)| > 1 + ω [7, 15]. In the potential case V (x) �= 0,
the continuous spectrum does not move, but the discrete spectrum appears. The discrete
spectrum is represented by symmetric pairs or quartets of isolated nonzero eigenvalues and a
zero eigenvalue of algebraic multiplicity four for the generalized kernel of σHω [7, 15]. We note
that symmetries of the Chebyshev grid preserve symmetries of the linearized coupled-mode
system (4.6).

The main advantage of the Chebyshev grid is the clustering distribution of the grid points
that enables us to control spurious complex eigenvalues. If the eigenvector is analytic in a strip
near the interpolation interval, the corresponding Chebyshev spectral derivatives converge
geometrically, with an asymptotic convergence factor determined by the size of the largest
ellipse in the domain of analyticity [23].

Spurious complex eigenvalues arise from the discretization of the continuous spectrum.
When the number of Chebyshev polynomials increases, the real parts of spurious eigenvalues
get smaller. Convergence of real parts of eigenvalues to zero is better near the end points of
the continuous spectrum λ = ±i(1 − ω) and λ = ±i(1 + ω), from which bifurcations of true
unstable eigenvalues are expected to occur (due to analytical results in [7, 13] and numerical
results in [7, 15]). Table 1 shows the maximum real part M = max |Re(λ)| versus N in two
computational intervals |Im(λ)| < 2 and |Im(λ)| < 10 for the linear eigenvalue problem (4.6)
with no true unstable eigenvalues. When N = 2500, the real parts of spurious eigenvalues in
the interval |Im(λ)| < 2 are of the order of 10−5. Using more polynomials, we can make the
real parts of the eigenvalues of continuous spectrum negligibly small, so that edge bifurcations
of unstable eigenvalues can be studied numerically within any required accuracy.

We compute eigenvalues of the energy operator Hω and the linearized operator σHω.
It is well known [21, 23] that Hermitian matrices have condition number one, while non-
Hermitian matrices may have a large condition number. As a result, numerical computations
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Table 2
CPU time T for block-diagonal and full matrices versus the number of Chebyshev points N .

N Tblock Tfull

100 1.656 1.984
200 11.219 12.921
400 130.953 207.134
800 997.843 1.583 · 103

1200 3.608 · 103 6.167 · 103

2500 7.252 · 103 12.723 · 103

for eigenvalues and eigenvectors have better accuracy and faster convergence for self-adjoint
operators [21, 23]. We will use the block-diagonalizations (4.12) and (4.13) and compute
eigenvalues of H+, H−, and L. The block-diagonalized matrix can be stored in a special format
which requires two times less memory than a full matrix and it accelerates computations of
eigenvalues approximately twice as much. Table 2 shows CPU time T for computations of
eigenvalues of σHω for block-diagonal and full matrices versus the number of Chebyshev points
N . When N = 2500, Tfull is almost twice as large as Tblock.

Figure 1 displays the pattern of eigenvalues and instability bifurcations for the symmetric
quartic potential (2.4) with a1 = 1 and a2 = a3 = a4 = 0. The decaying solution u0(x)
and the potential matrices V±(x) are given by (3.13) and (4.19) with ρ = 0. Parameter ω
of the decaying solution u0(x) is defined in the interval −1 < ω < 1. The six pictures of
Figure 1 show the entire spectrum of L, H+, and H− for different values of ω (the continuous
multimedia animations that show the transformation of eigenvalues when ω decreases are
available as 62978 01.avi and 62978 02.avi).

When ω is close to 1 (the gap soliton is close to a small-amplitude sech-soliton), there exists
a single nonzero eigenvalue for H+ and H− and a single pair of purely imaginary eigenvalues
of L (see subplot (1) on Figure 1). The first set of arrays on the subplot (1) indicates that the
pair of eigenvalues of L becomes visible at the same value of ω as the eigenvalue of H+. This
correlation between eigenvalues of L and H+ can be traced throughout the entire parameter
domain on the subplots (1)–(6).

When ω decreases, the operator H− acquires another nonzero eigenvalue by means of the
edge bifurcation [13], with no changes in the number of isolated eigenvalues of L (see subplot
(2)). The first complex instability occurs near ω ≈ −0.18, when the pair of purely imaginary
eigenvalues of L collides with the continuous spectrum and emerges as a quartet of complex
eigenvalues, with no changes in the number of isolated eigenvalues for H+ and H− (see subplot
(3)).

The second complex instability occurs at ω ≈ −0.54, when the operator H− acquires a
third nonzero eigenvalue and the linearized operator L acquires another quartet of complex
eigenvalues (see subplot (4)). The second set of arrays on the subplots (4)–(6) indicates a
correlation between these eigenvalues of L and H−.

When ω decreases further, the operators H+ and H− acquire one more isolated eigenvalue,
with no change in the spectrum of L (see subplot (5)). Finally, when ω is close to −1 (the
gap soliton is close to the large-amplitude algebraic soliton), the third complex instability
occurs, correlated with another edge bifurcation in the operator H− (see subplot (6)). The

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/62978_01.avi
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/62978_02.avi
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Figure 1. Eigenvalues and instability bifurcations for the symmetric quartic potential (2.4) with a1 = 1 and
a2 = a3 = a4 = 0. See also the accompanying animations (62978 01.avi [724KB] and 62978 02.avi [275KB]).

third set of arrays on subplot (6) indicates this correlation. The third complex instability was
not detected in the previous numerical studies of the same coupled-mode system [7, 15] (since
the previous works did not consider eigenvalues of gap solitons near the limit ω = −1). In a
narrow domain near ω = −1, the operator H+ has two nonzero eigenvalues, the operator H−
has five nonzero eigenvalues, and the operator L has three quartets of complex eigenvalues.

Figure 2 displays the pattern of eigenvalues and instability bifurcations for the symmetric

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/62978_01.avi
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/62978_02.avi
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Figure 2. Eigenvalues and instability bifurcations for the symmetric quartic potential (2.4) with a3 = 1 and
a1 = a2 = a4 = 0.

quartic potential (2.4) with a1 = a2 = a4 = 0 and a3 = 1. The decaying solution u0(x)
and the potential matrices V±(x) are given by (3.14) and (4.20) with 0 < ω < 1 and s = 0.
Eigenvalues in the other case −1 < ω < 0 can be found from those in the case 0 < ω < 1 by
reflections.

When ω is close to 1 (the gap soliton is close to a small-amplitude sech-soliton), there
exist one nonzero eigenvalue of H− and no nonzero eigenvalues of L and H+ (see subplot
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(1)). When ω decreases, two more nonzero eigenvalues bifurcate in H− from the left and right
branches of the continuous spectrum, with no change in the nonzero eigenvalues of L (see
subplot (2)). The first complex bifurcation occurs at ω ≈ 0.45, when a quartet of complex
eigenvalues occurs in L, in correlation with two symmetric edge bifurcations of H+ from the
left and right branches of the continuous spectrum (see subplots (3) and (4)). The first and
only set of arrays on the subplots (3)–(6) indicates a correlation between eigenvalues of L
and H+, which is traced through the domain of ω. The inverse complex bifurcation occurs
at ω ≈ 0.15, when the quartet of complex eigenvalues merges at the edge of the continuous
spectrum into a pair of purely imaginary eigenvalues (see subplot (5)). No new eigenvalues
emerge for smaller values of ω. When ω is close to 0 (the gap soliton is close to the nondecaying
bounded solution), the operator H+ has two nonzero eigenvalues, the operator H− has three
nonzero eigenvalues, and the operator L has one pair of purely imaginary eigenvalues (see
subplot (6)).

We add remarks on two other limiting cases of the symmetric quartic potential (2.4).
When a1 = a3 = a4 = 0 and a2 = 1, the coupled-mode system is an integrable model and no
nonzero eigenvalues of L exist, according to the exact solution of the linearization problem [9].
When a1 = a2 = a3 = 0 and a4 = ±1, one branch of decaying solutions u0(x) exists for either
sign, according to (3.14) and (3.15). The pattern of eigenvalues and instability bifurcations
repeats those in Figure 2.

Our numerical results imply that there exists a correlation between edge bifurcations in
the operator L and those in the Dirac operators H+ and H−. Analysis of such correlations is
beyond the scope of the present paper.

Appendix. Conditions for existence of gap solitons in the homogeneous potential
function.

We shall consider the homogeneous potential function W ∈ R of the monomial order 2n
that satisfies conditions 1–3. The general representation of W (u, ū, v, v̄) is given by

W =
n∑

s=0

n−s∑
k=0

ak,s (usv̄s + ūsvs) |u|2n−2k−2s|v|2k,(A.1)

where ak,s are real-valued coefficients such that ak1,s = ak2,s if k1 + k2 = n − s for s =
0, 1, . . . , n− 1. Let us introduce new parameters

As =
n−s∑
k=0

ak,s, s = 0, 1, . . . , n.

Using the variables (Q,Θ) defined in (3.4) with Φ(x) = Φ0 ≡ 0, we rewrite the ODE system
(3.10) in the explicit form{

Q′ = 2Q sin(2Θ) − 2Qn∑n
s=0 sAs sin(2sΘ),

Θ′ = −ω + cos(2Θ) − nQn−1∑n
s=0 As cos(2sΘ).

(A.2)

There exists a first integral of the system (A.2),

−ωQ + cos(2Θ)Q−Qn
n∑

s=0

As cos(2sΘ) = C0,
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where C0 = 0 from the zero boundary conditions Q(x) → 0 as |x| → ∞. As a result, the
second-order system (A.2) is reduced to the first-order ODE

Θ′(x) = (n− 1)(ω − cos(2Θ)),(A.3)

while the function Q(x) ≥ 0 can be found from Θ(x) as follows:

Qn−1 =
(cos(2Θ) − ω)∑n
s=0 As cos(2sΘ)

.(A.4)

We consider the quartic potential function W given by (2.4). Using (A.3) for the case
n = 2 we obtain

Θ′(x) = ω − cos(2Θ)(A.5)

and the correspondence

A0 =
a1 + a2 + a4

2
, A1 = 2a3, A2 =

a4

2
.

We rewrite the representation (A.4) for Q(x) as

Q =
(t− ω)

φ(t)
, Q ≥ 0,(A.6)

where

t = cos(2Θ), φ(t) = a4t
2 + 2a3t +

a1 + a2

2
,

such that t ∈ [−1, 1]. Let us consider two cases:{
t ≥ ω; φ(t) ≥ 0 ⇒ Q+,
t ≤ ω; φ(t) ≤ 0 ⇒ Q−.

(A.7)

We can solve the first-order ODE (A.5) using the substitution z = tan(Θ), such that

t =
1 − z2

1 + z2
, z2 =

1 − t

1 + t
.

After integration with the symmetry constraint Θ(0) = 0, we obtain the solution∣∣∣∣∣(z −
√
μ)

(z +
√
μ)

∣∣∣∣∣ = e2βx,(A.8)

where

β =
√

1 − ω2, μ =
1 − ω

1 + ω
,

and −1 < ω < 1. Two separate cases are considered:

|z| ≤ √
μ : z = −√

μ
sinh(βx)

cosh(βx)
, t =

cosh2(βx) − μ sinh2(βx)

cosh2(βx) + μ sinh2(βx)
,(A.9)
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where t ≥ ω, and

|z| ≥ √
μ : z = −√

μ
cosh(βx)

sinh(βx)
, t =

sinh2(βx) − μ cosh2(βx)

sinh2(βx) + μ cosh2(βx)
,(A.10)

where t ≤ ω. Let us introduce new parameters

A = −2a3 + a4 +
a1 + a2

2
,

B = −2a4 + a1 + a2,

C = 2a3 + a4 +
a1 + a2

2
.

It is clear that A = φ(−1) and C = φ(1). If t ≥ ω and φ(t) ≥ 0, it follows from (A.7) and
(A.9) that

Q+(x) =
(1 − ω)((μ + 1) cosh2(βx) − μ)

(Aμ2 + Bμ + C) cosh4(βx) − (Bμ + 2Aμ2) cosh2(βx) + Aμ2
.(A.11)

If t ≤ ω and φ(t) ≤ 0, it follows from (A.7) and (A.10) that

Q−(x) =
(ω − 1)((μ + 1) cosh2(βx) − 1)

(Aμ2 + Bμ + C) cosh4(βx) − (Bμ + 2C) cosh2(βx) + C
.(A.12)

The asymptotic behavior of the function Q(x) at infinity depends on the location of the zeros
of the function ψ(μ) = Aμ2 +Bμ+C. The function ψ(μ) is related to the function φ(t); e.g.,
if ψ(μ) = 0 then φ(ω) = 0.

A.1. Case A < 0, C > 0. The quadratic polynomial φ(t) has exactly one root φ(t1) = 0
such that t1 ∈ (−1, 1). Two branches of decaying solutions with the positive amplitude Q(x)
exist. One branch occurs for t1 < ω ≤ 1 with Q(x) = Q+(x) and the other one occurs for
−1 ≤ ω < t1 with Q(x) = Q−(x). At the point ω = t1, the solution is bounded and decaying.

A.2. Case A > 0, C > 0. The quadratic polynomial φ(t) has no roots or has exactly
two roots on (−1, 1). If φ(t) does not have any roots on (−1, 1), a decaying solution with the
positive amplitude Q(x) exists for any −1 < ω < 1 with Q(x) = Q+(x). If φ(t) has two roots
φ(t1) = 0 and φ(t2) = 0 such that t1, t2 ∈ (−1, 1), a decaying solution with Q(x) = Q+(x)
exists only on the interval max(t1, t2) < ω ≤ 1. At the point ω = max(t1, t2), the solution
becomes bounded but nondecaying if t1 �= t2 and unbounded if t1 = t2.

A.3. Case A < 0, C < 0. The quadratic polynomial φ(t) has no roots or has exactly
two roots on (−1, 1). If φ(t) does not have any roots on (−1, 1), a decaying solution with the
positive amplitude Q(x) exists for any −1 < ω < 1 with Q(x) = Q−(x). If φ(t) has two roots
φ(t1) = 0 and φ(t2) = 0 such that t1, t2 ∈ (−1, 1), a decaying solution with Q(x) = Q−(x)
exists only on the interval −1 ≤ ω < min(t1, t2). At the point ω = min(t1, t2), the solution
becomes bounded but nondecaying if t1 �= t2 and unbounded if t1 = t2.

A.4. Case A > 0, C < 0. No decaying solutions with positive amplitude Q(x) exist.
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A.5. Special cases. Two special cases occur when φ(1) = 0 or φ(−1) = 0. If φ(1) = 0,
then Q+(x) has a singularity at x = 0 for any −1 < ω < 1. If φ(−1) = 0, then Q−(x) has a
singularity at x = 0 for any −1 < ω < 1.
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Absolutely Continuous Invariant Measures that Cannot be Observed
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Abstract. We study an example of a random map where the component maps have absolutely continuous
invariant measures (acims), but where computer experiments reveal the surprising fact that all
orbits eventually fall into a stable periodic orbit. This is all the more surprising as we prove that
this random map admits an acim, μ. We study this phenomenon and explain why μ cannot be
observed experimentally.
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1. Introduction. A fundamental problem in dynamical systems is to describe the asymp-
totic behavior of trajectories. In general, the long term behavior of trajectories of a chaotic
dynamical system is unpredictable. Therefore, it is natural to describe the behavior by statis-
tical means. In this approach, one attempts to describe the dynamics by proving the existence
of an invariant measure and determining its ergodic properties. In particular, the existence of
invariant measures which are absolutely continuous with respect to Lebesgue measure is very
important from a physical point of view, because computer simulations of orbits reveal only
such invariant measures. In fact in [9] it has been shown that histograms of computer simu-
lations display the invariant measure that is absolutely continuous with respect to Lebesgue
measure for a general class of piecewise expanding transformations. An interesting question is,
Does a computer simulation always reveal the absolutely continuous invariant measure (acim)
of a dynamical system?

We define an invariant measure of a dynamical system to be “observable by computer
experiment” if the histograms of almost all sufficiently long computer simulated trajectories
approximate the histogram of the acim. It has been common knowledge that most dynamical
systems that have an acim reveal this measure in computer simulations. The exceptions to this
occur as a result of obvious “computer reasons” such as in the case of the map x → 2x (mod 1)
on a binary computer, where almost all trajectories tend to 0 yet Lebesgue measure is the acim.
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Some maps, as, for example, the logistic map x → 4x(1− x), have trajectories which land on
unstable periodic orbits, but such orbits are in general unobservable in computer experiments.
The computer experiment for the logistic map, given sufficient precision and sufficiently long
trajectories, will produce an approximation of the acim. In general, any ergodic map with
unique acim will theoretically present such behavior. For such a map a typical trajectory is
dense in the space so after a long enough time it will come so close to some periodic orbit that
the computer will identify both points. Then, this trajectory is trapped in a periodic orbit
forever. Fortunately, the typical time before such an occurrence is very long.

In this note we present another mechanism which can result in orbits of a random map with
unique acim being trapped in periodic orbits. It is a combination of dynamics of individual
component maps and the random controlling process which alternates them. We will reveal
a struggle between two opposing dynamical tendencies. One is the ergodic behavior of the
acim pushing orbits to wander everywhere (ergodicity), and the other is the strong attraction
of periodic points of some combinations of maps constituting the random map, whenever the
dense orbit passes close to the attracting periodic points. This struggle between very different
dynamical forces is mediated by the precision of the modeling computer.

The dynamical systems we shall work with are generalized maps, referred to as random
maps. Consider a collection of transformations τ1, τ2, . . . and a set of probabilities p1, p2, . . . ,∑

k pk = 1, associated with the transformations. A random map T is a discrete-time dynamical
system where one of a number of transformations, τ1, τ2, . . . , is randomly selected according
to fixed or position dependent probabilities, p1, p2, . . . [1, 2, 6, 7, 10, 12], and applied at
each iteration of the process. Random maps which consist of continuous and contracting
transformations have found interesting applications in the study of fractals [3], in modeling
interference effects in quantum mechanics [5], and in computing metric entropy [11]. More
general random maps which have some expanding properties have been applied to forecasting
in financial markets [2].

In section 2 we present the notation and summarize results we shall need in what follows.
In section 3 we present a random map and discuss experimental computer results for this
dynamical system. We prove that the random map has an acim and explain why it cannot be
observed in a computer experiment.

2. Preliminaries. Let (X,B, λ) be a measure space, where λ is an underlying measure,
and τk : X → X, k = 1, 2, . . . ,K, be nonsingular transformations. A random map T with
constant probabilities is defined as

T = {τ1, τ2, . . . , τK ; p1, p2, . . . , pK},

where {p1, p2, . . . , pK} is a set of constant probabilities for any x ∈ X, T (x) = τk(x), with
probability pk. In general, the iterates of T are given by

TN (x) = τkN ◦ τkN−1
◦ · · · ◦ τk1(x)

with probability ΠN
j=1pkj . A measure μ is said to be T -invariant if

μ(E) =

K∑
k=1

pkμ(τ−1
k (E))(2.1)
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for any measurable set E ∈ B [10]. The Frobenius–Perron operator of T is given by

PT f(x) =

K∑
k=1

pkPτk(f(x)),

where Pτk is the Frobenius–Perron operator associated with the transformation τk [4]. Pe-
likan [10] proved the existence of an acim for a random map with constant probabilities under
the following condition:

K∑
k=1

pk
|τ ′k(x)| ≤ α < 1(2.2)

for any x ∈ [0, 1].
Now, we define what it means for a measure to be “observable by computer experiment.”

First we define a histogram of a trajectory. We assume that X = [0, 1] and that λ is the
Lebesgue measure.

Definition 2.1 (histogram). Let x0 ∈ X be an initial point and Om(x0) = {x0, x1, x2, . . . ,
xm−1}, where xi+1 = T (xi) for i = 1, 2, . . . ,m − 2, be a finite part of its total trajectory,
O+(x0) = {x0, x1, x2, . . .}. Let Hn = {Is}ns=1 be a partition of X into n mutually disjoint
subintervals of equal measure. The histogram hn,m,x0 of Om(x0) is the function

hn,m,x0(x) =
n

m

n∑
s=1

(
m−1∑
i=0

χIs(xi)

)
χIs(x).(2.3)

The function hn,m,x0 is piecewise constant on the partition Hn, equal on each subinterval Is
to the number of points of Om(x0) which fall into Is. Its integral is equal to 1. For the
histogram to be practically useful, we will always assume that m is much larger than n, say,
m > 1000 · n. In our case, since T is a random map, the trajectory depends also on an
additional variable ω which controls the random composition of maps {τ1, τ2, . . . , τK}. If we
want to show this dependence explicitly, we will write hωn,m,x0

(x) instead of hn,m,x0(x).
Definition 2.2 (measure observable by computer experiment). We say that the measure μ =

f ·λ is observable by computer experiment if, for almost every initial point x0 ∈ X and almost
every random parameter ω,

hωn,m,x0
→ f in L1(X,B, λ),

as n → ∞, m > 1000 · n.
We say that the measure μ = f · λ is not observable by computer experiment if the above

definition is not satisfied.

3. An example of a random map which admits an unobservable acim. In this section,
we present an example of a random map which admits an unobservable acim. The existence
of the acim is proved. At the same time every computer simulated trajectory of this random
map eventually falls into the set {1/2, 1} and stays there forever. We explain the reasons for
such behavior.
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Figure 1. The graphs of τ1 and τ2. Actually, there should be 128 branches of τ1 on [1/2, 1] and of τ2 on
[0, 1/2].

Let f : [1/2, 1] → [1/2, 1] and g : [0, 1/2] → [0, 1/2] be defined by

f(x) =
1

2
+ 2

∣∣∣∣x− 3

4

∣∣∣∣ , g(x) = 2

∣∣∣∣x− 1

4

∣∣∣∣ .
Let λ = 1/2 + 0.00197. Consider the random map T = {τ1, τ2}, as shown in Figure 1, where
τ1, τ2 : [0, 1] → [0, 1] are defined by

τ1(x) =

⎧⎪⎨
⎪⎩

−λx + 1, 0 ≤ x ≤ 1
4 ,

1 + λ(x− 1
2), 1

4 < x ≤ 1
2 ,

f7(x), 1
2 < x ≤ 1,

(3.1)

where f7(x) = f ◦ f ◦ f ◦ f ◦ f ◦ f ◦ f(x), and

τ2(x) =

⎧⎪⎨
⎪⎩

g7(x), 0 ≤ x ≤ 1
2 ,

−λ(x− 1
2) + 1

2 ,
1
2 < x ≤ 3

4 ,
1
2 + λ(x− 1), 3

4 < x ≤ 1,

(3.2)

where g7(x) = g ◦ g ◦ g ◦ g ◦ g ◦ g ◦ g(x).

These maps have two groups of properties.

Expansive properties—existence of an acim for the random map. The slopes are chosen in
such a way that the random map T = {τ1, τ2; 1

2 ,
1
2} satisfies Pelikan’s condition and thus admits

an acim. Moreover, since each of the maps τ1, τ2 has a unique acim (Lebesgue measure on
[1/2, 1] and [0, 1/2], correspondingly), the random map T also has a unique acim ([10] or [8]).

Attracting properties. τ1(1/2) = 1 and the slope of τ1 on [0, 1/2] is almost equal to 1/2, so
τ1([0, 1/2]) � [1− 1/4, 1]. Similarly, τ2(1) = 1/2 and the slope of τ2 on [1/2, 1] is almost equal
to 1/2, so τ2([1/2, 1]) � [1/2 − 1/4, 1/2].

Why the acim of T cannot be observed by computer simulations. Since we are considering
a computer model of a random map it is more convenient to assume that numbers are rep-
resented by their binary expansion. Let us consider the computer precision using N digits of
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binary expansion. Our remarks below apply directly to the computer implementation used
by Maple 9.5, but we believe that they are general enough and other systems use similar
implementations. The numbers are represented by sequences of N 0’s and 1’s starting with
a 1 and a number which shows how many zeros should be inserted before the first 1. This
causes a nonuniform distribution of computer numbers on the interval [0, 1]. For example, at
the precision of 6 decimal digits (Maple command Digits:=6) or 20 binary digits we have
0.5 − 1/220 = 0.5 − 1/220 + 1/221 but 1/220 �= 1/220 − 1/221 for the computer. This property
is not important for our further reasoning as we work close to points 0.5 and 1.0 and far away
from 0.

Another topic we have to discuss is the computer implementation of the maps τ1 and τ2.
The most important is the behavior of τ1 on [1/4, 1/2) and of τ2 on [3/4, 1). In our example
λ ∼= 1/2. Thus, τ1 on [1/4, 1/2) is almost equal to x → 3/4 + x/2, which in binary means the
following: insert 0 in front of the digits of x and add binary 0.11. This in particular means
that the binary number of the form 0.011 . . . 11??? · · · ∈ [1/4, 1/2) with k 1’s is τ1-mapped
into number 0.111 . . . 11??? . . . with (k + 2) 1’s. Similarly, τ2 on [3/4, 1) is almost equal to
x → x/2, which in binary means the following: insert 0 in front of the digits of x. This in
particular means that the binary number of the form 0.11 . . . 11??? · · · ∈ [3/4, 1) with k 1’s is
τ2-mapped into number 0.0111 . . . 11??? . . . with again k 1’s. In particular, at the precision of
N binary digits, we have in computer implementation τ1(x) = 1/2 for any x ∈ [1 − 1/2N , 1]
and τ2(x) = 1 for any x ∈ [1/2 − 1/2N , 1/2].

The computer is used for two purposes: to produce a sequence of pseudorandom numbers
controlling the choice of maps τ1 and τ2 and to calculate values of τ1(x) or τ2(x) for appro-
priate τi. Let us assume that if the sequence of pseudorandom numbers gives 0, then τ1 is
applied, and when it shows 1, τ2 is applied.

In precision of N binary digits an ideal pseudorandom number generator would produce
any 0-1 sequence of length N . Let us assume that ours is not so ideal and produces only every
0-1 sequence of length N − 1. We assume that we are at the step in a trajectory such that
the following holds.

Condition A. The next N − 1 digits in the controlling sequence are 010101 . . . 010101
(for odd N) or 010101 . . . 0101010 (for even N). The current point of the trajectory is x ∈
(1/4, 1/2]; i.e., the first two binary digits of x are 0.01.

Let us see what happens in this situation: because of “0” in the controlling sequence, the
map τ1 is applied; thus, x is attracted to 1 with the contraction factor almost equal to 1/2.
This also means that the binary digits of τ2(x) start with 0.111. Now, because of “1” in the
controlling sequence, the map τ2 is applied; thus, the current point of the trajectory τ2(x)
is attracted to 1/2 with the contraction factor almost equal to 1/2. This also means that
τ1(τ2(x)) has binary representation starting with 0.0111. Now, the consecutive elements of
the controlling sequence are used and the maps τ1 and τ2 are applied in alternating fashion.
On each second step the current point in the trajectory has two more 1’s at the beginning of
its binary representation. We can illustrate this as follows:

0.01? → 0.111? → 0.0111? → 0.11111?

→ 0.011111? → 0.1111111? → 0.01111111? → 0.111111111? → · · ·

If N is odd, then after N−2 steps the binary representation of the current point is 0.111 . . . 111
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with N 1’s and the next application of τ2 (corresponding to the last 1 in the controlling
sequence) sends the point to 1/2. Similarly, if N is even, then after N − 2 steps the binary
representation of the current point is 0.0111 . . . 111 with one 0 and N − 1 1’s and the next
application of τ1 (corresponding to the last 0 in the controlling sequence) sends the point to 1.
It is possible that the trajectory of the point 0.01??? . . . falls into {1/2, 1} earlier; what we
presented above is the worst case scenario.

In conclusion, we showed that whenever Condition A is satisfied the trajectory of the
random map ends in the set {1/2, 1}.

Similarly, many other combinations of closeness of current x to 1/2 or 1 and a specific
sequence in the controlling sequence of pseudorandom numbers lead to the trapping of the
T -trajectory in the set {1/2, 1}.

Proof that acim of T cannot be observed experimentally. How long do we have to wait
for Condition A to be satisfied? This depends on the starting point x0 of the trajectory and
the “seed” of the pseudorandom number generator. It can be a few steps or an enormously
long time. To estimate the average waiting time for Condition A we can consider T as a skew
product map on [0, 1] × {0, 1}N. Using, for example, results of [8], it can be proved that the
acim of T gives a positive weight, say, w > 0, to interval [1/4, 1/2). Thus, the skew product
invariant measure of the set SA = [1/4, 1/2) × {010101 . . . 010101b . . .} (N − 1 fixed digits,
with b equal to 0 or 1) is w · (1/2)N−1. Also, the skew product map is ergodic so a typical
trajectory will visit SA. This proves that T does not satisfy Definition 2.2, i.e., cannot be
observed experimentally, as initial conditions of measure at least w · (1/2)N−1 do not produce
the histogram of acim.

At the same time we proved that the average waiting time to visit set SA is 2N−1/w,
which is the average waiting time for Condition A to occur. In practice, it may occur during
the few first iterations of the random map T .

We performed computer experiments using Maple 9.5. At decimal precision of 6 digits
(Maple command Digits:=6) or binary 20 digits we obtained after 1028545 iterations

0.940614

0.469539

0.984375

0.500000

1.

Note that 220 = 1048576. At decimal precision of 8 digits (Maple command Digits:=8) or
binary 27 digits we obtained after 1516315 iterations

0.93741313

0.46826846

0.48459072

0.99218750

0.500000

1.
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Note that 227 = 134217728.
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[1] W. Bahsoun, P. Góra, and A. Boyarsky, Stochastic perturbations for position dependent random
maps, Stoch. Dyn., 3 (2003), pp. 545–557.
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Abstract. One of the most interesting dynamical systems used in numerical analysis is the QR algorithm. An
added maneuver to improve the convergence behavior is the QR iteration with shift which is of
fundamental importance in eigenvalue computation. This paper is a theoretical study of the set of
all isospectral matrices “reachable” by the dynamics of the QR algorithm with shift. A matrix B is
said to be reachable by A if B = RQ + μI, where A− μI = QR is the QR decomposition for some
μ ∈ R. It is proved that in general the QR algorithm with shift is neither reflexive nor symmetric.
Examples are given to demonstrate that this relation is neither transitive nor antisymmetric. It is
further discovered that the reachable set from a given n×n matrix A forms 2n−1 disjoint open loops
if n is even and 2n−2 disjoint components each of which is no longer a loop when n is odd.
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1. Introduction. Given a matrix A ∈ R
n×n, by a QR step with shift μ ∈ R we mean an

operation that involves the following two steps:

(a) Compute the QR factorization of A− μI,

A− μI = QA(μ)RA(μ),(1.1)

where QA(μ) is orthogonal and RA(μ) is upper triangular.
(b) Compute

A(μ) = RA(μ)QA(μ) + μI = Q�
A(μ)AQA(μ).(1.2)

Starting with A(1) := A, a discrete dynamical system by repeating the above operation with
properly chosen shifts {μk} applied to the sequence of matrices A(k+1) := A(k)(μk) constitutes
what is called the QR algorithm with shift [5]. The QR algorithm with shift is the prin-
cipal powerhouse in eigenvalue computation. The shifts play a critical role in effecting fast
convergence.

Generally speaking, there are two proven strategies for selecting the basic shifts: the
Wilkinson shift and the Rayleigh quotient. It is known that if A(1) is an upper Hessenberg
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matrix to begin with, and usually it is made so, then the structure is preserved throughout
the QR algorithm. The Wilkinson shift is particularly convenient and useful for Hessenberg
matrices in the QR iteration [10]. The Rayleigh quotient updated at each iteration, on the
other hand, is known to be effective for inverse iteration [7]. Once basic shift values are
determined, they could be incorporated into more advanced computation paradigms, including
schemes such as the implicit double shift method or the multishift algorithm [5, 8]. Besides
these, there does not seem to exist many other variants of practical shift strategies.

It is well known that the iterates generated by the QR algorithm with zero shift are
equivalent to the sampling of the Toda lattice (flow) at integer times [1, 9]. While the shift μ
may be considered as a “feedback control” ministered step by step to change the convergence
behavior, thus far there is no known continuous system modeling the QR algorithm with
shift. The purpose of this paper is not to derive any new shift strategies; rather, we find it
interesting to understand, at least from a theoretical point of view, how other shifts can affect
the dynamics of the QR algorithm. By considering the shift μ as a general parameter, we
intend to study the set

SA := {A(μ) ∈ R
n×n|μ ∈ R}(1.3)

of “all” possible matrices that are orthogonally similar to A via a QR step with shift. Some
clarification of the definitions of both A(μ) and SA is in order before we can proceed further.
The QR decomposition in general is not unique, so (1.2) is not well defined. However, because
this one-parameter matrix function A−μI is real analytic in μ, it is known that a real analytic
QR decomposition of this analytic matrix function exists [3, 4]. Once a pair of initial values,
say, QA(0) and RA(0), is fixed, we shall restrict our factorization in (1.1) and hence A(μ) for
all other μ to the branch of real analytic QR decomposition that passes through QA(0) and
RA(0). Different initial values differ by sign changes and inaugurate different analytic paths.
With this in mind, we shall adopt the following notation in this discussion.

Definition 1.1. Given two matrices A,B ∈ R
n×n, we say that B is reachable from A,

denoted by A � B, if B = A(μ) for some μ ∈ R.
The set SA therefore contains all reachable matrices from A. On first glance, the set SA

as a one-parameter family should represent an isospectral curve in R
n×n. We shall show that

it is made of several disjoint real analytic curves, each passing through a certain initial value.
We wish to characterize these curves more specifically, preferably in an analytical way. Along
the way, it is of theoretical interest to ask the following questions:

• If A � B, is it true that B � A?
• If A � B and B � C, is it true that A � C?

In modern algebra terminology, the above questions inquire about whether the QR algorithm
with shift enjoys the symmetry and transitivity properties, respectively. It appears that these
questions have not been explored before.

To decipher the set SA, it suffices to characterize the set

HA := {QA(μ) ∈ On|μ ∈ R},(1.4)

where On stands for the orthogonal group in R
n×n. Recently there have been considerable

efforts in deriving isospectral curves (flows) for a variety of important applications [2, 6]. Our
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isospectral curve SA is defined via the QR step with shift. Indeed, it is known that any
differentiable flow on On satisfies a differential system of the form

Q̇ = QK,(1.5)

where Q̇ denotes the derivative with respect to some appropriate parameter and K ∈ R
n×n is

skew-symmetric. Since both sides of (1.1) are differentiable with respect to μ, we find that

ṘA = −Q�
A −KRA.(1.6)

The skew-symmetric matrix K for our purpose therefore must be such that −Q�
A −KRA is

upper triangular. We shall justify later that K = K(μ) can be defined.

Without loss of generality, we shall assume henceforth that no row or column of A can
be entirely zero at off-diagonal positions because, otherwise, the matrix A could have been
deflated first. For simplicity, we shall also assume that all eigenvalues of A are distinct.

2. The case n = 2. We begin with the case n = 2 as it provides considerable insight into
the general problem. The questions of symmetry for the case n = 2 can easily be answered
from the following observation.

Theorem 2.1. Suppose n = 2. If A � B, then B � A.

Proof. Because A � B, there exists a number μ0 ∈ R such that

A− μ0I = QA(μ0)RA(μ0),

B = Q�
A(μ0)AQA(μ0),

where QA(μ0) is orthogonal and RA(μ0) is upper triangular. We claim that a number s0 ∈ R

can be found such that

B − s0I = Q�
A(μ0)RB(s0),(2.1)

where RB(s0) is upper triangular. If this claim is true, then we have QB(s0) = Q�
A(μ0) and

RB(s0)QB(s0) + s0I = QA(μ0)(B − s0I)Q
�
A(μ0) + s0I = QA(μ0)BQ�

A(μ0) = A,

that is, B � A. To construct s0 in (2.1), denote

B =

[
b11 b12
b21 b22

]
and QA(μ) =

[
q11(μ) q12(μ)
q21(μ) q22(μ)

]
.

Note that q12(μ) �= 0 for every μ because, otherwise, the matrix A would have to be upper
triangular and could be deflated. It can quickly be checked that the choice

s0 := b11 −
q11(μ0)

q12(μ0)
b21(2.2)

satisfies (2.1).
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The symmetry of the QR step with shift for the case n = 2 can be better seen geometrically.
Toward that end, we characterize HA. Write

RA(μ) =

[
r11(μ) r12(μ)

0 r22(μ)

]
, K(μ) =

[
0 k(μ)

−k(μ) 0

]
;

we find that the only choice of k(μ) making −Q�
A −KRA upper triangular is

k(μ) :=
q12(μ)

r11(μ)
.(2.3)

We thus obtain from (1.5) and (1.6) the differential systems⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇11 = − q212
r11

,

q̇12 = q11q12
r11

,

q̇21 = − q22q12
r11

,

q̇22 = q21q12
r11

,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ṙ11 = −q11,

ṙ12 = −q21 − q12r22
r11

,

ṙ22 = −q22 + q12r12
r11

(2.4)

that describe the dynamics of QA(μ) and RA(μ), respectively. Note that |r11(μ)| is equal to
the 2-norm of the first column of A − μI and, hence, is never zero. The above differential
systems are defined for all μ ∈ R. We have thus shown indirectly the differentiability of A(μ).
In fact, because |r11(μ)| → ∞ as μ → ±∞, it follows that q12(μ) → 0 and that QA(μ) must
converge to a diagonal orthogonal matrix with ±1 along its diagonal. Together, we have shown
that as |μ| → ∞,

A(μ) → A∗ :=

⎧⎪⎨
⎪⎩
A if det(QA(0)) = 1,[

a11 −a12

−a21 a22

]
if det(QA(0)) = −1.

The significance of this observation is that SA can now be represented symbolically as
the union of two disjoint open loops. The loop corresponding to det(QA(0)) = 1 is depicted
in Figure 1. We purposefully use a nonsymmetric loop representation because there is no
indication that the curve A(μ) ∈ R

2×2 has any symmetry. The large solid circle denotes the
initial point A(0). The arrows indicate the directions A(μ) move as μ converges to positive or
negative infinity, respectively. It is important to note that in both directions A(μ) converges
to A, but generally A does not belong to SA. We denote A by an empty circle. Furthermore,
because O2 is only a one-dimensional manifold, it is not difficult to see that if QA(0) and
QB(0) have the same orientation then the trajectories of QA(μ) and QB(μ) are exactly the
same. It follows that, if A � B, the sets SA and SB are almost identical except that they
exclude A and B, respectively. In particular, we see from the graph that A ∈ SB and hence
B � A. We will see that the situation is not so simple in higher dimensional cases.

In a similar way, we prove that the relation � is not reflexive in the following sense.
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Figure 1. The representation of SA (left) and SB (right) when n = 2 and det(QA)(0) = det(QB(0)) = 1.

Theorem 2.2. Suppose n = 2. Then A � A if and only if A = rQ + μI for some r, μ ∈ R

and some orthogonal matrix Q. Hence, generally, A �� A.

Proof. Suppose A � A. Then there exists a μ ∈ R such that

A− μI = QA(μ)RA(μ), A = Q�
A(μ)AQA(μ),

with orthogonal QA(μ) and upper triangular RA(μ). It follows that

QA(μ)RA(μ) = RA(μ)QA(μ).(2.5)

Note that no column of A can be entirely zero at off-diagonal positions, so we must have
q21(μ) �= 0 for all μ ∈ R. Consequently, a simple calculation shows that the relationship (2.5)
holds if and only if

RA(μ) = rI

for some r ∈ R.

Conversely, if A = rQ + μI for some r, μ ∈ R and orthogonal matrix Q, then

A− μI = Q(rI), A = Q�AQ,

that is, A � A.

Using Theorems 2.1 and 2.2, it is easy to see that the relation � is not transitive.

Corollary 2.3. Suppose n = 2. Assume that A � B and B � C. Then, generally, A �� C.

3. Algebraic properties in general. For a fixed matrix A ∈ R
n×n, denote QA(μ) =

[q
[A]
ij (μ)] and RA(μ) = [r

[A]
ij (μ)]. For simplicity, we shall write [q

[A]
ij (μ)] = [qij(μ)] and [r

[A]
ij (μ)] =

[rij(μ)] by dropping the references to A without causing ambiguity. Let the spectral decom-
position of A be denoted by

AW = WΣ,(3.1)

where W ∈ C
n×n is nonsingular and Σ is diagonal.
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We first explain how the real analytic QR decomposition can be defined. In order that
the vector field −Q� − KRA in (1.6) remains upper triangular, the skew-symmetric matrix
K(μ) = [kij(μ)] must satisfy the equations

kijrii = qij −
i−1∑
s=1

ksjrsi, i = 1, . . . , n− 1, j = i + 1, . . . , n.(3.2)

The entries kij(μ) can be uniquely defined only if rii(μ) �= 0 for i = 1, . . . , n − 1. It is clear,
however, that when μ coincides with an eigenvalue of A some rii(μ) will be zero. The question
is how kij should be defined in such a situation.

The following example should shed some light on the above concern.
Example 1. Consider the case where

A =

⎡
⎣ 3 1 4

2 4 5
3 3 6

⎤
⎦ .

It is easy to verify that three eigenvalues of A are distinct and r11(μ) �= 0 for all μ ∈ R.
However, because

A− 2I =

⎡
⎣ 1 1 4

2 2 5
3 3 4

⎤
⎦ ,

we see that r22(2) = 0 and, hence, k23(μ) cannot be defined directly from the relationship
(3.2) at μ = 2. We emphasize that A− μI does have a real analytic QR decomposition in μ.
Figure 2 illustrates the limiting behavior of

r22(μ) = ±

√
μ4 − 14μ3 + 87μ2 − 212μ + 172

22 − 6μ + μ2

and

k23(μ) =
q23(μ) − k13(μ)r12(μ)

r22(μ)
=

q23(μ)r11(μ) − q13(μ)r12(μ)

r11(μ)r22(μ)

as μ passes through the eigenvalue μ = 2. To maintain analyticity, it is clear that r22(μ) has
to change sign at μ = 2. In particular, k23(μ) does have a limit at μ = 2, if the thicker curve
is connected to the thinner curve at the discontinuity jump.

The case that rii(μ) = 0 for some 1 ≤ i ≤ n− 1 at a certain μ does not happen often. To
see this, denote the matrices of the first n− 1 columns of A, In, and QA(μ), respectively, by
An−1, En−1, and Qn−1(μ). Observe that

An−1 − μEn−1 = Qn−1(μ)

⎡
⎢⎣

r11(μ) · · · r1,n−1(μ)
. . .

...
rn−1,n−1(μ)

⎤
⎥⎦ .
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Figure 2. Evolution of r22(μ) (left) and k23(μ) (right) as μ passes through μ = 2. Note that the thicker
curves must be continued with the thinner curves at μ = 2 to maintain analyticity.

It follows that rii(μ), i = 1, . . . , n− 1, is never zero if and only if

rank(An−1 − μEn−1) = n− 1 for all μ ∈ R.(3.3)

We mention that the rank condition (3.3) is closely related to the so-called observability in
control theory [11]. It can easily be argued that the condition (3.3) holds for almost all
matrices A ∈ R

n×n, and this will be assumed to be the case in our discussion.
It is important to realize that R(μ) can have at most one zero diagonal element because

eigenvalues of A are distinct. By following the analytic curve of R(μ) under the condition
(3.3), the only diagonal entry of R(μ) that could ever vanish is rnn(μ) at real eigenvalues of
A. The real analytic QR decomposition therefore can be defined by the differential equations
(1.5) and (1.6) with

kij =
qij −

∑i−1
s=1 ksjrsi
rii

, i = 1, . . . , n− 1, j = i + 1, . . . , n.(3.4)

With a real analytic curve in mind, it remains to see how the set SA would look in higher
dimensional space.

In contrast to Theorem 2.1 for the case n = 2, the following example illustrates the
asymmetry when n = 3.

Example 2. Let

A =

⎡
⎣ 0 0 1

1 1 0
0 1 0

⎤
⎦ , B =

⎡
⎣ 1 0 1

1 0 0
0 1 0

⎤
⎦ .

It is not difficult to verify the facts that the spectrum of either A or B consists of distinct
eigenvalues, that the condition (3.3) holds for both A and B, that the QR factorization of A
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is given by

A =

⎡
⎣ 0 0 1

1 0 0
0 1 0

⎤
⎦
⎡
⎣ 1 1 0

0 1 0
0 0 1

⎤
⎦ ,

and that

B =

⎡
⎣ 0 0 1

1 0 0
0 1 0

⎤
⎦
�

A

⎡
⎣ 0 0 1

1 0 0
0 1 0

⎤
⎦ ,

that is, A � B.
For any s ∈ R, let

B − sI = QB(s)RB(s)

denote the QR decomposition of B − sI. If we write QB(s) = [q
[B]
ij (s)], then it must be the

case that for all s ∈ R,

q
[B]
31 (s) = 0, q

[B]
21 (s) �= 0.

On the other hand, let Q̃ = [q̃ij ] denote an arbitrary matrix with q̃31 = 0. Upon computing the

products Q̃A and BQ̃, we find that Q̃A = BQ̃ if and only if Q̃ is of the form

Q̃ =

⎡
⎣ q̃11 q̃11 q̃21

q̃21 q̃11 0
0 q̃21 q̃11 − q̃21

⎤
⎦ .

However, Q̃ of the structure above cannot be orthogonal. We thus conclude that A �= QB(s)TBQB(s)
for any s ∈ R so long as QB(s) is orthogonal. That is, B �� A.

Indeed, the asymmetry illustrated above is generically true; that is, we can prove that the
QR step with shift in general is not symmetric.

Theorem 3.1. Assume that A has n distinct eigenvalues and A � B. If n > 2, then
generally B �� A.

Proof. We shall prove by contradiction. Assume B � A. Then for some s ∈ R we should
have

B − sI = QB(s)RB(s),

A = Q�
B(s)BQB(s),

with QB(s) ∈ On and RB(s) upper triangular. On the other hand, because A � B, there
exists a number μ0 ∈ R such that

A− μ0I = QA(μ0)RA(μ0),

B = Q�
A(μ0)AQA(μ0),
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with QA(μ0) ∈ On and RA(μ0) upper triangular. By rewriting the relationship

WΣW−1 = A = (QA(μ0)QB(s))�AQA(μ0)QB(s),

we see another spectral decomposition of A,

A(QA(μ0)QB(s)W ) = (QA(μ0)QB(s)W )Σ.(3.5)

Since all eigenvalues of A are distinct, the corresponding eigenvectors of the same eigenvalue
can differ only by a scalar multiplication. That is, we must have

QA(μ0)QB(s)W = WΛ,(3.6)

with

Λ = diag{λ1, . . . , λn} ∈ C
n×n, |λi| = 1, i = 1, . . . , n.(3.7)

Rewriting

QB(s) = Q�
A(μ0)WΛW−1,

we obtain

Q�
A(μ0)(A− sI)QA(μ0) = B − sI = QB(s)RB(s) = Q�

A(μ0)WΛW−1RB(s).

Equivalently, we have the equation

(A− sI)W Λ̄W−1 = W Λ̄W−1(A− sI) = RB(s)Q�
A(μ0),

where Λ̄ denotes the complex conjugate of Λ. It follows that

(A− sI)W Λ̄W−1(A− μ0I) = RB(s)RA(μ0),(3.8)

W Λ̄W−1(A− sI)QA(μ0) = RB(s).(3.9)

In particular, note that both matrices on the right-hand sides of (3.8) and (3.9) are upper
triangular. We claim the mere fact that the strictly lower triangular part of the two matrices
on the left-hand sides of (3.8) and (3.9) is an overdetermined system for s. To see this point,
write A and W in rows,

A =

⎡
⎢⎢⎢⎣

a�1
a�2
...

a�n

⎤
⎥⎥⎥⎦ , W =

⎡
⎢⎢⎢⎣

w�
1

w�
2
...

w�
n

⎤
⎥⎥⎥⎦ , and I =

[
e1 e2 · · · en

]
.

The strictly lower triangular part of (3.8) being zero means that

(a�j − se�j )W Λ̄W−1(A− μ0I)

[
Ij−1

0

]
= 0, j = 2, . . . , n,
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or equivalently,

w
�
j ΣΛ̄Σ(Σ − μ0I)W

−1

[
Ij−1

0

]
= sw�

j Λ̄(Σ − μ0I)W
−1

[
Ij−1

0

]
, j = 2, . . . , n.(3.10)

There are n(n − 1)/2 equations for the single variable s in order to satisfy (3.8). Similarly,
(3.9) leads to another overdetermined system for s. Because W , Σ, and μ0 are independent,
and Λ is of the particular diagonal form, we conclude that the system (3.8) and (3.9) generally
does not have a solution s. This contradicts the assumption that B � A.

Using similar arguments, we now show that the QR step with shift is not reflexive.
Theorem 3.2. Assume that A has n distinct eigenvalues. Then in general A �� A; that is,

Q�
A(μ)AQA(μ) �= A for all μ ∈ R.(3.11)

Proof. Again, we prove by contradiction. Assume A � A. By (1.1), we see the relationship
that

Q�
A(μ)AQA(μ) = A ⇐⇒ RA(μ)QA(μ) = QA(μ)RA(μ) ⇐⇒ QA(μ)A = AQA(μ).(3.12)

Assuming that the spectral decomposition of A is given by (3.1), we should also have

Q�
A(μ) = WΛW−1(3.13)

for some Λ in the form (3.7). Upon comparing this with the strictly lower triangular part of
the equation Q�

A(μ)(A− μI) = RA(μ), we conclude that

w
�
j ΛW−1(A− μI)

[
Ij−1

0

]
= 0, j = 2, . . . , n,

or equivalently,

w
�
j ΛΣW−1

[
Ij−1

0

]
= μw

�
j ΛW−1

[
Ij−1

0

]
, j = 2, . . . , n.(3.14)

There are n(n − 1)/2 equations in (3.14) for the scalar μ. The system (3.14) in general has
no solution for μ.

The following example demonstrates the antireflexivity asserted in Theorem 3.2.
Example 3. Consider the matrix A in Example 2. For any μ ∈ R, let

A− μI = QA(μ)RA(μ)

denote the QR decomposition of A − μI. By the structure of A, it is easy to see that for all
μ ∈ R, we must have

q31(μ) = 0, q21(μ) �= 0.

Using the property q31(μ) = 0, we find that QA(μ)A = AQA(μ) for some μ ∈ R if and only if

QA(μ) =

⎡
⎣ q11(μ) 0 q21(μ)

q21(μ) q11(μ) + q21(μ) 0
0 q21(μ) q11(μ)

⎤
⎦ .
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For QA(μ) of such a structure to be orthogonal, it must be such that q21(μ) = 0. This is a
contradiction. Therefore, A �� A.

For the case n = 2, we can easily use the symmetry and the antireflexivity to show that
the QR step with shift is generally not transitive. For the case n > 2, the relation � is no
longer symmetric by Theorem 3.1. However, we offer the following example to demonstrate
that the transitivity remains failed.

Example 4. Let A and B be the same matrices as in Example 2 so that A � B. Let

C =

⎡
⎣ 0 0 1

1 0 0
0 1 1

⎤
⎦ .

Observe that the QR factorization of B − I is given by

B − I =

⎡
⎣ 0 0 1

1 0 0
0 1 0

⎤
⎦
⎡
⎣ 1 −1 0

0 1 −1
0 0 1

⎤
⎦ ,

while

C =

⎡
⎣ 0 0 1

1 0 0
0 1 0

⎤
⎦
�

B

⎡
⎣ 0 0 1

1 0 0
0 1 0

⎤
⎦ .

It follows that B � C. Using the same argument as that in the proof for B �� A in Example 2,
we can show that A �� C.

It is worth clarifying one more scenario. We already know that the operation of a QR
step with shift is generally not symmetric, as shown in Theorem 3.1. Could it be possible that
it is antisymmetric in the sense that both A � B and B � A imply that A = B? Clearly,
this is not necessarily the case when n = 2 because the relation is symmetric. The following
example shows that the relation � is not antisymmetric for n > 2 either.

Example 5. Define

A =

⎡
⎣

√
2 0 3 +

√
2

2 −
√

2 −
√

2

−
√

2 2 1 +
√

2

⎤
⎦ , B =

⎡
⎣ 0 2 2

√
2

−
√

2 2 +
√

2 −2 −
√

2

−1
√

2 −1

⎤
⎦ .

Then matrices in the QR decompositions of

A = QARA, B − I = QBRB

are given by

QA =

⎡
⎢⎣

1
2

1√
2

1
2

1√
2

0 − 1√
2

−1
2

1√
2

−1
2

⎤
⎥⎦ , QB = QT

A
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and

RA =

⎡
⎣ 2

√
2 −2 0

0
√

2 2 + 2
√

2
0 0 2

⎤
⎦ , RB =

⎡
⎣ −2 2 +

√
2 −2

0
√

2 − 1 2 +
√

2

0 0 −2
√

2

⎤
⎦ ,

respectively. It is easy to verify that B = QT
AAQA and A = QT

BBQB. Equivalently, we have
A � B and B � A. But, it is clear that A �= B.

4. Reachable set. In this section, we first describe the limit points of A(μ) as μ goes to
infinity. By studying carefully the inertia of these limit points, together with the fact that we
are following an analytic moving frame, we are able to ultimately characterize the set SA of
all reachable matrices from a given matrix A.

Theorem 4.1. The asymptotic behavior of A(μ) where QA(μ) and RA(μ) follow from the
dynamical systems (1.5) and (1.6) with K specified as in (3.4) is given by

lim
μ→±∞

A(μ) = D±AD±,(4.1)

where

D± = lim
μ→±∞

QA(μ)(4.2)

is a diagonal matrix with diagonal entries either 1 or −1. The inertia of the signature matrix
D± is predetermined by the initial value, say, QA(0).

Proof. Write A and QA(μ) in columns,

A =
[

a1 a2 · · · an

]
, QA(μ) =

[
q1(μ) q2(μ) · · · qn(μ)

]
,

and denote

RA(μ) =

⎡
⎢⎢⎢⎣

r11(μ) r12(μ) · · · r1n(μ)
r22(μ) · · · r2n(μ)

. . .
...

rnn(μ)

⎤
⎥⎥⎥⎦ .

Observe first that

r11(μ)

μ
q1(μ) =

a1

μ
− e1,(4.3)

and

lim
|μ|→∞

∣∣∣∣r11(μ)

μ

∣∣∣∣ = lim
|μ|→∞

∥∥∥∥a1

μ
− e1

∥∥∥∥
2

= 1.(4.4)

Because A − μI is nonsingular for all μ ∈ R with |μ| > ‖A‖2, the matrix RA(μ) is also
nonsingular for all μ ∈ R with |μ| > ‖A‖2. Consequently, r11(μ) �= 0 for all μ ∈ R with
|μ| > ‖A‖2. Together with the property that RA(μ) is analytic, we see that r11(μ) is analytic
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and does not change its sign for all μ ∈ R with |μ| > ‖A‖2. Thus, it follows from (4.3) and

(4.4) that limμ→±∞
r11(μ)

μ exists and

lim
μ→±∞

q1(μ) = ±e1,(4.5)

where the sign in front of e1 depends on the initial value q1(0).
We now proceed by induction. Assume it has been proven that

lim
|μ|→∞

[
q1(μ) · · · qk(μ)

]
=

[
±e1 · · · ±ek

]
,(4.6)

with appropriate signs attached to each limit points. Consider what will happen to qk+1(μ)
as |μ| → ±∞. Observe that

[
q1(μ) · · · qk(μ)

]�(
ak+1

μ
− ek+1

)
=

1

μ

⎡
⎢⎣

r1,k+1(μ)
...

rk,k+1(μ)

⎤
⎥⎦ ,(4.7)

∥∥∥∥∥∥∥∥∥
1

μ

⎡
⎢⎢⎢⎣

r1,k+1(μ)
...

rk,k+1(μ)
rk+1,k+1(μ)

⎤
⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥

2

=

∥∥∥∥ak+1

μ
− ek+1

∥∥∥∥
2

.(4.8)

Regardless of the signs involved in (4.6), we see from (4.7) that

lim
|μ|→∞

1

μ

⎡
⎢⎣

r1,k+1(μ)
...

rk,k+1(μ)

⎤
⎥⎦ =

[
±e1 · · · ±ek

]�
ek+1 = 0,

and thus

lim
|μ|→∞

∣∣∣∣rk+1,k+1(μ)

μ

∣∣∣∣ = 1.

Similar to r11(μ), rk+1,k+1(μ) is analytic and does not change its sign for all μ ∈ R with
μ > ‖A‖2, and since RA(μ) is analytic and nonsingular for all μ ∈ R with μ > ‖A‖2, we get

that limμ→±∞
rk+1,k+1(μ)

μ exists. Furthermore, because

ak+1

μ
− ek+1 =

[
q1(μ) · · · qk(μ) qk+1(μ)

]
⎛
⎜⎜⎜⎝ 1

μ

⎡
⎢⎢⎢⎣

r1,k+1(μ)
...

rk,k+1(μ)
rk+1,k+1(μ)

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ ,(4.9)

we conclude that

lim
μ→±∞

qk+1(μ) = ±ek+1,(4.10)

with appropriate sign. By the induction principle, we have proved (4.2) and, hence, (4.1).
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The flow QA(μ) defined by (1.5) is an analytic moving frame of n mutually orthogonal
vectors. The orientation of the coordinate system, therefore, cannot be altered throughout the
transformation. The issue of inertia involved in D± therefore is worth further investigation.

First, we note the symmetry of the differential equations that characterize the analytic
QR field.

Lemma 4.2. The skew-symmetric matrix K(Q,R) defined by (3.4) is an even function in
(Q,R). Consequently, the vector field given in (1.5) and (1.6) with K defined by (3.4) is an
odd function in QA(μ) and RA(μ).

Proof. It is clear that k1j =
q1j
r11

, j = 2, . . . , n, is even. Assume that ksj is even for all
s = 1, . . . , i− 1 and j = s + 1, . . . , n. By the definition (3.4), it is easy to see that kij is even
for all j = i + 1, . . . , n. By the induction principle, the result is proved.

The symmetry described in Lemma 4.2 implies that the analytic QR factorization starting
with −QA(0) and −RA(0) is precisely the negative of the analytic QR factorization starting
with QA(0) and RA(0). Both positive and negative analytic paths produce the same A(μ).
Consequently, the SA is made of at most 2n−1 disjoint analytic segments.

Second, we note that from given initial values QA(0) and RA(0) the limit point D−AD−
is not necessarily the same as D+AD+, even if det(QA(0)) = 1. More specifically, recall the
fact

lim
μ→±∞

∣∣∣∣rii(μ)

μ

∣∣∣∣ = 1, i = 1, . . . , n− 1,(4.11)

which has been proved in Theorem 4.1. Under the assumption (3.3), rii(μ), i = 1, . . . , n− 1,
never vanishes for all μ. We conclude that

lim
μ→∞

rii(μ)

μ
= − lim

μ→−∞
rii(μ)

μ
, i = 1, . . . , n− 1,(4.12)

together with the fact that

lim
μ→±∞

rii(μ)

μ
qi(μ) = −ei, i = 1, . . . , n− 1.(4.13)

We now see that

lim
μ→∞

qi(μ) = − lim
μ→−∞

qi(μ), i = 1, . . . , n− 1.(4.14)

It remains only to examine what happens to qn(μ) as μ → ±∞.

Under assumption (3.3), rii(μ) �= 0 (i = 1, . . . , n− 1) for all μ ∈ R. But

|det(A− μI)| = |det(RA(μ))| = |r11(μ) · · · rn−1,n−1(μ)rnn(μ)|,

so rnn(μ) = 0 for some μ ∈ R if and only if this μ is a real eigenvalue of A. If n is even, then
A has an even number, possibly zero, of real eigenvalues. That is, rnn(μ) has an even number
of real roots. Note that all eigenvalues of A are simple; we obtain that all real roots of rnn(μ)
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are simple. This yields that rnn(μ) changes sign at the real eigenvalues of A, and so it changes
sign by an even number of times. It follows that

lim
μ→∞

rnn(μ)

μ
= − lim

μ→−∞
rnn(μ)

μ
,

and hence

lim
μ→∞

qn(μ) = − lim
μ→−∞

qn(μ).(4.15)

Together with (4.14), we have proved the following result.

Corollary 4.3. Assume that the condition (3.3) holds. If n is even, then it is always true
that D− = −D+. In this case, SA is made of 2n−1 disjoint open loops with endpoint at
A∗ = D−AD− = D+AD+. (See Figure 3.) There is one and only one possibility such that
D−AD− = D+AD+ = A, that is, D+ is of one sign.

�
A(0)

�
A∗ = D−AD− = D+AD+

μ > 0

μ < 0

�

�

�

�

�

Figure 3. A typical analytic component of SA when n is even.

When n is odd, the situation is different. Because rnn(μ) changes its sign at least once
and generally by an odd number of times, we have

lim
μ→∞

rnn(μ)

μ
= lim

μ→−∞
rnn(μ)

μ
,

and hence

lim
μ→∞

qn(μ) = lim
μ→−∞

qn(μ).(4.16)

We therefore have the following observation.

Corollary 4.4. Assume that the condition (3.3) holds. If n is odd, then D− agrees with D+

only at the last diagonal entry. In this case, SA is made of 2n−2 disjoint components, each
of which is no longer a loop, but rather always has a positive distance between the endpoints
D−AD− and D+AD+. (See Figure 4.)

Be aware that the number of disjoint components of SA is reduced to 2n−2 if n is odd
because the endpoints of each component are distinct.
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�
A(0)

�D−AD−

�
D+AD+

μ > 0

μ < 0

�

�

�

�

�

Figure 4. A typical analytic component of SA when n is odd.

5. Conclusion. Employing the notion of analytic QR decomposition, we have explored
the set of all isospectral matrices reachable via a QR step with shift. Several interesting
facts are observed. One main discovery is that the reachable set from a given n × n matrix
forms finitely many disjoint components, each of which can be characterized by a differential
equation. Furthermore, each of the 2n−1 components when n is even appears as an open
loop, whereas each of the 2n−2 components when n is odd does not form a loop and has a
positive gap at the endpoints. This paper does not address the issue of more effective shift
strategies but does offer some interesting insight into the structure of all reachable matrices.
For example, it is shown in this paper that such a process is not symmetric; that is, in general
B �� A even if A � B.

The conventional shift strategy used in the eigenvalue computation gives rise to a sequence
of isospectral matrices that are possibly leaping from one component of A(k) with a certain
kind of orientation to another component of A(k+1) = A(k)(μk) with a different orientation,
since no preservation of orientation is required in the QR algorithm. One possible further
point of research might be to find the optimal μ so that A(k)(μ) is closest to the desirable,
say, triangular, form.

Acknowledgment. The problem of identifying all isospectral matrices reachable via QR
iterations with shift was suggested to the second author by Graham Gladwell.
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The Effects of Varying the Timing of Inputs on a Neural Oscillator∗
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Abstract. The gastric mill network of the crab Cancer borealis is an oscillatory neural network with frequency
∼ 0.1 Hz. Oscillations in this network require neuromodulatory synaptic inputs as well as rhythmic
inputs from the faster (∼ 1 Hz) pyloric neural oscillator. We study how the frequency of the gastric
mill network is determined when it receives rhythmic input from two different sources but where
the timing of these inputs may differ. We find that over a certain range of the time difference
one of the two rhythmic inputs plays no role what so ever in determining the network frequency,
while in another range, both inputs work together to determine the frequency. The existence and
stability of periodic solutions to model sets of equations are obtained analytically using geometric
singular perturbation theory. The results are validated through numerical simulations. Comparisons
to experiments are also presented.

Key words. synapse, stomatogastric ganglion, periodic orbit, Poincaré map
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1. Introduction. Many rhythmically active biological systems require input from extrinsic
sources to produce their activity. Such extrinsic inputs may arrive as a trigger signal thereby
switching on the oscillation, or be continuously present as forcing or feedback for the duration
of the oscillation [17, 18, 27]. The extrinsic input itself is often rhythmic and its frequency
may or may not match that of the target oscillator. Often, the oscillating network receives
multiple inputs simultaneously—for example, a central command input and a sensory feed-
back input. Such inputs are readily identified in central pattern generators (CPGs), neural
networks within the central nervous system (CNS) that are responsible for generating rhyth-
mic motor behaviors such as locomotion, swimming, or breathing [13, 15, 17]. However, even
in cases where the extrinsic inputs to a biological oscillator are known, the significance of the
rhythmicity of such inputs or the consequences of having multiple inputs is largely unknown;
often a nonrhythmic (tonic) input or only one of multiple inputs is sufficient to produce the
biological oscillation. For instance, the CPG responsible for swimming in lower species of fish
consists of chains of oscillators in the spinal cord [14]. This CPG receives rhythmic command
input from the brain as well as multiple rhythmic and tonic sensory feedback inputs from the
body. Without these inputs the CPG is inactive and the animal does not swim. However, the
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Figure 1. Synaptic architecture of neurons associated with the gastric mill rhythm.

isolated spinal cord, in the presence of a chemical stimulant (tonic input) produces “fictive
swimming,” rhythmic patterns which appear identical to those responsible for swimming in
the intact animal [12].

In this paper, we use mathematical analysis to investigate the significance of the timing
of multiple inputs to a biological oscillator. We focus on the rhythmically active crustacean
gastric mill CPG located within the stomatogastric ganglion (STG). The STG is one of several
ganglia in the crustacean CNS that control feeding and digestion behaviors [24]. As in many
invertebrate systems, the small number of neurons in the STG makes it amenable to both
experimental and modeling studies of neuronal networks responsible for generating behaviors.

The gastric mill rhythm is generated by a subset of neurons in the STG. At the heart
of this rhythm are two neurons, lateral gastric (LG) and interneuron 1 (Int1), which make
reciprocally inhibitory synaptic connections and (when the gastric mill rhythm is activated)
oscillate in antiphase with a frequency of 0.1 Hz (see Figure 1). The gastric mill CPG,
however, is a conditional oscillator; its activity depends on (modulatory) input from central
command neurons located in other CNS ganglia [18, 24]. One such neuron, the modulatory
commissural neuron 1 (MCN1), when excited, elicits a sustained gastric mill rhythm [8].
Previous studies have shown that input from the much faster pyloric CPG (frequency 1 Hz;
also located in the STG) is crucial in setting the frequency of the MCN1-elicited gastric
mill rhythm [3, 21]. This input comes in the form of an inhibitory synapse to Int1 from
the pyloric pacemaker neuron anterior burster (AB). Although tonic excitation of MCN1 is
sufficient for eliciting a gastric mill rhythm [3], it is known that, in the intact CNS, MCN1
is itself rhythmically active [30]. The rhythmicity of MCN1 is also due to a synaptic input it
receives from AB. Thus, there are two pathways by which the pyloric pacemaker neuron AB
influences the gastric mill network: the direct synaptic connection from AB to Int1 and the
indirect synaptic influence exerted by inhibiting MCN1 which, in turn, excites the gastric
mill neurons. Recent experimental findings show that the presence of either or both of the two
pathways of AB influences results in a gastric mill rhythm of similar frequency [30]. However,
when both pathways are removed (and thus the MCN1 activity is tonic) the gastric mill
rhythm slows down significantly. Although the mechanism through which the direct pyloric
input influences the gastric mill frequency is understood, it is not known how the rhythmic
activity of MCN1 provides an apparently redundant mechanism for maintaining the gastric
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mill frequency.

We expand on the techniques of Manor et al. [16] and build a simplified, biophysically based
model of the gastric mill network incorporating the effects of both MCN1 and AB. Using this
model, we show that the time difference between the two distinct AB influences on the gastric
mill is critical in determining the gastric mill frequency. When m, the time delay between the
AB inhibition of Int1 and MCN1, is small, the gastric mill frequency is determined solely by
direct modulatory effects of MCN1 on the gastric mill neurons. However, when m is large,
the gastric mill rhythm operates at a higher frequency and is determined by both the MCN1
and AB inputs. Throughout this work, we use geometric singular perturbation theory to
examine the behavior of our model on low-dimensional manifolds. We also use phase plane
analysis as a means of geometrically understanding the behavior of the network. Using these
mathematical tools, we prove the existence and stability of periodic solutions of the model
when the activity of MCN1 is either tonic or rhythmic. Furthermore, we confirm our findings
through numerical simulations in which we change the delay parameter m and numerically
calculate the period. We then compare our results with the experimental findings of [30].
The results from our model match the experimental results only when m is either 0 or small.
We note that in the work of Wood et al., the delay between the pyloric and modulatory
inputs is never explicitly measured. Our analysis, therefore, gives a possible explanation for
the experimental results. The findings could be tested in future experiments by artificially
introducing different delays between the timing of the modulatory and pyloric inputs to the
gastric mill network and determining the effect on the gastric mill rhythm frequency.

The remainder of the paper is organized as follows. In section 2, we derive a model set
of equations and show how it can be reduced into sets of fast and slow equations. The effect
of various synaptic inputs on relevant nullclines are illustrated with the goal of showing how
fixed points of the fast set of equations depend on these inputs. In section 3, we prove the
existence, uniqueness, and stability of periodic solutions for four different cases of the gastric
mill rhythm. These cases are considered so that we may parallel the study of Wood et al. [30].
In section 4, we derive an analytic formula for the period of the solutions for the four different
cases. We then check our analytic results against simulations. In section 5, we discuss the
impact of making a certain synapse (that from MCN1 to LG) voltage dependent. Section 6
contains a discussion to conclude the paper.

2. Model. Our model consists of the gastric mill network composed of Int1 and LG,
the pacemaker neuron AB of the pyloric network, and the modulatory commissural neuron
MCN1; see Figure 1. LG and Int1 are modeled as passive neurons (LG having a subthreshold
resting potential and Int1 having a suprathreshold resting potential). In the absence of AB
input, MCN1 is tonically active. Therefore, we also model MCN1 as a passive neuron with a
suprathreshold resting potential. LG and Int1 have reciprocally inhibitory synapses between
them. Int1 and MCN1 receive inhibitory input from the pacemaker neuron AB. AB and
MCN1 both fire in pyloric time with a period denoted PAB. AB sends an inhibitory synapse
to Int1. MCN1 sends a slow excitatory synapse to LG. In addition, LG presynaptically
inhibits MCN1 each time it fires, thus removing the excitation from MCN1 to LG. Through
this circuitry, the voltage of LG is able to increase above threshold (due to the excitation
it receives from MCN1), causing Int1 to become suppressed, and then decay back below
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Figure 2. The synaptic variables sAB→I(t) and sAB→M (t). Note that sAB→M (t) decays with time con-
stant τAB.

threshold (due to the presynaptic inhibition), thereby producing the antiphase oscillations of
the gastric mill rhythm [9, 16].

2.1. Equations. We do not explicitly model the pacemaker neuron AB but instead incor-
porate its effect on MCN1 and Int1 through the synaptic variables sAB→I(t) and sAB→M (t).
sAB→I(t) is a square wave with amplitude 1 and period, PAB, which has experimentally been
found to be approximately 1 sec. Let Dc denote the duty cycle of AB (the ratio of its active
time to its period). During one period of AB, the variable sAB→I is equal to 1 for a time
DcPAB and equal to 0 for a time PAB[1 −Dc]. sAB→M (t) is similar in form to sAB→I(t) in
that sAB→M oscillates between 0 and 1. The jump in sAB→M from 0 to 1 is instantaneous.
However, sAB→M decreases from 1 to 0 with time constant τAB (see Figure 2).

The dynamics of the system evolve along two distinct timescales. One is a slow timescale
corresponding to the effect of presynaptic inhibition from LG to the slow excitatory component
of the MCN1 synapse. The other is a fast timescale along which all other synapses and
intrinsic properties evolve. We use a small parameter, ε, to demarcate these two timescales.

The equations to describe the activity of LG, Int1, and MCN1 are

ε
dVL

dt
= −gleak,L[VL − Eleak,L] − ḡI→Ln∞(VI)[VL − EI→L] − gs(VL)s(t)[VL − Eexc],

(1)

ε
dVI

dt
= −gleak,I [VI − Eleak,I ] − ḡL→In∞(VL)[VI − EL→I ] − ḡAB→IsAB→I(t)[VI − EAB→I ],

(2)

ε
dVM

dt
= −gleak,M [VM − Eleak,M ] − ḡAB→MsAB→M (t)[VM − EAB→M ],

(3)

where VL is the voltage of LG, VI is the voltage of Int1, and VM is the voltage of MCN1.
gleak,L, gleak,I , and gleak,M are the conductances of the leak currents in LG, Int1, and MCN1.
Eleak,L, Eleak,I , and Eleak,M are the reversal potentials of the leak currents in LG, Int1, and
MCN1. Denote the right-hand sides of (1) and (2) by f(VL, VI , s) and g(VI , VL, sAB→I),
respectively.

The parameters of the reciprocally inhibitory synapses between Int1 and LG are ḡI→L

and ḡL→I (the maximal conductances) and EI→L and EL→I (the reversal potentials). n∞(VI)
and n∞(VL) are sigmoidally shaped gating functions lying between 0 and 1:

n∞(Vx) =

(
1 + exp

vx − Vx

kx

)−1

,(4)
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where vx is the half-activation voltage and kx is inversely related to the slope at this point.

The fast, periodic inhibitory input from AB to MCN1 is described by ḡAB→MsAB→M (t)[VM

−EAB→M ], where ḡAB→M is the conductance of the synapse and EAB→M is the reversal poten-
tial which is chosen to be less than Eleak,M so that the input from AB to MCN1 is inhibitory.
The equation to describe the activity of sAB→M (t) with respect to AB is

ε
dsAB→M

dt
=

{
[1 − sAB→M ]/τM1 , VAB ≥ VTh(AB),

−εsAB→M/τM2 , VAB < VTh(AB),
(5)

where VAB is a square wave with period PAB and duty cycle = Dc. Thus, when sAB→M = 0,
VM lies at a maximum voltage of Eleak,M . When sAB→M = 1, VM lies at a minimum voltage
of V ∗

M , where

V ∗
M =

gleak,MEleak,M + ḡAB→MEAB→M

gleak,M + ḡAB→M
.(6)

The periodic, inhibitory input from AB to Int1 is given by ḡAB→IsAB→I(t)[VI −EAB→I ].
ḡAB→I is the conductance and EAB→I is the reversal potential. An important aspect of this
work is to highlight the fact that different timing relationships of AB input to MCN1 and
Int1 lead to dramatically different frequencies of the gastric mill rhythm. To this end, we will
use the parameter, m, to delay the AB input to Int1 relative to MCN1. In other words, if
the AB input to MCN1 turns on at t = 0, the input from AB to Int1 does not turn on until
t = m. The parameter m is a constant which can range between 0 and PAB (the period of
AB).

The effect of the excitation that LG receives from MCN1 is given in (1) by gs(VL)s(t)[VL−
Eexc], where gs(VL) = ḡss∞(VL) is the voltage dependent conductance of the synapse, Eexc is
the reversal potential, and s(t) models the amount of excitation LG receives. The function
s∞ is a sigmoidal gating function similar in form to n∞; its exact form will be discussed later
in section 5. We express s(t) = s1(t)s2(t) as the product of two different effects. s1(t) models
the effect of the presynaptic inhibition of the slow excitatory component of the MCN1 to
LG synapse. s2(t) models the effect of the AB inhibition of MCN1 on the fast excitatory
component of the MCN1 to LG synapse. The relevant equations are

ds1

dt
=

{
[1 − s1]/τr1 , VL ≤ VT ,
−s1/τf1, VL > VT ,

(7)

ε
ds2

dt
=

{
[1 − s2]/τr2, VM ≥ VTh(M),

[s2min − s2] /τf2, VM < VTh(M).
(8)

The time constants τM1 , τM2 , τr1, τf1, τr2, and τf2 in (5), (7), and (8) are O(1) with respect
to ε. When VL goes above threshold, the presynaptic inhibition turns on, which causes s1(t)
to decrease on the slow timescale. When VL goes below threshold, the presynaptic inhibition
turns off, which causes s1(t) to increase on the slow timescale (see Figure 1). When MCN1 is
inhibited by AB, s2 decreases on the fast timescale. Once the inhibition from AB is removed,
s2 increases on the fast timescale. The parameters VTh(M) and VT denote the activation
thresholds for these two synapses.
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To understand which parameters are important in controlling the gastric mill frequency,
we use phase plane analysis along with geometric singular perturbation theory to reduce the
full flow to a study of flow on lower-dimensional slow manifolds. From (1)–(3) and (7)–(8),
we see that VL, VI , VM , and s2 evolve on a faster timescale than s1. Setting ε = 0 in the
equations yields the slow equations

0 = f(VL, VI , s),(9)

0 = g(VI , VL, sAB→I),(10)

0 = −gleak,M [VM − Eleak,M ] − ḡAB→MsAB→M (t)[VM − EAB→M ],(11)

0 = [1 − sAB→M ]/τM1 , VAB ≥ VTh(AB),(12)

dsAB→M

dt
= −sAB→M/τM2 , VAB < VTh(AB),(13)

ds1

dt
=

{
[1 − s1]/τr1, VL ≤ VT ,
−s1/τf1, VL > VT ,

(14)

0 =

{
[1 − s2]/τr2, VM ≥ VTh(M),

[s2min − s2] /τf2, VM < VTh(M).
(15)

The set of points satisfying f(VL, VI , s) = 0 and g(VI , VL, sAB→I) = 0 are called the VL and VI

nullclines, respectively. In slow time, (9) and (10) imply that any trajectory is forced to lie on
the VL and VI nullclines while s1 slowly evolves and s2 instantaneously jumps between s2min

and 1 whenever VM crosses the threshold VTH(M). In slow time, sAB→M jumps to 1 whenever
VAB increases above VTh(AB) and decays exponentially to 0 whenever VAB decreases below
VTh(AB). Note that this slow decay of sAB→M implies from (11) that the voltage VM slowly
increases from V ∗

M toward Eleak,M . We choose VTH(M) to lie between these two values such
that the time for VM to increase from V ∗

M to VTH(M) equals a predetermined time called TC .

Note that when ḡAB→M = 0, then VM is always greater than VTh(M), and we refer to
MCN1 as being tonically active. In this case, s2 = 1. Alternatively, when ḡAB→M is suffi-
ciently large, then VM goes above and below VTh(M) in pyloric time and we say that MCN1 is
rhythmically active. In this case, s2 jumps between s2min and 1 each time VM crosses VTh(M).
By choosing τr1 and τf1 small relative to PAB, we note that VM may cross VTh(M) several
times before VL crosses VT .

To define fast equations, let ζ = t/ε in (1)–(3), (5), and (7)–(8); then set ε = 0 to obtain

dVL

dζ
= f(VL, VI , s),(16)

dVI

dζ
= g(VI , VL, sAB→I),(17)

dVM

dζ
= −gleak,M [VM − Eleak,M ] − ḡAB→MsAB→M (t)[VM − EAB→M ],(18)

dsAB→M

dζ
=

{
[1 − sAB→M ] /τM , VAB ≥ VTh(AB),

0, VAB < VTh(AB),
(19)
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ds2

dζ
=

{
[1 − s2]/τr2, VM ≥ VTh(M),

[s2min − s2] /τf2, VM < VTh(M),
(20)

ds1

dζ
= 0.(21)

Therefore, in fast time VL and VI evolve according to the dynamics of f(VL, VI , s) and
g(VI , VL, sAB→I), and s2 increases and decreases between 1 and s2min while s1 remains con-
stant. These equations govern transitions between the different branches of the VI and VL

nullclines. These transitions occur instantaneously with respect to the slow flow.

2.2. Geometry of nullclines. In the previous subsection, we derived reduced fast and
slow equations which govern the flow of trajectories in relevant phase spaces. For the slow
equations (9)–(15), the slow variable s1 evolves according to (14), while the activity of the fast
variables VL, VI , VM , and s2 is constrained through the algebraic equations (9), (10), (11),
and (15). Note that sAB→M is a fast variable whenever VAB ≥ VTh(AB) according to (13) and
is a slow variable whenever VAB < VTh(AB) according to (12). For the fast equations (16)–
(21), the slow variables act as parameters. Fixed points of the fast equations correspond to
situations where the VI and VL nullclines intersect. We will be interested in situations where
the existence and stability of fixed points of the fast subsystem change. Generally speaking,
this may occur because the slow variable s1 causes the fast system to undergo a saddle-node
bifurcation, or if sAB changes, causing the position of the nullclines to change on the fast
timescale in phase space. Below, we show geometrically how these situations may arise.

We shall first consider the case when the synapse from MCN1 to LG is not voltage
dependent. We do this by letting s∞(VL) ≡ 1. The effect of the voltage dependency of this
synapse is considered in section 5. We find the explicit equations for the nullclines by solving
(9) for VL and (10) for VI to find that

VL = F (VI , s) =
gleak,LEleak,L + ḡI→Ln∞(VI)EI→L + ḡs(VL)sEexc

gleak,L + ḡI→Ln∞(VI) + ḡs(VL)s
(22)

and

VI = G(VL, sAB→I) =
gleak,IEleak,I + ḡL→In∞(VL)EL→I + ḡAB→IsAB→I(t)EAB→I

gleak,I + ḡL→In∞(VL) + ḡAB→IsAB→I(t)
.(23)

A simultaneous solution to (9) and (10) can be found graphically by plotting F (VI , s)
versus G(VL, sAB→I). An intersection of these two nullclines corresponds to a fixed point of
the fast equations. However, the position of the nullclines in VI − VL phase space changes
as a function of s and sAB; see Figure 3. In general, increases (decreases) in s move the
VL nullcline to the right (left), either in slow time due to changes in s1 or in fast time due
to changes in s2. The VI nullcline has two possible positions in phase space depending on
whether sAB→I = 0 or 1. The nullcline corresponding to sAB→I = 1 is lower in phase space
than the one corresponding to sAB→I = 0. We note that the left branch of the VI nullcline
shifts down much more than the right branch since on the right branch VI is already close to
EAB→I independent of sAB→I(t). The number and stability of fixed points also changes as a

function of s and sAB→I . We identify four important values of (s, sAB→I) as (soffL , 0), (sonL , 1),
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Figure 3. The VL and VI nullclines plotted in phase space for two different values of s(t). The VL nullcline
is labeled F , the VI nullcline is labeled G, and the dashed vertical line is VL = VT . When s = 0, the VL nullcline
is to the far left. As s increases, the VL nullcline shifts to the right. Solid squares denote fixed points of the
fast equations (16)–(21).
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s       (t)=1

s       (t)=0AB     I
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Figure 4. Position of the VL and VI nullclines for (s, sAB→I) = (sonR , 1), (soffR , 0), (sonL , 1), and (soffL , 0). At
these four points, the nullclines intersect tangentially, resulting in the loss (or gain) of two fixed points through
a saddle-node bifurcation.

(soffR , 0), and (sonR , 1); see Figure 4. The superscripts off and on refer to the AB input to Int1
which can be either absent (off) or present (on). These points correspond to values when the
two nullclines intersect tangentially resulting in the loss (or gain) of two fixed points through
a saddle-node bifurcation. Because s1 is increasing on the left branches and decreasing on
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Figure 5. (A) s versus t for the case when the MCN1 to LG excitation is constant (s2 = 1). s increases
to 1 with rate 1/τr1 when VL ≤ VT and s decreases to 0 with rate 1/τf1 when VL > VT . (B) s versus t for the
case when the MCN1 to LG excitation is rhythmic. When VL ≤ VT , s1 increases to 1 with rate 1/τr1 and s2

jumps between 1 and s2min when sAB→M (t) jumps between 0 and 1. When VL > VT , s1 decreases to 0 with
rate 1/τf1 and s2 jumps between 1 and s2min when sAB→M (t) jumps between 0 and 1.

the right, the ordering of these bifurcation points is sonR < soffR < sonL < soffL . These values
can be calculated analytically; see the appendix. For our numerical simulations, we chose the
parameters such that sonR = .11, soffR = .127, sonL = .31, and soffL = .73.

On the slow timescale, the solution trajectory must lie at the intersection of the VI and
VL nullclines, i.e., at a fixed point of the fast subsystem. Thus to understand the evolution
of trajectories in the VI − VL phase space, we need to understand how the position of fixed
points changes as a function of s and sAB.

Let us first consider the case when sAB→M (t) ≡ 0. Then MCN1 is tonically active and
sits at a value of Eleak,M . Eleak,M is chosen to be larger than VTh(M) which, as we see from
(15), allows s2 = 1. As a result, we have s(t) = s1(t) ∗ 1 which means that s(t) increases
toward 1 with time constant τr1 when VL < VT and decreases toward 0 with time constant
τf1 when VL > VT (see Figure 5(A)).

From (22), as s slowly increases, the VL nullcline slowly shifts to the right, thus causing
the position of the stable fixed point to shift to the right. This continues until the VL nullcline
shifts far enough to the right so that the stable fixed point on the left branches of the nullclines
is lost through a saddle-node bifurcation when s = soffL ; see Figure 6. Once the fixed point is
lost, the trajectory is forced to jump on the fast timescale (see (16)–(17)) to the only remaining
stable fixed point which is on the right branches of the nullclines. This jump pushes VL above
VT causing s(t) to begin to decrease. When s decreases, the VL nullcline slowly shifts to the
left until the stable fixed point on the right branches of the VL and VI nullclines similarly
undergoes a saddle-node bifurcation at s = soffR . The trajectory then makes a jump back to
the left branches of the nullclines which forces VL below VT . Similar dynamics occur when
sAB→I(t) ≡ 1, except now the trajectory would pass through the bifurcation points sonL and
sonR during its transition between left and right branches.

When the MCN1 excitation to LG is rhythmic instead of tonic, s2 changes on the fast
timescale between 1 and s2min as VM crosses over VTh(M) while s1 increases toward 1 when
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Figure 6. VL and VI nullclines for different values of s when sAB→I(t) = 0. The dashed vertical line
is VL = VT . When s = 0.5, the fixed point is on the left branches of the VL and VI nullclines (VL nullcline
dotted). When s = soffL , the fixed point undergoes a saddle-node bifurcation at ◦. The trajectory is therefore
forced to jump (dashed line with double arrows) to the stable fixed point (shown by •) on the right branches of
the nullclines where VL > VT .

VL ≤ VT and decreases toward 0 when VL > VT on the slow timescale. This causes s(t) to
generally have a shape as shown in Figure 5(B). Notice that the envelope of s(t) activity is
the same as in the tonic excitability case seen in Figure 5(A), but now there are rapid changes
in s(t) due to the rapid changes in s2(t). The jump of s2 between s2min and 1 causes the VL

nullcline to instantaneously jump to the right when s2 jumps to 1 and instantaneously jump
to the left when s2 jumps to s2min. The distance of these jumps in the VL nullcline, calculated
from (22), is F (VI , s1 ∗ 1) − F (VI , s1 ∗ s2min). Note that in the MCN1 rhythmic case, fixed
points can be lost in two different ways. They may be lost as before through a saddle-node
bifurcation as s is slowly changing due to changes in s1; see Figure 7(A). Or they may be
lost when s2 changes on the fast timescale. For example, on the left branches, it may be that
s1 ∗ s2min < soffL , but s1 ∗ 1 > soffL . In this case, the fixed point would be lost if s2min changed
to 1 due to a change in MCN1 activity; see Figure 7(B). On the right branches, it may be

that s1 ∗ 1 > soffR , but s1 ∗ s2min < soffR . In this case, the fixed point would be lost when s2

changes from 1 to s2min.
In the case where sAB→I(t) is a square wave, the trajectory will always lie on a nullcline



118 C. AMBROSIO-MOUSER, F. NADIM, AND A. BOSE

V

V

I

L

V

V

I

L

V

V

I

L

G(V ,s       =1) L AB    I

G(V ,s       =0) L AB    I

G(V ,s       =0) L AB    I

V

V

I

L I 1
F(V ,s  =.75, s  =s      )

2 2min

B.

I 1

D.C.

1IF(V ,s =.5)

L AB    IG(V ,s       =1) 

A.

1I

I 1

G(V ,s       =0) 
L AB    I

G(V ,s       =0 )L AB    I

F(V ,s =.73)

F(V ,s =.12)

F(V ,s =.75, s  =1)2

Figure 7. For MCN1 rhythmic, fixed points can be lost in two ways: through a saddle-node bifurcation
as s slowly changes due to s1 or when s2 changes on the fast timescale. In all figures, the dashed vertical line
is VL = VT . (A) On the left branches of the nullclines, s2 = 1 and s1 moves the VL nullcline to the right
resulting in a saddle-node bifurcation of the fixed point at ◦ once s = soffL . The trajectory is forced to jump to
the stable fixed point on the right branches of the nullclines (shown by •). A similar transition can also occur
when sAB→I = 1 and s1 reaches sonL . (B) When s2 jumps from s2min to 1, the VL nullcline jumps from the
left (dotted nullcline) to the right (solid nullcline). Thus the fixed point on the left branches of the nullclines
is instantaneously lost because s > soffL and the trajectory will jump to the fixed point on the right branches of
the nullclines (shown by •). A similar transition can also occur when sAB→I = 1 and s2 jumps to 1 such that
s > sonL . (C) When MCN1 is rhythmic and sAB→I(t) oscillates between 0 and 1, the fixed point can be lost in
another way. While s2 = 1 and sAB→I(t) jumps from 0 to 1 (the position of the VI nullcline jumps from the
upward dotted nullcline to the lower solid nullcline), the fixed point on the left branches of the nullclines (shown
by ◦) is instantaneously lost because s > sonL and the solution trajectory is forced to jump to the fixed point
on the right branches of the nullclines (shown by •). (D) On the right branches of the nullclines for MCN1
tonic, when sAB→I jumps from 1 to 0 (the position of the VI nullcline jumps from the lower dotted nullcline
to the upward solid nullcline), the fixed point (shown by ◦) is instantaneously lost because sonR < s < soffR and
the solution trajectory must jump to the stable fixed point on the left branches of the nullclines (shown by •).

with either sAB→I = 0 or sAB→I = 1. Now fixed points can be lost in three different ways.
Consider the left branches. As before, a fixed point can be lost as s increases slowly through
a bifurcation point or instantaneously as s2 changes from s2min to 1. The third way it can be
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Figure 8. Circuitry for cases 1–4. (A) The AB inputs to MCN1 and to Int1 are absent. (B) The AB
input to Int1 is present but the AB input to MCN1 is absent. (C) The AB input to MCN1 is present but the
AB input to Int1 is absent. (D) The AB inputs to Int1 and to MCN1 are present.

lost is if soffL > s > sonL and sAB→I switches from 0 to 1; see Figure 7(C) (see Figure 7(D) for
the analogous loss of a fixed point on the right branches).

3. Different cases for the gastric mill frequency. To understand how the two different
inputs of AB and MCN1 modulate the gastric mill frequency, we parallel the study of Wood
et al. [30] by considering four different cases (see Figure 8):

Case 1. Tonic MCN1 excitation with the AB input to Int1 absent.

Case 2. Tonic MCN1 excitation with the AB input to Int1 present.

Case 3. Rhythmic MCN1 excitation with the AB input to Int1 absent.

Case 4. Rhythmic MCN1 excitation with the AB input to Int1 present.

In each case, we shall prove the existence, local uniqueness, and stability of a periodic solution
and then calculate the period of this solution. The proofs of existence, local uniqueness, and
stability of periodic solutions exploit the different timescales. In Cases 2 through 4, this will
reduce to finding fixed points of appropriate one-dimensional maps. The proofs construct
singular periodic solutions which are valid at ε = 0, whose existence, local uniqueness, and
stability can be extended to the ε sufficiently small case [20].

In the biological circuit it is known that the synapse from MCN1 to LG is dependent
on the voltage of LG. For mathematical clarity, we shall postpone discussing the voltage
dependent case until section 5. Instead, we shall first concentrate on the voltage independent
case where we set s∞(VL) ≡ 1.

Case 1: Tonic MCN1 excitation with the AB input to Int1 absent. When considering
Case 1, we set ḡAB→I = 0 and ḡAB→M = 0 in (2) and (3) so that all input from AB is absent.
When ḡAB→M = 0, VM > VTh(M) for all t and MCN1 is tonically active. This allows us to
set s2 ≡ 1 so that s = s1 ∗ s2 will only follow the dynamics of s1.

In Case 1, the only way a fast transition between branches can occur is by s1 passing
through the bifurcation points soffL or soffR . To construct a periodic solution, let s1(0) = soffR

such that the trajectory at t = 0− is at the bifurcation point on the right branches at the
intersection of the VI and VL nullclines; see Figure 9. At t = 0+, the trajectory jumps back
to the left branches at the intersection of the nullclines; see Figure 9(A). On these branches,

VL < VT and thus s1 will increase until it reaches the bifurcation point soffL at t = T1; see
Figure 9(B)–(C). The trajectory will jump back to the right branch and since VL > VT , s1

will now decrease until it comes back to soffR at t = T2; see Figure 9(D). Thus the value of
s1 will have returned to its original value at time T2. Since all the fast variables are slaved
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Figure 9. Plots of the VI and VL nullclines for different values of s in Case 1. • marks the position of the
trajectory when it is at a stable fixed point, ◦ marks the point from which the trajectory will jump when the stable
fixed point bifurcates, and the dotted lines indicate the position of the trajectory during the jumps. The arrows
show the direction of flow. The dashed vertical line marks the threshold, VT . In (A), s = soffR , which is the
point at which the saddle-node bifurcation occurs on the right branches of the nullclines. Thus, the trajectory
will be forced to lie on the stable fixed point on the left branches of the nullclines. (B) On the left branches of
the nullclines, VL < VT , which means that s will begin to increase toward 1. (C) s continues to increase until it
reaches the value soffL , where the stable fixed point on the left branches of the nullclines undergoes a saddle-node
bifurcation. The trajectory is, therefore, forced to jump to the fixed point on the right branches of the nullclines.
This jump causes s to cross above VT so that s begins to decrease. (D) s has decreased to s = soffR , at which
time the fixed point on the right branches is again lost through a saddle-node bifurcation and the trajectory is
forced to return to the upper left branches of the nullclines. Therefore, the solution trajectory lies on a periodic
orbit. (E) The voltage traces of LG and Int1 are plotted as s increases and decreases between soffL and soffR .
The labels A, B, C, and D indicate where the trajectory is in the phase plane at the given values of s(t), VI ,
and VL.
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through (9) and (10) to the behavior of s1, we do not explicitly need to check their evolution
during the time interval [0, T2]. In this sense, proving the existence of this periodic solution
has been reduced to proving that the single variable s1 is periodic. Thus it is seen that there
exists a singular periodic solution whose period is T2. In section 4, we will both analytically
and numerically calculate T2.

The solution is unique and stable since if s1(0) > soffR and the trajectory was on the right
branches of the nullclines, for example, then the solution can be flowed forward at time t̂
such that s1(t̂) = soffR . From here the solution trajectory would follow the dynamics described

above and return to soffR at time t = T2 + t̂. Thus, by flowing backward in time, it is seen that
s1(T2) = s1(0).

Case 2: Tonic MCN1 excitation with the AB input to Int1 present. In Case 2, ḡAB→M =
0 so that s2 ≡ 1 and thus the MCN1 to LG excitation is tonic. Now the AB to Int1 inhibition
is present (ḡAB→I > 0). Without loss of generality, let m = 0 in (2). Hence, s causes the VL

nullcline to slowly shift to the right and left as in Case 1 and sAB→I(t) causes the VI nullcline
to instantaneously jump down when sAB→I(t) goes to 1 and to jump back up when sAB→I(t)
returns to 0.

To understand the control of frequency in Case 2, we again consider the nullclines in the
phase plane. When VL > VT , the VL nullcline moves to the left slowly because τf1 is large.
The AB input to Int1, on the other hand, is fast and periodic so that the VI nullcline shifts up
and down repeatedly and instantaneously compared with the shift of the VL nullcline. Thus,
on the right branches of the nullclines, three cases arise for the loss of the fixed point. The
first possibility is that while sonR < s < soffR , sAB→I(t) switches from 1 to 0, forcing the VI

nullcline to jump up causing the stable fixed point to be immediately lost. This forces the
trajectory to jump directly to the stable fixed point on the left branches of the VI and VL

nullclines; see Figure 7(D).
The second possibility is that when sAB→I(t) = 1, s decreases until the fixed point is lost

through the saddle-node bifurcation at s = sonR . The third possible way for the fixed point
on the right branches to be lost is as in Case 1. That is, while sAB→I = 0, s decreases to
soffR ; see Figure 9(D). Which of these cases occurs depends upon the amount of time that
sAB→I(t) spends in its active and inactive phases and the timing of the AB input to Int1. In
other words, the timing of the periodic jumps in sAB→I affects the timing of the shifts in the
VI nullcline, which in turn determines which case occurs. The fixed point on the left branch
can be lost similarly to the ways discussed above. Let us say that a periodic solution obeys
property A if the associated trajectory jumps from the right to left branches when sAB→I(t)
switches from 1 to 0 and from left to right branches through the bifurcation point sonL ; see
Figure 10.

Recall that the pyloric period is much smaller than the gastric mill period. Thus, while
LG is inactive (VL < VT ), sAB can oscillate several times, say, j times, between 0 and 1.
The exact number of times depends on the time constant τr1. Similarly when LG is active
(VL > VT ), the number of oscillations, k, of sAB depends on the time constant τf1. This
implies that the periodic solution in case 2 depends on the relationship between τr1, τf1 and
the pyloric input frequency of AB. In the following theorem we will derive a relationship
which τr1 and τf1 need to satisfy in order to find a periodic solution with property A. This
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Figure 10. In Case 2, a periodic orbit obeying property A jumps from the left to right branches and from
the right to left branches of the nullclines in the following way. (A) When s1 lies between soffR and sonR , the
stable fixed point lies on the right branches of the nullclines when sAB→I = 1. (B) As soon as sAB→I jumps
back to 0, the fixed point on the right branches of the nullclines is instantaneously lost because s1 < soffR and
the trajectory jumps back to the left branches. (C) The trajectory lies at the stable fixed point (•) on the left
branches of the nullclines where sAB→I = 1 and s1 increases toward 1. (D) While sAB→I remains equal to 1,
s1 increases and becomes sufficiently large for a saddle-node bifurcation to occur through sonL . (E) Voltage traces
of VL and VI for a periodic orbit obeying property A.
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involves fixing the integers j and k first. To that end define

h(k) =
Dc

ln

(
1−soffR (soffR /sonL )Dc/k

1−soffR

) ln

(
1 − soffR

1 − sonL

)
+ Dc − 1.(24)

Theorem. Let k and j be integers which satisfy j < h(k). There exist values τr1(j), τf1(k),
and ḡAB→I large enough such that (1)–(3) and (7)–(8) possess a locally unique, asymptotically
stable periodic solution obeying property A with period P = (j + k + 1)PAB, where j is the
number of times sAB oscillates between 0 and 1, while VL < VT and k is the number of time
sAB oscillates between 0 and 1 when VL > VT .

Proof. We shall construct a Poincaré map P of a certain interval I into itself. Existence
and stability of the periodic solution are determined by showing that P is a contraction on
I, thereby also yielding local uniqueness of the periodic solution. To construct the periodic
solution in question we will show that the associated trajectory will jump from the left to the
right branches from the bifurcation point sonL . It will jump from the right to the left branches
from a point s∗ ∈ I at one of the times when sAB→I switches from one to zero.

To construct I, consider the points soffR and sonR corresponding to the bifurcation points
along the right branches of the VI -VL nullclines when sAB→I = 0 (AB off) and sAB→I = 1
(AB on), respectively. By choosing ḡAB→I and τf1 sufficiently large, we can guarantee that the

time distance from soffR to sonR under the dynamics s′ = −s/τf1 is larger than DcPAB. Indeed

the time Δt between these two points on the right branches is τf1 ln(soffR /sonR ), where sonR is a

decreasing function of ḡAB→I . Moreover, there exists ŝ such that ŝ = soffR exp(−DcPAB/τf1).

Thus the time distance from soffR to ŝ on the right branches is exactly DcPAB. We let I =

[ŝ, soffR ]; see Figure 11. Note that at this point, we are only stating that we need τf1 sufficiently
large. Below, we will be more specific.

We next show that I maps into itself under the flow if τr1 and τf1 are chosen appropriately.

We flow the endpoints of the interval I, soffR , and ŝ, through one cycle of the VI and VL

oscillation and show that these endpoints are mapped into I. Thus by continuous dependence
on initial conditions, all points in I will map into I.

First consider a trajectory sa(t) where sa(0) = soffR and the trajectory is on the right
branch. Next let sAB→I(0

−) = 1 and sAB→I(0
+) = 0, so that the trajectory jumps back to

the left branch at t = 0+. The dynamics of sa on the left branches obey s′ = (1 − s)/τr1. By
choosing

τr1(j) = (j + 1 −Dc)PAB/ ln([1 − soffR ]/[1 − sonL ]),(25)

we can guarantee that sa([j+1−Dc]PAB) = sonL . This means that the trajectory which starts

at soffR will leave the left branches of the nullclines through the bifurcation point sonL along the
sAB→I = 1 nullcline at time t = (j + 1 −Dc)PAB.

Next consider a trajectory sb(t) with the initial condition given by sb(0) = ŝ. Recall that

the time distance from soffR to ŝ on the right branches is given by τf1 ln(soffR /ŝ). On the left
branches, the time between these points is governed by τr1 and is equal to τr1 ln([1 − ŝ]/[1 −
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Figure 11. To define the Poincaré map for Case 2, let I = [ŝ, soffR ], where ŝ = soffR exp(−DcPAB/τf1). Note
that τf1 is chosen sufficiently large to ensure that ŝ > sonR .

soffR ]). Thus if

τr1 < τf1
ln(soffR /ŝ)

ln([1 − ŝ]/[1 − soffR ])
,(26)

then the time between these points on the left branches will be less than that on the right
branches and, in particular, will be less than DcPAB. This type of time compression between
cells across a jump is analogous to fast threshold modulation [26]. Thus the trajectory starting
with initial condition at ŝ at t = 0 will reach sonL when sAB→I = 1 at a time T1 bounded
between (j +1−Dc)PAB and (j +1)PAB. Therefore, any trajectory with s(0) ∈ I will do the
same. We also note that once trajectories with initial conditions sa(0) and sb(0) jump from
the right branches of the nullclines to the left branches, the interval I becomes inverted so
that the trajectory with initial condition sa(0) becomes the leading cell.

Note that the time between any two trajectories remains invariant while they both evolve
on the left branches and even across the jump back to the right branches. That the trajectories
remain the same time distance apart on the left branches follows from the fact that they both
obey the same differential equation (s′ = (1 − s)/τr1). Moreover, since they leave the left
branches through the same point sonL , the time distance between them when the leading cell
reaches the bifurcation point is the same as the time distance apart when the trailing cell
reaches this point. When both trajectories are on the right branches, the time distance again
remains invariant since both trajectories evolve under s′ = −s/τf1. In particular, the time
distance between sa(T1) and sb(T1) is less than DcPAB.

Consider again the trajectory sa(t) which had sa(0) = soffR and sa([j +1−Dc]PAB) = sonL .
We want this trajectory to spend k oscillations of sAB on the right branches. We also want
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the trajectory to be in a position to jump back to the left branches when sAB→I switches from
one to zero. Finally, since we want I to map into itself, we choose

τf1(k) =
(k + Dc)PAB

ln(sonL /ŝ)
,(27)

such that sa([j + k + 1]PAB) = ŝ. Note that by substituting ŝ = soffR exp(−DcPAB/τf1)
into (27) and solving for τf1, we obtain

τf1(k) =
kPAB

ln(sonL /soffR )
.(28)

In other words, with the choices of τr1 and τf1 that we have made, the trajectory with initial

condition soffR is mapped back to ŝ at a time T−
2 = (j + k + 1)PAB.

Next consider the trajectory sb(t) where sb(0) = ŝ and sb(T1) = sonL . To construct the

Poincaré map, we need sb(T
−
2 ) ∈ I. Thus we need ŝ < sb(T

−
2 ) < soffR . That ŝ < sb(T

−
2 )

follows by continuity since ŝ = sa(T
−
2 ) < sb(T

−
2 ). The value sb(T

−
2 ) < soffR since the time

distance from soffR to sa(T
−
2 ) = ŝ is DcPAB, whereas the time distance from sb(T

−
2 ) to sa(T

−
2 )

is less than DcPAB.

We have just shown that the trajectories whose s values are associated with the endpoints
of the interval I have s values mapped back to I after a time T−

2 . Thus by continuity with
respect to initial conditions, any trajectory with s(0) ∈ I will end up with s(T−

2 ) ∈ I at a
time when sAB→I will switch from one to zero. Therefore we can define a one-dimensional
Poincaré map P : I → I where P(s) = s(T−

2 ).

To show that P is a contraction mapping on I let sa(0) > sb(0) ∈ I be arbitrary. Let Δt
denote the time on the right branch between them. At t = 0+, the trajectories jump back to the
left branch. Because of our choice of time constants τr1(j) and τf1(k), the new time between
these points is less than Δt. As before the time distance between these trajectories remains
invariant as they evolve along the left branches, across the jump to the right branches, and then
back to I. Since this new time is less than the original time, sa(T

−
2 )−sb(T

−
2 ) < α[sa(0)−sb(0)],

where α < 1 is dependent on τr1 and τf1. Therefore P is a contraction. As a result, there
exists a unique value s∗Case 2 ∈ I such that P(s∗Case 2) = s∗Case 2. This value is asymptotically
stable and corresponds to a locally unique singular periodic solution of equations (9)–(21).
For ε small, results in [20] show that an actual solution to (1)–(3) and (7)–(8) exists within
an O(ε) neighborhood of the singular one.

Equation (26) provides a condition on the time constants τf1 and τr1 for which the the-
orem holds. This condition can be translated into a relationship between the integers j and
k. Namely, by substituting ŝ = soffR exp(−DcPAB/τf1) into the fraction on the right-hand
side of (26), we see that the numerator of that expression reduces to DcPAB/τf1, while the
denominator reduces to

ln

(
1 − soffR exp(−DcPAB/τf1)

1 − soffR

)
.(29)
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Now substituting (28) into (29) and then substituting the resulting expression into (26), we
obtain

τr1 < τf1
(DcPAB/τf1)

ln

(
1−soffR (soffR /sonL )Dc/k

1−soffR

) .(30)

Canceling τf1 from the right-hand side, substituting τr1 from (25), and solving for j, we obtain

j <
Dc

ln

(
1−soffR (soffR /sonL )Dc/k

1−soffR

) ln

(
1 − soffR

1 − sonL

)
+ Dc − 1.(31)

The right-hand side of (31) is what we called h(k) in the statement of the theorem.

Remark. Note that if (31) is not satisfied, then we cannot find time constants τr1 and
τf1 for which a periodic solution satisfying property A exists. However, by choosing τr1 and
τf1 differently, we could instead have easily constructed a periodic solution whose s1 value

passed through the bifurcation point soffR on the transition from right to left branches and

which jumped back to the right branches with s1 ∈ (sonL , soffL ) when sAB→I switched from one
to zero.

Case 3: Rhythmic MCN1 excitation with AB input to Int1 absent. In Case 3, the input
from AB to MCN1 is present (ḡAB→M > 0) so that the MCN1-elicited excitation to LG is
rhythmic. Once again, we set ḡAB→I = 0 so that the VI nullcline remains at a fixed position.
In this case, s2 jumps instantaneously between s2min and 1, while s1 increases with rate 1/τr1
and decreases with rate 1/τf1, thus causing the activity of s to be rhythmic.

Again, consider the nullclines. Suppose the trajectory is at the stable fixed point on the
right branches of the nullclines. Thus, s1 is decreasing and slowly pushing the VL nullcline to
the left. Recall that s2 jumps between 1 and s2min as VM changes. The jumps in s2 cause
the VL nullcline to shift to the right and left on the fast timescale. The size of the shift in
the VL nullcline depends on the value of s2min. The trajectory eventually jumps to the fixed
point on the left branches of the nullclines when (a) s2 = 1 and s1 moves the fixed point to

the position where the nullclines are tangent, i.e., s1 = soffR , or (b) when s2 = s2min and s1

decreases to soffR /s2min moving the fixed point to the position where the nullclines are tangent,
or (c) when s2 jumps to s2min resulting in an instantaneous shift of the VL nullcline past the
point of bifurcation of the fixed points. Which case occurs depends on the speed at which s1

decreases (τf1), the amount of time the VL nullcline spends being shifted to the left by s2 (the
amount of time that sAB→M (t) spends in its active or inactive phases), and the timing of the
instantaneous shifting of the VL nullcline (timing of the AB input to MCN1).

Once the trajectory has jumped to the left branches of the nullclines, the VL nullcline slowly
shifts to the right due to s1 and then instantaneously jumps to the left when VM < VTh(M).
Again, the trajectory eventually jumps to the fixed point on the right branches of the nullclines
when (a′) s2 = 1 and s1 moves the fixed point to the position where the nullclines are tangent

(i.e., s1 = soffL ; see Figure 7(A)), or when (b′) s2 = s2min and s1 moves the fixed point
to the position where the nullclines are tangent, or when (c′) s2 jumps to 1 resulting in an
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instantaneous shift of the VL nullcline past the point of bifurcation of the fixed points; see
Figure 7(B).

To have a one-dimensional map, we need one of the jumps of the trajectory from the left
to right branches or from the right to left branches of the nullclines to occur through a saddle-
node bifurcation (where the value of s1 is known) and the other to occur instantaneously
when s2 jumps between 1 and s2min (where the value of s1 will be defined as a fixed point of
the map). Therefore, we shall establish the existence of the periodic solution which follows
the subcases (c) and (a′) above. Namely, the trajectory will jump from the left to the right

branches through the bifurcation point soffL , i.e., s1 and s2 known, and from the right to the
left branches when s2 jumps down from 1 to s2min, i.e., s2 known and s1 to be determined by
the map; see Figure 12.

Recall that s(t) = s1(t) ∗ s2(t), where we consider s2(t) = 1 when VM ≥ VTh(M) and
s2(t) = s2min when VM < VTh(M). When sAB→M (t) jumps to 1, VM instantaneously jumps
below VTh(M). Thus, s2(t) instantaneously jumps to s2min. However, sAB→M (t) does not
instantaneously jump from 1 to 0, but slowly decays with time constant 1/τM2 . Thus, VM

requires a small amount of time, TC , to go above VTh(M). In our model, we chose VTh(M) such
that TC is approximately PAB/20. Hence, for one cycle of AB activity, s2(t) = s2min for time
DcPAB + TC and s2(t) = 1 for time (1 −Dc)PAB − TC .

As in Case 2, we can construct a Poincaré map P of an interval of s values on the
right branch, I = [s̃, sR], into itself. Here sR = sR1 ∗ 1, where sR1 = soffR /s2min. We let
s̃ = [sR1 exp([[Dc − 1]PAB + TC ]/τf1)] ∗ 1 so that the time distance between sR and s̃ is
[1 −Dc]PAB − TC . Let s̃1 = [sR1 exp([[Dc − 1]PAB + TC ]/τf1)]; see Figure 13.

We consider a trajectory sa(t) where sa(0
−) = sR1 ∗ s2(0

−) and the trajectory is on the
right branch of the nullclines. Let sAB→M (0−) = 0 and sAB→M (0+) = 1 so that s2(0

−) = 1
and s2(0

+) = s2min. Thus the trajectory jumps back to the left branch at t = 0+ when s2

jumps from 1 to s2min. We then choose τr1(j) = ((j + Dc)PAB + TC)/ln([1 − sR1 ]/[1 − soffL ])

which guarantees that sa((j + Dc)PAB + TC) = soffL so that the trajectory which starts at sR
at t = 0− will leave the left branches of the nullclines through the bifurcation point soffL at
t = (j + Dc)PAB + TC . Using the same argument as in Case 2 with an equivalent condition
on τr1 as in (25), the trajectory sb(t) with initial condition sb(0) = s̃1 ∗ s2(0) will be forced to

reach soffL at a time T1 bounded between (j + Dc)PAB + TC and (j + 1)PAB. Therefore, any

trajectory with s(0) ∈ I will also reach soffL during these times.

Next, we choose τf1(k) so that sa(t) gets mapped back to I, particularly to s̃ at the
instant before sAB→M (t) jumps from 0 to 1. Therefore, we let τf1(k) = [[k + [1 −Dc]]PAB −
TC ]/ln(sL1 /s̃1). Thus, at sa(T

−
2 ), where T2 = (k + j + 1)PAB, sa(t) lies in I. In a similar

argument to that of Case 2, the trajectory sb(t) with sb(0) = s̃1∗s2(0) and sb((j+1)PAB) = soffL

will also lie in I at t = T−
2 with s̃ = sa(T

−
2 ) < sb(T

−
2 ) < sR.

We define a one-dimensional Poincaré map P : I → I where P(s) = s(T2). The argument
showing that P is a contraction mapping on I is the same as in Case 2. Consequently, there
exists a locally unique, asymptotically stable value s∗Case 3 ∈ I such that P(s∗Case 3) = s∗Case 3.

Remark. The periods of the constructed solutions in Cases 2 and 3 are both (j+k+1)PAB.
Note that this occurs since the values of τr1(j) and τf1(k) are chosen to be different in both
cases. In general, if, a priori, τr1 is chosen to have the same value for both Cases 2 and 3, and
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Figure 12. Case 3 solution trajectory and nullclines. (A) The trajectory lies at the stable fixed point (•) on
the right branches of the nullclines where sAB→I = 0 and s2 = 1. (B) When s2 jumps to s2min, s instantaneously
goes below soffR and the fixed point is lost. Thus, the solution trajectory is forced to jump to the stable fixed
point on the left branches of the nullclines (shown by the dashed line with double arrows). (C)–(D) On the left
branches of the nullclines, the fixed point is lost while s2 = 1 and s1 becomes large enough for the saddle-node
bifurcation to occur through soffL . Now, the solution trajectory is forced to jump to the right branches of the
nullclines. (E) Voltage traces of LG and Int1 for s satisfying the above conditions.
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and s̃ = [sR1 exp([[Dc − 1]PAB + TC ]/τf1] ∗ 1. (B) For s = sR, when s2 jumps from 1 to s2min, s jumps to soffR .
Similarly, for s = s̃, when s2 jumps to s2min, s jumps to s̃1 ∗ s2min.

similarly for τf1, then the periods of Cases 2 and 3 need not be the same.

Case 4: Rhythmic MCN1 excitation with AB input to Int1 present. In Case 4, the MCN1
to LG excitation is rhythmic (ḡAB→M > 0) and AB inhibits Int1 (ḡAB→I > 0). Consequently,
the VL nullcline shifts to the right and left with slow changes in s1 and with quick jumps of s2

between 1 to s2min. The VI nullcline jumps up and down instantaneously due to the sAB→I

oscillations between 0 and 1.

Suppose the trajectory lies at the stable fixed point on the left branches of the VL and VI

nullclines. Here, VL < VT which allows s1 to increase. When sAB→M (t) → 1, the VL nullcline
jumps to the left. Similarly, when sAB→I(t) → 1, the VI nullcline jumps down. Recall that
the time difference between when the VL and VI nullclines shift is controlled by the parameter
m. For example, if m = 0, the VL nullcline jumps to the left at the same time that the VI

nullcline jumps down. However, if m = DcPAB, then when the VL nullcline jumps to the left,
the VI nullcline jumps up. This creates several possibilities for the length of the period.

To provide more insight into the role of m, suppose again that m = 0. In Case 2, the
jumping down of the VI nullcline allowed the fixed point to bifurcate at smaller values of s1

relative to Case 1. However, in Case 4 for m = 0, whenever the VI nullcline jumps down, the
VL nullcline jumps back to the left. If this jump to the left is large enough (1− s2min is large)
and the jump down in the VI nullcline is not extremely large, there will still exist a stable fixed
point on the left branches. In this case, the trajectory will have to wait until s2 = 1 and s1 has
grown large enough so that the fixed point occurs where the nullclines intersect tangentially
for sAB→I(t) = 0 (Figure 7A) or when s2 jumps to 1 (sAB→M (t) jumps to 0) and the fixed
point is instantaneously lost (Figure 7B). This is equivalent to (a′) and (c′) in Case 3. If
the jump to the left of the VL nullcline is not large and/or the jump down in the VI nullcline
is extremely large, the fixed point will be lost and the trajectory will immediately jump to
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the stable fixed point on the right branches of the nullclines. This is equivalent to Case 2.
The above result also extends to the situation in which m ∈ (0, TC ] (where TC is the time it
takes for VM to increase under (11) and (13) from V ∗

M to VTH(M)) because for 0 < m ≤ TC ,
each time the VI nullcline is in the downward position, the VL nullcline is shifted to the left.
Therefore, the fixed point cannot be lost until s1 grows large enough for the bifurcation to
occur while s2 = 1.

Next suppose that m = DcPAB. For m = DcPAB, each time the VI nullcline is shifted in
the downward position, the VL nullcline remains to the right. Therefore, as opposed to the
situation in which m = 0, the fixed point on the left branches of the nullclines can be lost
due to the jump down of the VI nullcline as in Case 2; see Figure 7C. This same idea extends
to values of m lying in a neighborhood, [R1, R2], of DcPAB where R1 > TC , R2 < PAB. For
m ∈ [R1, R2], there is always some amount of time for which the VL nullcline is to the right
while the VI nullcline is shifted downward, thus allowing the fixed point to be lost at an earlier
time than in Case 3.

We now consider the existence of a periodic solution for Case 4 with τr1(j) and τf1(k)
defined as in Case 3. For m ∈ (0, TC ], the periodic orbit will be defined in exactly the same
way as Case 3. Consider the interval I on the right branches as defined in Case 3 with
sAB→M (0−) = 0 and sAB→M (0+) = 1. Let sa(t) be a trajectory with sa(0) = sR1 ∗ s2(0). At
t = 0+, sAB→M jumps to 1 and sAB→I remains equal to 0 because of the small delay m. Thus,
s2 instantaneously jumping to s2min forces the trajectory to the left branches in the same way
as Case 3 because the VI nullcline remains in the upward position at t = 0+.

On the left branches with m ∈ (0, TC ], each time sAB→I = 1, pushing the VI nullcline
down, s2 = s2min and the VL nullcline is forced to the left. Thus, the trajectory with initial
conditions as stated above cannot jump from sonL as in Case 2 because each time the VI

nullcline is in its downward position, the VL nullcline is shifted too far to the left for s to
reach sonL . Therefore, the only time at which the fixed point of the left branches can be lost
is when s2 = 1. At t = (j + DC)PAB, sAB→M (t) will jump to 0. However, s2 will not
jump to 1, returning the VL nullcline to the right, until t = (j + DC)PAB + TC . Hence, at
t = (j + DC)PAB + TC , sAB→I will already be equal to 0 since m ≤ TC and the trajectory

will reach soffL tangentially as in Case 3. By choosing τf1(k) as in Case 3, sa(t) gets mapped
to s̃ at t = T−

2 .
With the same argument as in Case 3, the trajectory sb(t) with sb(0) = s̃1 ∗ s2(0) and

sb(T1) = soffL (where T1 ∈ ((j + Dc)PAB + TC , (j + 1)PAB + TC)) will also be mapped back
to I at t = T−

2 with s̃ = sa(T
−
2 ) < sb(T

−
2 ) < sR. Therefore, the one-dimensional Poincaré

map P : I → I where P(s) = s(T2) is established exactly as in Case 3. Thus for m ∈ (0, TC ],
the same arguments apply to show that there exists a unique, asymptotically stable periodic
orbit in Case 4, and the periodic orbits of Cases 3 and 4 have the same period.

For m ∈ [R1, R2], the period of the solution trajectories in Case 4 is locked to the period
of AB oscillations and is, therefore, much shorter than the period of solution trajectories in
Case 3. For m ∈ [R1, R2], as stated above, on the left branches of the nullclines, the inhibition
from AB to MCN1 and to Int1 is timed such that while the VI nullcline is shifted downward,
s2 = 1 which places the VL nullcline to the right. Thus, s1 does not need to grow very large
for the LG interburst to end. Once on the right branches, the burst of LG is ended during
the first time s2 jumps to s2min because s1 is sufficiently small (due to the fact that the LG
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interburst was ended for a small value of s1) to push the VL nullcline far enough to the left
to cause a loss in the fixed point. Similarly, once the solution trajectory is back to the left
branches, s1 is large enough (because s1 did not decay a long time on the right branches)
so that the first jump in s2 back to 1 causes a loss of the fixed point and an end to the LG
interburst. In the regions TC < m < R1 and R2 < m ≤ PAB, the solution trajectories remain
periodic but are slightly more complicated to describe than those outside of these regions. For
example, with the parameters fixed as above, when m ∈ (0, TC ] or m ∈ [R1, R2] consecutive
LG bursts have exactly the same length as do consecutive Int1 bursts. However, when m is
not in these regions, consecutive LG bursts and consecutive Int1 bursts need not have the
same length. Instead, several cycles of LG and Int1 oscillations may be required before the
LG (and Int1) burst duplicates its length. We further explain this in the next section.

4. Determining the frequency of solutions. The period of the gastric mill rhythm can
be computed as the sum of the LG burst and the LG interburst. During the interburst, s1

increases toward a maximum value which we shall denote smax. Similarly, during the burst,
s1 decreases toward a minimum value smin. The periodic solutions in Cases 1–4 are then
computed by finding out how much time is needed for s1 to evolve between the values of smax

and smin on the left (during the interburst) and right (during the burst) branches. Using (7),
it is straightforward to see that

P = τr1ln

(
1 − smin

1 − smax

)
+ τf1ln

(
smax

smin

)
.(32)

The main question now is to determine the values smin and smax for each of the four
cases. However, these values have already been determined in the construction of the periodic
solutions above. In particular, for Case 1, smin = soffR and smax = soffL . For Case 2, smin =

s∗Case 2 and smax = sonL . Note that sonL < soffL . Since the AB inhibition does not affect the

right branches of the VI nullcline too much, s∗Case 2 ≈ soffR . Thus from (32), it is seen that the
period of Case 2 is smaller than the period of Case 1 since the interburst of LG is shorter.
This result is consistent with what was found by Manor et al. [16].

In Case 3, smin = s∗Case 3 and smax = soffL . Here s∗Case 3 ∈ [sR1 exp([[Dc − 1]PAB +
TC ]/τf1), s

R
1 ]. Finally, for Case 4, when m ∈ (0, Tc], the periodic solution is different than

the one constructed in Case 3 due to the shifting of the VI nullcline. However, the period
of the solutions in Cases 3 and 4 are the same because the values of smin and smax are the
same. When m > Tc, smin ∈ [sR1 exp([[Dc − 1]PAB + TC ]/τf1), s

R
1 ] and smax ∈ [sonL , 1 +

(sonL − 1)exp(−(DCPAB + TC)/τr1)]. Calculations of soffL , soffR , sonL , and sonR can be found in
the appendix. Using (32), we calculated values for the period for Cases 1 through 4. The
analytic results are shown in Table 1 for Cases 1 through 3. There, we assumed for Case 2 that
smin = s∗Case 2 equals the average of soffR and sonR , while for Case 3, smin = s∗Case 3 = soffR /ssmin.

To confirm the validity of our analytic computations of the period using (32), we also
numerically solved the set of equations in our model using XPP [11]. See the appendix for
parameter values. For Cases 1 through 3, these results are also given in Table 1 and show a
close correlation between the calculation of the periods obtained analytically and numerically.

In Figure 14, we show the results of numerically calculating the period in Case 4 as
a function of the delay parameter m with τr1 = 7200 and τf1 = 5500. We see that for



132 C. AMBROSIO-MOUSER, F. NADIM, AND A. BOSE

Table 1
A comparison of the analytic versus numerical determinations of period in Cases 1–3.

Period calculation for τr1 = 4900 msec, τf1 = 4000 msec

Case XPP simulation Analytic formula

Case 1 period=10,140 msec period=10,075 msec

Case 2 period=5,000 msec period=4,688 msec

Case 3 period=4,000 msec period=3794 msec

0 200 400 600 800 1000
0

2000
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8000
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Period of
case 3

period
(msec)

m

Figure 14. The period of the gastric mill cycle is plotted for different delays, m, in Case 4. The period of
Case 3 is marked by the dashed line. There is a small range of delays, 0 < m ≤ 60, for which the period of the
gastric mill rhythm is equal for Cases 3 and 4.

0 < m ≤ 60, the period of the gastric mill rhythm for Case 3 is equal to that of Case 4.
For 470 < m ≤ 740, the period of the gastric mill is equal to the period of AB activity.
For 60 < m ≤ 470, there is a transition between having a period equal to that of Case 3 to
the much shorter period of AB activity. Similarly, for 740 < m ≤ 1000, the period begins
to increase from 1 sec up to the period found in Case 3. As stated in the previous section,
for 60 < m ≤ 470 and for 740 < m ≤ 1000, it may take several cycles of LG and Int1
oscillations before the LG and Int1 burst lengths duplicate themselves where R1 = 470 and
R2 = 740. In these situations, the period is calculated as the time it takes to have two
duplicate LG burst lengths divided by the number of cycles of LG oscillations occurring in
that time. Figure 15 shows the gastric mill rhythm frequency as found in experiments by
Wood et al. [30] for Cases 1–4. In this work, Wood et al. [30] artificially replicate the effect
of AB activity on MCN1 through computer controlled stimulation of MCN1. We see that
for MCN1 tonic, the frequency of the network is much higher when the AB input to Int1
is present. For MCN1 rhythmic, the frequency of the network is higher than when MCN1
is tonic; however, there is no change in frequency when the AB input to Int1 is added to
the network. Figure 16 shows that our model accurately replicates the behavior of the actual
gastric mill when 0 < m ≤ 60. Thus, the time mismatch between the pyloric and modulatory
inputs to the gastric mill network is critical in establishing the correct frequency of the system.
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Figure 15. Experimental findings of the gastric mill rhythm cycle frequency for Cases 1–4 [30].
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Figure 16. Calculations of the gastric mill rhythm cycle frequency for Cases 1–4 using our model with
τr1 = 7200msec, τf1 = 5500msec, τr2 = 1msec, τf2 = 1msec, period of sAB = 1sec, m = 25msec, and
ḡs = 6mS/cm2 in Cases 1 and 2 and ḡs = 7mS/cm2 in Cases 3 and 4.

5. Voltage dependent MCN1 to LG synapse. We now consider the effect of having
voltage dependent coupling between MCN1 and LG as opposed to a constant conductance
synapse. Therefore, we return to (1) with gs(VL) = ḡss∞(VL), where s∞(VL) is a sigmoidal
gating function varying between 0 and 1 of the form

s∞(V ) =

(
1 + exp

vk − Vk

k

)−1

.(33)

Due to this voltage dependency, the amount of excitation that LG receives from MCN1
will depend upon the voltage of LG causing LG to receive less excitation when it, itself, is at
a low voltage. Thus, when LG is in its interburst, the strength of the synapse will be weaker
than in the voltage independent case. When LG is in its burst, the strength of the synapse
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will increase to a value near to that of the previous section. As a consequence of the weaker
conductance, in all of the Cases 1–4, the voltage dependency will increase the LG interburst
duration because s will be required to grow to a larger value of smax for the fixed point to
be lost on the left branches of the nullclines. On the right branches of the nullclines, where
LG is in its burst, s∞(VL) is closer to 1, and, therefore, the burst duration of LG will not be
directly affected as significantly as the interburst duration. However, the value of smin will be
slightly larger than when the conductance is not voltage dependent because as VL decreases
on the right branches, s∞ also decreases. Therefore, s will not need to decrease as much to
cause a loss of the fixed point and an end to the LG burst. The increase in the interburst
duration in all Cases 1–4, however, is larger than the decrease in burst duration, resulting in
an increase in the period of the solutions.

Upon relaxing the conditions that s2 and sAB→I jump between their minimum and max-
imum values instantaneously, in addition to increasing the period in Cases 1–4, the voltage
dependency also increases the range of m over which the period of Case 3 equals the period
of Case 4. When the rise and fall of s2 is not instantaneous but occurs on the slow timescale,
s2 moves continuously between its maximum and minimum values. Regardless of whether the
conductance of the MCN1 synapse to LG is constant or voltage dependent, the same condi-
tion must be satisfied for the period of Case 3 to equal the period of Case 4. This condition
is that the fixed point on the left branches of the nullclines must be lost through soffL . That
is, m must be chosen to live in a certain interval, say, [M1,M2], such that once s1 has grown
large enough for s to reach sonL while sAB→I = 1, the VL nullcline must be shifted far enough
to the left by s2 when sAB→M = 1 so that the saddle-node bifurcation does not occur at sonL .
This situation persists until m becomes just larger than M2. For M2 < m < DcPAB, when
sAB→I jumps to 1, sAB→M will already equal 1 so the VL nullcline will already be to the left.
However, before sAB→I returns 0, sAB→M will return 0. Consequently, the VL nullcline will
move to the right and the fixed point will not be lost through sonL .

When s2 changes on the slow timescale and m is slightly too large as described above, the
loss of the fixed point through sonL often occurs while s2 is increasing toward 1 but has not yet
reached its maximum value of 1. As a specific example, for τr1 = τf1 = 4000, τr2 = τf2 = 325,
and conductance of the MCN1 to LG synapse constant (s∞(VL) = 1), the periods of Cases 3
and Cases 4 are the same for 80 ≤ m ≤ 275. Note that the lower bound on the interval is
80 (not 0) since we have relaxed the condition that s2 and sAB→I change instantaneously.

Once m > 275, the saddle-node bifurcation occurs through sonL instead of soffL , thus causing
the period of Case 4 to be smaller than the period of Case 3.

Now let us consider the effect of the voltage dependent conductance on the position of the
VL nullcline and, therefore, the role it plays in altering the interval of m over which the period
in Case 3 equals that in Case 4. When LG is at a low voltage, s∞(VL) is close to 0. Thus, on
the left branches of the nullclines, when s2 decreases to its minimum, there is a much larger
jump to the left of the VL nullcline than when the conductance is constant. Furthermore, even
as s2 increases back to 1, the VL nullcline remains significantly far to the left until s2 gets very
close to 1. Therefore, even as m increases to the range [M2, DcPAB] where sAB→M jumps
back to 0 (forcing s2 to increase back to 1) just before sAB→I returns to 0, the VL nullcline
will remain too far to the left (because it takes some amount of time for s2 to grow close
enough to 1) for the saddle-node bifurcation to occur at sonL . Hence, the fixed point cannot
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be lost through sonL while s2 is growing toward 1, as occurs when the conductance is constant.
Furthermore, when sAB→I is a half-sine function as in Manor et al. [16], the VI nullcline spends
less time in the downward position. Consequently, there is again a smaller range of time for s
to reach sonL when the VI nullcline is in the downward position. Accordingly, a larger interval

of m will exist for the fixed point on the left branches of the nullclines to be lost from soffL as
in Case 3 when the conductance is voltage dependent than when the conductance is constant.
Returning to the example in the above paragraph but now allowing the conductance of the
MCN1 to LG synapse to be voltage dependent, the interval of m for which the period of
Case 3 equals the period of Case 4 extends to 80 ≤ m ≤ 350. When s2 has instantaneous
kinetics, there is no significant difference in the range of m between the voltage dependent
and non–voltage dependent cases because s2 is always equal to either 1 or 0 so the fixed point
on the left branches cannot be lost while s2 is increasing toward 1.

6. Discussion. Networks involved in the generation of rhythmic movements often involve
sets of reciprocally inhibitory neurons that rely on external stimuli to trigger oscillations or to
set the appropriate frequency of the rhythm [2, 6, 25]. It has been observed that while tonic
stimulation may often be sufficient to elicit the network activity, the synaptic inputs driving
these circuits are themselves rhythmic [5, 29]. An example of this is the pyloric network
of the lobster stomatogastric nervous system which receives rhythmic excitatory input. The
same effects of this rhythmic input, however, can be achieved through tonic firing of the input
cells [19].

Furthermore, it has been noted in many cases that although one source of input is sufficient
to produce oscillations in the target network, multiple inputs act together to generate and set
the frequency of the network. The heartbeat of the leech, for example, is controlled by pairs of
reciprocally inhibitory neurons. These oscillators receive inhibitory input from interneurons
that act to coordinate the activity of the separate oscillators [7]. Einum and Buchanan [10] also
recently showed that reticulospinal neurons of the lamprey brain stem receive both excitatory
and inhibitory rhythmic inputs from neurons in the spinal cord during locomotor activity.

The stomatogastric nervous system of the crab, made up of an asymmetric half-center os-
cillator, provides a nice example of a system that receives multiple rhythmic synaptic inputs
in order to oscillate. The interactions between the gastric mill network and pyloric network
have been extensively studied to show how each network acts to influence one another’s fre-
quency [3, 4, 28]. In their work, Nadim et al. [21] and Manor et al. [16] considered how the
frequency of the gastric mill rhythm is generated and controlled in the presence of both a slow
modulatory input and a much faster periodic input.

In this paper, we continued upon the work of Nadim et al. [21] and Manor et al. [16] with
the aim of mathematically explaining the experimental results of Wood et al. [30]. Specifically,
we addressed the effect of having a rhythmic modulatory input versus a tonic input drive
the network oscillations and then how two simultaneous rhythmic inputs work together to
determine the network frequency. In order to do this, we incorporated the rhythmicity of the
modulatory projection neuron on the existing model of Manor et al. [16]. We then derived
conditions on the parameters that dictate the strength and rise and decay rates of the synaptic
currents to ensure the existence, local uniqueness, and stability of periodic solutions. Once
periodic orbits were established, we derived a formula to estimate the period of such orbits
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in the presence and absence of pyloric input to the gastric mill network for both tonic and
rhythmic modulatory input.

Using geometric, singular perturbation theory, the multidimensional system is reduced to
studying the position of the nullclines in the VL−VI phase plane with the variable controlling
the amount of excitation provided from the modulatory projection neuron to the gastric mill
treated as a parameter. The model shows that the rhythmicity of the projection neuron speeds
the gastric mill rhythm by allowing the loss of a relevant stable fixed point to occur at an
earlier time than when the input is tonic. Thus, although tonic stimulation of the gastric
mill network can generate the gastric mill rhythm, the rhythmicity of the input speeds the
frequency of the gastric mill rhythm as in seen by Wood et al. [30].

In the presence of the rhythmic modulatory excitation and fast pyloric inhibition, the
timing of the jump of the VL and VI nullclines in response to the AB input to Int1 and to
MCN1 determines how the loss of the stable fixed point on either the left or right branches of
the nullclines will occur. This, in turn, determines the length of the LG and Int1 interburst
and burst durations. The frequency calculated from this model matches the experimental
results of Wood et al. [30] only when there is either a short delay or no delay in the timing
of the two pyloric inputs. In this case, the position of the VL nullcline in response to the
AB inhibition of MCN1 prevents the AB disinhibition of LG from ending the LG interburst.
Thus, it is as if there is only one source of synaptic input to the gastric mill network. Therefore
the analysis gives a possible biological mechanism by which the effect of the two simultaneous
synaptic inputs can overlap to result in a frequency equivalent to that of having only one of
the inputs present. If the delay is chosen differently, however, the gastric mill rhythm has
a higher frequency than when only one of the inputs is present because the position of the
VL nullcline does not prevent LG from getting disinhibited by AB. Thus, the timing of the
inputs can be used as a tool to switch between different modes of firing frequency. This may
serve as a means by which different chewing patterns are elicited.

The biological and mathematical reductions of the full, compartmental model of Nadim
et al. [21] implemented by Manor et al. [16] and extended to this work have proven to be instru-
mental in understanding the frequency regulation of the gastric mill rhythm and intercircuit
coordination with the pyloric network. The reduced model neglects all intrinsic currents and
models the neurons in this network as having only leak currents. Despite the severity of the
reductions, the reduced network is able to accurately model the gastric mill rhythm and its
response to the slow, modulatory, and fast pyloric inputs. In [1], Ambrosio shows that the
results found through analysis of the reduced model do extend to the full model. The re-
duced model also clarifies the relationship between the synaptic rise and decay times of the
AB inhibition of MCN1 in the full model necessary to obtain the experimentally observed
behavior. Furthermore, because the reduced model consisting of passive neurons is able to
accurately reproduce the qualitative behavior of the full model, it is clear that the synaptic
currents and their timing with respect to one another are the primary components responsible
for the dynamics of the gastric mill rhythm. This is important because the ability to ignore
the intrinsic dynamics of each of the neurons results in significantly simpler equations. This
makes mathematical analysis much more accessible. For example, in this network, we were
able to reduce the study of our system to the study of a one-dimensional map. This then
allowed us to define a Poincaré map to prove the existence and stability of periodic orbits,
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which would have been much more difficult if working in higher dimensions.
Such techniques can be extended to numerous other models whose intrinsic and synaptic

currents act on multiple timescales. The leech heartbeat mentioned above, for example, is
controlled by a network of reciprocally inhibitory neurons that are dependent upon both
synaptic and intrinsic currents. These currents exhibit both fast and slow dynamics and a
biophysically detailed model of this network exists [22, 23]. Although this model was shown
to accurately reproduce many of the behaviors of the real network, some properties have
not yet been able to be reproduced and the significance of certain currents is not yet clearly
understood. In particular, a reduced model may give some insight into the extreme sensitivity
of the oscillations to the leak current parameters seen in the more detailed models. More
generally, a reduced version of this model that is more amenable to mathematical investigation
in terms of allowing for a reduction to lower dimensions and phase plane analysis is likely
to more clearly reveal many of the underlying properties responsible for such things as the
network oscillations and sensitivity to synaptic and intrinsic inputs.

Appendix A. We describe how to calculate the bifurcation points soffL , sonL , soffR , and sonR .
On the left branch, when the two nullclines intersect tangentially for sAB→I(t) = 0, then

s = soffL . Similarly, on the right branch when s = soffR and sAB→I(t) = 0, the fixed point

occurs when the two nullclines intersect tangentially. Thus, to calculate soffL and soffR , we use
the equations for the VL and VI nullclines:

VL = F (VI , s) =
gleak,LEleak,L + ḡI→Ln∞(VI)EI→L + ḡssEexc

gleak,L + ḡI→Ln∞(VI) + ḡss
(34)

and

VI = G(VL, sAB→I) =
gleak,IEleak,I + ḡL→In∞(VL)EL→I + ḡAB→IsAB→I(t)EAB→I

gleak,I + ḡL→In∞(VL) + ḡAB→IsAB→I(t)
.(35)

We rewrite (35):

VL = −kLln
[
−1 + ḡL→I(VI−EL→I)

−gleak,I(VI−Eleak,I)−ḡAB→IsAB→I(t)(VI−EAB→I)

]
+ vL

=̇ G̃(VI , sAB→I).
(36)

We find the equation for the tangent point by solving

dF (VI , s)

dVI
=

dG̃(VI , sAB→I)

dVI
.(37)

From (37), we obtain a quadratic equation for s:

ḡ2
ss

2 + s

[
2ḡs[gleak,L + ḡI→Ln∞(VI)] − ḡI→LEI→L

dn∞(VI)

dVI
gs
dVI

dG̃

+ ḡI→L
dn∞(VI)

dVI
ḡsEexc

dVI

dG̃
)

]
+ [gleak,L + ḡI→Ln∞(VI)]

2(38)

− dVI

dG̃

[
gleak,LḡI→LEI→L

dn∞(VI)

dVI
− ḡI→L

dn∞(VI)

dVI
[gleak,LEleak,L

+ ḡI→Ln∞(VI)EI→L]

]
= 0.
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Next, we use the restriction that the tangency of the nullclines must occur at a fixed point.
Therefore, we use the equations for the VL and VI nullclines to determine the fixed points for
different values of s. We rewrite (34) as

s = (−gleak,L(VL − Eleak,L) − ḡI→Ln∞(VI)(VL − EI→L))/gs(VL)(VL − Eexc).(39)

We then plug (36) into (39) to obtain an equation for s = S(VI). This equation says that for
each value of VI there exists a unique value of s which will cause the nullclines to intersect.
We then check to see if this value of s also satisfies the quadratic equation (38). If it does, we
have found a bifurcation point of the fast subsystem. There are two values of s which satisfy
the equations above. The smaller valued one corresponds to soffL , and the larger corresponds

to soffR . To calculate sonL and sonR , we follow the same steps as above but with sAB→I(t) = 1
in (35).

We used the analytically calculated values of the bifurcation points to obtain the results
given in section 4. In Case 2, we assume that smax = sonL and smin is the average of soffR and

sonR . In Case 3, we assume the maximum value that s takes is soffL while s2 = 1, which implies

that smax = soffL and the minimum value s assumes is soffR when s2 = s2min. Therefore, smin

is
soffR
s2min

. In Case 4, the values of smax and smin depend on m. For m near 0, for example,
smax and smin are calculated as in Case 3. We also numerically solved (1)–(8) and (33). The
parameter values used in the numerical calculations are given in Table 2.

Table 2
Parameters of the reduced model.

gleak,L = 1mS/cm2 Eleak,L = −60mV ḡI→L = 5mS/cm2 EI→L = −80mV
gleak,I = .75mS/cm2 Eleak,I = 10mV ḡL→I = 2mS/cm2 EL→I = −80mV
gleak,M = 2mS/cm2 Eleak,M = 10mV ḡAB→M = 15mS/cm2 EAB→M = −60mV
gs = 4mS/cm2 Eexc = 43mV ḡAB→I = .9mS/cm2 EAB→I = −60mV
VT = −30mV vx = −30mV kx = 4mV
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Abstract. In previous work [J. D. Skufca and E. Bollt, Mathematical Biosciences and Engineering, 1 (2004),
pp. 347–359], empirical evidence indicated that a time-varying network could propagate sufficient in-
formation to allow synchronization of the sometimes coupled oscillators, despite an instantaneously
disconnected topology. We prove here that if the network of oscillators synchronizes for the static
time-average of the topology, then the network will synchronize with the time-varying topology if the
time-average is achieved sufficiently fast. Fast switching, fast on the time-scale of the coupled oscilla-
tors, overcomes the desynchronizing decoherence suggested by disconnected instantaneous networks.
This result agrees in spirit with that of [J. D. Skufca and E. Bollt, Mathematical Biosciences and En-
gineering, 1 (2004), pp. 347–359] where empirical evidence suggested that a moving averaged graph
Laplacian could be used in the master-stability function analysis [L. M. Pecora and T. L. Carroll,
Phys. Rev. Lett., 80 (1998), pp. 2109–2112]. A new fast switching stability criterion herein gives
sufficiency of a fast switching network leading to synchronization. Although this sufficient condition
appears to be very conservative, it provides new insights about the requirements for synchronization
when the network topology is time-varying. In particular, it can be shown that networks of oscilla-
tors can synchronize even if at every point in time the frozen-time network topology is insufficiently
connected to achieve synchronization.
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1. Introduction. Since Huygen’s early observations of weakly coupled clock pendula [31],
synchronization has been found in a wide variety of phenomena, ranging from biological
systems that include fireflies in the forest [14, 41], animal gates [16], descriptions of the heart
[29, 59, 27], and improved understanding of brain seizures [43] to chemistry [37], nonlinear
optics [60, 61, 62], and meteorology [20]. See one of the many excellent reviews now available,
including [11, 50, 15, 57, 26, 42]. In particular, it has been known for more than 20 years that
chaotic oscillators can synchronize under suitable coupling [24, 3, 46]. Meanwhile, in recent
years, the study of large scale, random networks has become an extremely active area with
the advent of advances in both theory and scientific application across numerous disciplines,
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as reviewed in [44, 19, 4, 5, 63], for example. Recent investigations have sought to characterize
how oscillator elements coupled according to a large scale network architecture are impacted
by the choice of architecture and corresponding spectral properties of the network [6, 34, 33,
30, 25, 38]. In particular, the master-stability function formalism [47, 48] relates spectral
properties of the graph Laplacian of the network to synchrony of supported oscillators, and
this has been used in the study of synchronization stability on arbitrary network architecture
[6].

Despite the very large volume of literature to be found, the great majority of research
activities have been focused on static networks whose connectivity and coupling strengths are
constant in time. For example, static networks are assumed for the analysis of [47, 48, 6].
However, there are applications where the coupling strengths and even the network topology
can evolve in time. Recent work such as [56, 32, 65] are among the few to consider time-
dependent couplings. See also [35] in which a so-called function dynamics gives rise to networks
that evolve according to a dynamical system, somewhat similarly to our networks. The recent
work of Blykh, Belykh, and Hasler on “blinking-systems” [9] has complementary results to
ours, which we review at the end of this introduction.

In prior work [54], we were motivated by applications that include how a disease might
occur in a network of agents in which the agents move, but the disease itself has its own time-
scale. We describe a competition of two time-scales. Said plainly, the disease has a natural
typical incubation rate and a natural infections rate (for example in a susceptible→exposed→
infected→recovered (SEIR) model), so if a susceptible agent does not come in contact with
an infected agent in the disease time-scale, then there should be no new infection. Math-
ematically, we constructed a “moving neighborhood network” (MNN), a network of agents
which move ergodically and connect when in close proximity to each other. Such a network
was shown to lead to a Poisson distributed degree distribution instantaneously, and hence
the network was typically instantaneously disconnected. It consists of typically many small
subcomponents at each instant. Such a description alone would suggest that there could be
no global synchronization of the oscillators carried by each agent which are coupled according
to the disconnected network. However, it was found that if the agents move quickly enough,
then roughly described, in any recent time window, a given agent might be likely to have
had some amount of coupling to most other agents. It turns out that for fast enough moving
agents, these random time-varying connections were enough to overcome even chaotic oscil-
lators’ sensitive dependence tendency to drift apart asynchronously. We formalized this idea
by introducing a new description of the connectivity, a “moving averaged” graph Laplacian.
We showed empirically that the spectrum of this construction works quite well together with
the master-stability formalism to accurately predict synchronization.

Besides our original motivation in mathematical epidemiology, it can be argued that this
work has strong connections to ad hoc communication systems and control systems on time-
varying networks. Fundamental connections between chaotic oscillations and proof of syn-
chronization through symbolic dynamics [55, 49] and control [17, 12, 28] and even definition
of chaos through symbolic dynamics suggest this work is rooted in a description of information
flow in the network.

Coordinated control for platoons of autonomous vehicles can also be addressed using
network concepts [18, 51, 21]. Each vehicle is represented by a node, and communication or
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mutual sensing is represented by connections between nodes. In [21] the average position of a
platoon of vehicles is regulated, and the graph Laplacian is used to describe communication
between vehicles. It is shown that the spectrum of the graph Laplacian can be used to indicate
stability of the controlled system. As pointed out in [51], the use of a graph Laplacian is not
entirely common since it appears naturally for only a limited class of control objectives. The
simplified model form explored in this paper, (2.1), is morally inspired by these problems
where there seems to be a notion of average information propagation in a network.

These considerations have led us in this work to consider a simplified version of the moving
agents of our MNN model. Considering certain time-varying coupled network architectures,
we can now make rigorous but sufficient statements concerning fast switching, and we use
mathematical machinery not so far typically used in the synchronization community. The
main result of this work comes from the fields of switched systems, and specifically builds
on the concept of fast switching. Switched systems are a class of systems whose coefficients
undergo abrupt change. For example, consider the linear state equation

ẋ(t) = Aρ(t)x(t),(1.1)

where ρ(t) : R �→ Z+ is a switching sequence that selects elements from a family of matrix-
valued coefficients Θ = {A1, A2, . . . }. When each element of Θ is Hurwitz, stability of (1.1)
is guaranteed if ρ(t) switches sufficiently slowly. Further restrictions on elements of Θ, such
as existence of a common Lyapunov function, can guarantee stability for arbitrary switching
functions, including those that are not slow. An excellent overview of the field of switched
systems and control is presented in [40] and in the book [39].

Even when the elements of Θ are not all Hurwitz, stability of (1.1) is still possible, although
the class of switching functions is further restricted. For example, in [64] a stabilizing switching
sequence is determined by selecting elements of Θ based on the location of the state x(t) in
the state space. This is essentially a form of state feedback.

When no elements of Θ are Hurwitz, which is the case that is considered herein, stability
of (1.1) can sometimes be guaranteed if the switching sequence is sufficiently fast. Loosely
speaking, it can be shown that

ẋ(t) = Aρ(t/ε)x(t)(1.2)

is asymptotically stable if there exists a constant T such that the time-average

1

T

∫ t+T

t
Aρ(τ)dτ

is Hurwitz for all t, and if ε is sufficiently small. This fact has been established in [36, 7, 58]
for several classes of linear systems related to (1.2). Similar results have been presented in
[2, 1] for classes of nonautonomous nonlinear systems where time is parameterized by t/ε as in
(1.2). In this case, stability of a specific average system implies stability of the original system
if ε is sufficiently small. In addition, this work requires the existence of a Lyapunov function
that is related to a certain average of the system but which is not a function of time. This
requirement is too restrictive for the class of linear time-varying systems considered herein.
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A new fast switching stability condition, presented in section 3, is derived in order to assess
local stability of networked oscillators about the synchronization manifold.

Recent complementary results have been authored by Belykh, Belykh, and Hasler, in
[8] and [9]. They developed a method called the “connection graph stability method” whereby
even for networks of time-varying connections, a bound is established based on explicitly
considering the total length of all paths through edges on the network connection graph.
Their bound links average path length in a way which allows them to consider a small-world
regular 2k-nearest lattice with long range connections which are switched on and off with
a certain probability p during short time intervals τ . They also conclude synchronization
thresholds not dissimilar to ours relating the switching time of the necessary (long range)
connections which must be small relative to the synchronization time. However the specifics
of their methods, rooted explicitly in graph theory, are different from ours, which are rooted
in the field of switched systems from control engineering. Consequently, the specific details of
both hypothesis and conclusions in our work are not the same as those in [8, 9].

2. Preliminaries. We consider a network of coupled oscillators consisting of r identical
oscillators,

ẋi(t) = f(xi(t)) + σB

r∑
j=1

lij(t)xj(t), i = 1, . . . , r,(2.1)

where xi(t) ∈ R
n is the state of oscillator i, B ∈ R

n×n, and the scalar σ is a control variable
that sets the coupling strength between oscillators. This model is inspired by the applied
questions discussed in the introduction in that it has time-varying connections which still allow
for enough connectionism for global synchronization, and it is of a sufficiently simplified form to
admit a complete and rigorous analysis. The scalars lij(t) are elements of the graph Laplacian
of the network graph and describe the interconnections between individual oscillators. Let
G(t) be the time-varying graph consisting of r vertices vi together with a set of ordered pairs of
vertices {vi, vj} that define the edges of the graph. In this work, we assume that {vi, vi} ∈ G(t)
for i = 1, . . . , r. Let G̃(t) be the r×r adjacency matrix corresponding to G(t); then G̃i,j(t) = 1
if {vi, vj} is an edge of the graph at time t and G̃i,j(t) = 0 otherwise. The graph Laplacian is
defined as

L(t) = diag(d(t)) − G̃(t),(2.2)

where the ith element of d(t) ∈ R
r is the number of vertices that vertex i is connected

to, including itself. Note that solutions of (2.1) must be interpreted in the weak sense of
Carathéodory. Indeed, the presence of a switching network leads to nonsmooth solutions,
i.e., piecewise differentiable solutions which are smooth only between switching instants. For
existence and uniqueness theorems for such nonlinear systems, one may refer to [22, 53].

Synchronization can be assessed by examining local asymptotic stability of the oscillators
along the synchronization manifold. Linearizing each oscillator (2.1) about the trajectory
xo(t), which is assumed to be on the synchronization manifold, yields

żi(t) = F (t)zi(t) + σB

r∑
j=1

lij(t)zj(t),(2.3)
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where

zi(t) = xi(t) − xo(t),(2.4)

and F (t) = Df evaluated at xo(t). Let L(t) be the r × r matrix composed of entries lij(t);
then the system of linearized coupled oscillators is written

ż(t) = (Ir ⊗ F (t) + σ(In ⊗B)(L⊗ Ir)) z(t)

= (Ir ⊗ F (t) + σL⊗B) z(t),
(2.5)

where “⊗” is the Kronecker product and z(t) = [zT1 (t), . . . , zTr (t)]T . Standard properties of the
Kronecker product are utilized here and in what follows, including: for conformable matrices
A, B, C, and D, (A ⊗ B)(C ⊗ D) = AC ⊗ BD. Notation throughout is standard, and we
assume that ‖ · ‖ refers to an induced norm.

It has been shown in [47, 48] that the linearized set of oscillators (2.5) can be decomposed
into two components: one that evolves along the synchronization manifold and another that
evolves transverse to the synchronization manifold. If the latter component is asymptotically
stable, then the set of oscillators will synchronize.

The claimed decomposition is achieved using a Schur transformation. We briefly describe
the decomposition since it plays a central role in our assessment of synchronization under time-
varying network connections. Let P ∈ R

n×n be a unitary matrix such that U = P−1LP , where
U is upper triangular. The eigenvalues λ1, . . . , λr of L appear on the main diagonal of U . The
transformation is not unique, in that the triangular structure of U can be obtained with the
eigenvalues of L in any order along the diagonal. A change of variables ξ(t) = (P ⊗ In)−1 z(t)
yields

ξ̇(t) = (P ⊗ In)−1 (Ir ⊗ F (t) + σL⊗B) (P ⊗ In) ξ(t)

=
(
Ir ⊗ F (t) + σP−1LP ⊗B

)
ξ(t)

= (Ir ⊗ F (t) + σU ⊗B) ξ(t).

(2.6)

Due to the block-diagonal structure of Ir ⊗ F (t) and the upper triangular structure of U ,
stability of (2.6) is equivalent to stability of the subsystems

ξ̇i(t) = (F (t) + σλiB)ξi(t), i = 1, . . . , r,(2.7)

where λ1, . . . , λr are the eigenvalues of L. Note that since the row sums of L are zero, the
spectrum of L contains at least one zero eigenvalue. We assign λ1 = 0, which is consistent
with particular choices of the transformation matrix P . Thus

ξ̇1(t) = F (t)ξ1(t)

evolves along the synchronization manifold, while (2.7) with i = 2, . . . , r evolves transverse to
the synchronization manifold [47]. Since the oscillators are assumed identical, the (identity)
synchronization manifold is invariant for all couplings, the question being its stability. The set
of coupled oscillators will synchronize if the synchronization manifold is stable, or, equivalently,
if (2.7) with i = 2, . . . , r is asymptotically stable.
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3. Main result. For a given static network, the master-stability function characterizes
values of σ for which a set of coupled oscillators (2.5) synchronizes [47, 6, 23]. The graph
Laplacian matrix L has r eigenvalues, which we label

0 = λ1 ≤ · · · ≤ λr = λmax.(3.1)

The stability question reduces by linear perturbation analysis to a constraint upon the eigen-
values of the Laplacian,

σλi ∈ (α1, α2) ∀i = 2, . . . , r,(3.2)

where α1, α2 are given by the master-stability function (MSF), a property of the oscillator
equations. For σ small, synchronization is unstable if σλ2 < α1; as σ is increased, instability
arises when

σλmax > α2.(3.3)

By algebraic manipulation of (3.2), if

λmax

λ2
<

α2

α1
=: β,(3.4)

then there is a coupling parameter, σs, that will stabilize the synchronized state. For some
networks, no value of σ satisfies (3.2). In particular, since the multiplicity of the zero eigenvalue
defines the number of completely reducible subcomponents, if λ2 = 0, the network is not
connected, and synchronization is not stable. However, even when λ2 > 0, if the spread of
eigenvalues is too great, then synchronization may still not be achievable.

For the case of a time-varying network topology, represented by L(t), our principal contri-
bution is to show that the network can synchronize even if the static network for any frozen
value of t is insufficient to support synchronization. Specifically, we show that the time-average
of L(t), not the frozen values of L(t), is an indicator of synchronization. If the time-average of
L(t) is sufficient to support synchronization, then the time-varying network will synchronize
if the time-average is achieved sufficiently fast.

Theorem 3.1. Suppose a set of coupled oscillators with linearized dynamics

żs(t) =
(
Ir ⊗ F (t) + σL̄⊗B

)
zs(t)(3.5)

has an asymptotically stable synchronization manifold, regarding z(t) → 0 in (2.4). Then there
exists a positive scalar ε∗ such that the set of oscillators with linearized dynamics

ża(t) = (Ir ⊗ F (t) + σL(t/ε) ⊗B) za(t)(3.6)

and time-varying network connections L(t) are also asymptotically stably synchronized, again
regarding z(t) → 0 in (2.4), for all fixed 0 < ε < ε∗, if there exists a constant T such that
L(t) satisfies

1

T

∫ t+T

t
L(τ)dτ = L̄(3.7)
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and the column sums of L(t) are all zero for all t.
Remark 3.2. Since L(t) represents a time-varying network, we may assume that for each

value of t, L(t) is a graph Laplacian as defined in (2.2). Thus the time-average L̄ in (3.7)
is not a graph Laplacian. In other words, L̄ does not necessarily correspond to a particular
network topology and arises only as the time-average of L(t). However, L̄ does inherit the
zero row and column sum property of L(t).

A preliminary lemma is required to prove Theorem 3.1, the proof of which appears in the
appendix.

Lemma 3.3. Suppose there exists a constant T for which the matrix-valued function E(t)
is such that

1

T

∫ t+T

t
E(τ)dτ = Ē(3.8)

for all t and

ẋ(t) = (A(t) + Ē)x(t), x(to) = xo, t ≥ to,(3.9)

is uniformly exponentially stable. Then there exists ε∗ > 0 such that for all fixed ε ∈ (0, ε∗),

ż(t) = (A(t) + E(t/ε))z(t), z(to) = zo, t ≥ to,(3.10)

is uniformly exponentially stable.
Proof of Theorem 3.1. First we show that the Schur transformation that decomposes the

set of oscillators (3.5) with static L̄ also induces a similar decomposition for (3.6) with time-
varying L(t). Then we apply Lemma 3.3 to show that the modes of the system that evolve
transverse to the synchronization manifold are stable if ε is sufficiently small.

Let P ∈ R
r×r be a unitary matrix such that Ū = P−1L̄P , where

Ū =

[
0 Ū1

0(r−1)×1 Ū2

]

is the Schur transformation of L̄, and Ū2 ∈ R
(r−1)×(r−1) is upper triangular. Without loss

of generality, we have assumed that the leftmost column of P is the unity norm eigenvec-
tor [

√
1/r, . . . ,

√
1/r]T corresponding to a zero eigenvalue. The change of variables ξs(t) =

(P ⊗ I)−1zs(t) yields the decomposition ξs = [ξs1, ξs2]
T , where ξs1 ∈ R

n, ξs2 ∈ R
n(r−1), and

ξs2 satisfies

ξ̇s2(t) =
(
Ir−1 ⊗ F (t) + σŪ2 ⊗B

)
ξs2(t).(3.11)

As discussed in section 2, (3.11) is asymptotically stable by hypothesis.
We now consider the same change of variables applied to (3.6). First, note that

U(t) = P−1L(t)P =

[
0 U1(t)

0(r−1)×1 U2(t)

]

since the column sums for L(t) are zero for all t. The change of variables ξa(t) = (P⊗I)−1za(t)
yields the decomposition ξa = [ξa1, ξa2]

T , where ξa1 ∈ R
n evolves along the synchronization
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manifold and ξa2 ∈ R
n(r−1) evolves transverse to the synchronization manifold. To verify that

the oscillators synchronize, it is sufficient to show that

˙ξa2(t) = (Ir−1 ⊗ F (t) + σU2(t/ε) ⊗B) ξa2(t)(3.12)

is asymptotically stable when ε is sufficiently small. Since

Ū = P−1L̄P

=
1

T

∫ t+T

t
P−1L(τ)Pdτ

=
1

T

∫ t+T

t
U(τ)dτ

we conclude that

Ū2 =
1

T

∫ t+T

t
U2(τ)dτ.(3.13)

Thus the desired result is obtained by direct application of Lemma 3.3 along with (3.11),
(3.12), and (3.13).

4. Illustration. To illustrate fast switching concepts applied to synchronization of a set
of oscillators, we consider a set of r Rössler attractors

ẋi(t) = −yi(t) − zi(t) − σ

r∑
j=1

lij(t/ε)xj(t),

ẏi(t) = xi(t) + ayi(t),

żi(t) = b + zi(t)(xi(t) − c),

(4.1)

where i = 1, . . . , r, a = 0.165, b = 0.2, c = 10, and σ = 0.3. Oscillators are coupled through
the xi variables via lij(t). Coupling between subsystems (nodes) is defined by a time-varying
graph G(t), with corresponding adjacency matrix G̃(t). The graph Laplacian L(t), with entries
lij(t), is defined as in (2.2).

For the purposes of illustration, we choose a set of five graphs and corresponding adjacency
matrices G̃1, . . . , G̃5 with the property that none of them are fully connected. That is, each
graph contains pairs of nodes that do not have a path between them. However, the union of
vertices over all five graphs yields a fully connected graph with the longest path between nodes
containing no more than two other nodes. All five graphs and the union of graph vertices are
shown in Figure 1.

A simple strategy is chosen for switching among graph Laplacians associated with the set
of graphs. We choose the T -periodic L(t) defined over one period by

L(t) =

5∑
i=1

Liχ[(i−1)T/5, iT/5)(t),
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(a) (b) (c)

(d) (e) (f)

Figure 1. (a)–(e) are graphs G1 through G5, respectively, while (f) is the union of graphs.

where χ[t1, t2)(t) is the indicator function with support [t1, t2). The time-average of L(t) is

L̄ =
1

εT

∫ εT

0
L(t/ε)dt

=
1

5

5∑
i=1

Li.

(4.2)

Toward computing the upper bound for ε given by (A.11), the set of coupled oscillators
(4.1) with coupling defined by (4.2) are integrated. The x-coordinate for each oscillator
is shown in Figure 2. The x-coordinates clearly synchronize. Asymptotic stability of the
oscillators with respect to the synchronization manifold is suggested by plotting the sum-
square deviation of the states

r∑
i=1

(xi(t) − μx(t))
2 + (yi(t) − μy(t))

2 + (zi(t) − μz(t))
2(4.3)
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Figure 2. The x-coordinate for the set of coupled Rössler attractors using the average graph Laplacian.

about the averages

μx(t) =
1

r

r∑
i=1

xi(t),

where μy(t) and μz(t) are defined similarly. Approximately exponential decay of (4.3) is
evident in Figure 3, indicating that the oscillators synchronize.

The linear time-varying system (2.5) corresponding to the set of coupled Rössler attractors
is computed from the Jacobian of the right-hand side of (4.1) evaluated at the solutions shown
in Figure 2.

As described in the proof of Lemma 3.3, a Schur transformation U that diagonalizes
L̄ is computed and used as a state transformation to decompose the linear time-varying
system (2.5) into a component that evolves along the synchronization manifold and another
component that evolves transverse to the synchronization manifold. The upper bound for
ε given in Theorem 3.1 is computed from the component of the linear system that evolves
transverse to the synchronization manifold,

ξ̇a2(t) = (Ir−1 ⊗ F (t) + σU2 ⊗B)ξa2(t).

We now estimate the constants α, ρ, η, and μ needed to compute the right-hand side of (A.11)
in the proof of Lemma 3.3 (see the appendix). This is used to compute a maximum value of
ε. The constant α is computed from (A.4), while the transition matrix is computed from

Φ̇(t, τ) = (Ir−1 ⊗ F (t) + σU2 ⊗B)Φ(t, τ), Φ(τ, τ) = I.
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Figure 3. Sum-square deviation in (4.3) for the set of coupled Rössler attractors using the average network L̄.
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Figure 4. Norm of the transition matrix Φ(t, τ) along with an exponentially decaying upper bound.

The norm of the transition matrix ‖Φ(t, τ)‖ is shown in Figure 4. The initial time τ is chosen
to be 40 seconds to ensure that the states of (4.1) are reasonably close to the synchronization
manifold. An upper bound that satisfies ‖Φ(t, τ)‖ ≤ γe−λ(t−τ) is also shown in Figure 4. The
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Figure 5. The x-coordinate for the set of coupled Rössler attractors using the switched network where ε = 1.

coefficients ρ, μ, and η in (A.8) are computed from γ and λ when evaluating the right-hand
side of (A.11). Choosing T = 1, the right-hand side of (A.11) is evaluated for this example,
and we determine that the set of coupled oscillators will synchronize if ε < 3.3 × 10−7. This
shows that our bound is exceedingly conservative. For example, empirically the oscillators
will synchronize with ε = 1, as shown in Figure 5.

Appendix.
Proof of Lemma 3.3. Since (3.9) is uniformly exponentially stable, there exist a symmetric

matrix function Q(t) and positive scalars η, ρ, and μ such that the Lyapunov function

v(x(t), t) = xT (t)Q(t)x(t)

satisfies

η‖x(t)‖2 ≤ v(x(t), t) ≤ ρ‖x(t)‖2,(A.1)

d

dt
v(x(t), t) ≤ −μ‖x(t)‖2(A.2)

for all t. To establish uniform exponential stability of (3.10), we will show that v(z(t), t) is
also a Lyapunov function for (3.10) if ε is sufficiently small. This claim is achieved by showing
that for sufficiently small values of ε,

Δv(z, t + εT, t) ≡ v(z(t + εT ), t + εT ) − v(z(t), t)(A.3)
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is negative definite for all t. Expanding (A.3) yields

Δv(z, t + εT, t) = zT (t + εT )Q(t + εT )z(t + εT ) − zT (t)Q(t)z(t)

= zT (t)
(
ΦT
E(t + εT, t)Q(εT + t)ΦE(t + εT, t) −Q(t)

)
z(t),

where ΦE(t, t0) is the transition matrix corresponding to A(t) + E(t/ε), i.e.,

z(t) = ΦE(t, t0)z0

is the solution to (3.10), as discussed, for example, in [52]. Similarly denoting the transition
matrix for A(t)+Ē as ΦĒ(t, t0), we use the Peano–Baker series representation of the transition
matrix to define

H(t + εT, t) = ΦE(t + εT, t) − ΦĒ(t + εT, t)

= I +

∫ t+εT

t
A(σ1) + E(σ/ε)dσ

+
∞∑
i=2

∫ t+εT

t
A(σ1) + E(σ1/ε)

∫ σ1

t
· · ·

∫ σi−1

t
A(σi) + E(σi/ε)dσi · · · dσ1

− I −
∫ t+εT

t
A(σ1) + Ēdσ −

∞∑
i=2

∫ t+εT

t
A(σ1) + Ē

∫ σ1

t
· · ·

∫ σi−1

t
A(σi)

+ Ēdσi · · · dσ1.

By hypothesis,

∫ t+εT

t
E(σ/ε)dσ = εT Ē,

which implies that

H(t + εT, t) =

∞∑
i=2

∫ t+εT

t
A(σ1) + E(σ1/ε)

∫ σ1

t
· · ·

∫ σi−1

t
A(σi) + E(σi/ε)dσi · · · dσ1

−
∞∑
i=2

∫ t+εT

t
A(σ1) + Ē

∫ σ1

t
· · ·

∫ σi−1

t
A(σi) + Ēdσi · · · dσ1.

Defining

α ≡ sup
t≥0

(
max

(
‖A(t) + Ē‖, ‖A(t) + E(t/ε)‖

))
(A.4)

a bound for H(t + εT, t) is computed:

‖H(t + εT, t)‖ ≤ 2
(
eεTα − 1 − εTα

)
.(A.5)
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Noting that ΦE = ΦĒ + H, Δv is expressed as

Δv(z, t + εT, t) = zT (t)
(
ΦT
Ē(t + εT, t)Q(t + εT )ΦĒ(t + εT, t) −Q(t)

)
z(t)

+ zT (t)
(
ΦT
Ē(t + εT, t)Q(t + εT )H(t + εT, t) + HT (t + εT, t)Q(t + εT )ΦĒ(t + εT, t)

+ HT (t + εT, t)Q(t + εT, t)H(t + εT, t)
)
z(t).

(A.6)

The task now is to compute an upper bound for Δv(z, t + εT, t) and show that this bound
is negative if ε is sufficiently small. Several well-known relationships that are consequences
of (A.1), (A.2), and uniform exponential stability of (3.9) are utilized (see, for example, [52,
p. 101, 117] or [13, p. 202]). Namely,

‖Q(t)‖ ≤ ρ,(A.7)

‖ΦĒ(t, to)‖ ≤
√
ρ/ηe

− μ
2ρ

(t−to),(A.8)

v(x(t), t) ≤ e
−μ

ρ
(t−to)v(x(to), to)(A.9)

for t ≥ to.
To compute an upper bound for the first term on the right-hand side of (A.6) we note

that if x(t) = z(t) is chosen as the initial condition of (3.9) at time t, then

zT (t)
(
ΦT
Ē(t + εT, t)Q(t + εT )ΦĒ(t + εT, t) −Q(t)

)
z(t) = v(x(t + εT ), t + εT ) − v(x(t), t).

From (A.9) and (A.1),

v(x(t + εT ), t + εT ) − v(x(t), t) ≤ (e−μεT/ρ − 1)v(x(t), t)

≤ ρ(e−μεT/ρ − 1)‖x(t)‖2.

Thus,

zT (t)
(
ΦT
Ē(t + εT, t)Q(t + εT )ΦĒ(t + εT, t) −Q(t)

)
z(t) ≤ ρ(e−μεT/ρ − 1)‖z(t)‖2.(A.10)

Combining (A.5), (A.7), (A.8), and (A.10) yields the desired upper bound

Δv(z, t + εT, t) ≤
(
ρ(e−μεT/ρ − 1) + 4ρ(

√
ρ/ηe

−μεT
2ρ )(eεTα − 1 − εTα)(A.11)

+ 4ρ(eεTα − 1 − εTα)2
)
‖z(t)‖2.

Defining the continuously differentiable function g(ε, x) to be the right-hand side of (A.11),
it can be shown that g(0, z) = 0 and ∂

∂εg(0, z) = −μT‖z‖2 < 0. Thus since g(ε, z) → ∞ as
ε → ∞, there exists ε∗ such that g(ε∗, z) = 0 and g(ε, z) < 0 for all ε ∈ (0, ε∗) and z �= 0.
Thus Δv(z, t + εT, t) < 0 for all ε ∈ (0, ε∗) and z �= 0.

To show that negative-definiteness of Δv(z, t + εT, t) is sufficient to establish stability of
(3.10), choose ε and γ > 0 that satisfy

Δv(z, to + εT, to) = v(z(to + εT ), to + εT ) − v(z(to), to) ≤ −γ‖z(to)‖2
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for all to. From (A.1), v(z(to), to) ≤ ρ‖z(to)‖2, which implies that

v(z(to + εT ), to + εT ) − v(z(to), to) ≤ −(γ/ρ)v(z(to), to).

Thus

v(z(to + εT ), to + εT ) ≤ (1 − γ/ρ)v(z(to), to).

Repeating this argument yields

v(z(to + kεT ), to + kεT ) ≤ (1 − γ/ρ)kv(z(to), to)

for any positive integer k. Thus v(z(to + kεT ), to + kεT ) → 0 as k → ∞ which implies that
z(to+kεT ) → 0 as k → ∞. Since the limiting behavior is valid for any to, uniform exponential
stability of (3.10) is established.
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Computation of Spiral Spectra∗
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Abstract. A computational linear stability analysis of spiral waves in a reaction-diffusion equation is performed
on large disks. As the disk radius R increases, eigenvalue spectra converge to the absolute spectrum
predicted by Sandstede and Scheel. The convergence rate is consistent with 1/R, except possibly
near the edge of the spectrum. Eigenfunctions computed on large disks are compared with predicted
exponential forms. Away from the edge of the absolute spectrum the agreement is excellent, while
near the edge computed eigenfunctions deviate from predictions, probably due to finite-size effects.
In addition to eigenvalues associated with the absolute spectrum, computations reveal point eigen-
values. The point eigenvalues and associated eigenfunctions responsible for both core and far-field
breakup of spiral waves are shown.
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1. Introduction. Rotating spiral waves are found in many chemical and biological systems
and have been the subject of intense study for many years [10, 14, 16, 28]. The equations
governing these systems are typically of reaction-diffusion type. Although each system is
modeled in detail by specific equations—which are often very complex—generic features of the
spiral waves can be understood from reaction-diffusion equations with simple nonlinearities.
Figure 1 shows a spiral wave in a generic model reaction-diffusion system described in detail
in section 2. For the model parameters in Figure 1 the spiral wave rotates with constant
frequency and shape; i.e., it is a rotating wave.

The focus of our work is a computational study of the linear stability spectra of rotating
spiral waves such as those shown in Figure 1. To explain the motivation behind this study
it is necessary to first recall the recent analysis by Sandstede and Scheel [21, 22, 23, 24] on
the spectra of rotating spiral waves. Their work examines spectra on large bounded disks
and on unbounded domains. The results can be summarized as follows (see Figure 2). On
large bounded disks, the linear stability spectrum consists of point eigenvalues and what is
called the absolute spectrum. The absolute spectrum is not actually part of the stability
spectrum. However, all but possibly a finite number of point eigenvalues converge to the
absolute spectrum as the domain size tends to infinity. That is, except for finitely many
eigenvalues that are created through the underlying pattern as a whole, or possibly by the
boundary conditions, all eigenvalues on large bounded domains are expected to be close to the
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Figure 1. Rotating spiral wave solution of reaction-diffusion equations described in section 2. Colors
indicate the level of the u field, with blue used for u near zero and red used for u near 1. The wave rotates
counterclockwise. The domain radius, R = 80, is approximately 10 times the spiral wavelength. Homogeneous
Neumann boundary conditions, corresponding to zero chemical flux, are imposed at the domain boundary. Model
parameters are a = 0.75, b = 0.0006, and ε = 0.0741.

Figure 2. Illustration of spectra in the complex plane for spirals on bounded and unbounded domains.
Σabs and Σess represent the absolute and essential spectra, respectively. Points represent eigenvalues on a
large bounded domain, which approach Σabs as the domain size tends to infinity. Crosses represent the point
spectrum, which does not approach Σabs as the domain size tends to infinity.

absolute spectrum. The point eigenvalues have well-defined limits as the domain size tends
to infinity.

In practice the absolute spectrum must be computed numerically for any given reaction-
diffusion equation; see, e.g., [22]. Such computations require discretization in only one space
dimension and thus are relatively simple compared with computing eigenvalues of the full
stability problem on a large domain, such as in Figure 1.

For spiral waves on the unbounded plane, the linear stability spectrum consists of point
eigenvalues and the essential spectrum. The essential spectrum is a continuous spectrum and
is determined only by the far-field wave trains of the spiral. It too is relatively easy to compute
numerically in one space dimension. The point eigenvalues again depend on the underlying
spiral pattern as a whole.

To see how these linear stability spectra may be relevant in practice, we show in Figure 3
simulations of two instabilities of rotating waves (62427 01.gif and 62427 02.gif) on relatively
large domains, and the corresponding absolute and essential spectra obtained by Sandstede
and Scheel [22]. In each case a rotating wave becomes unstable in a rather dramatic fashion,
and the spiral breaks up. Multiple spiral waves appear in each of these simulations shortly
after the time shown. In Figure 3(a) the breakup initiates in the central region of the spiral
and is referred to as core breakup [3, 15, 22], whereas in Figure 3(b) the breakup first takes

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/62427_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/62427_02.gif
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(a) (b)

(c) (d)

Figure 3. Two examples of spiral breakup—core breakup (62427 01.gif [2.6MB]) on the left and far-field
breakup (62427 02.gif [6.7MB]) on the right. The top plots show the u chemical field at about the time of breakup
in numerical simulations in square geometries with homogeneous Neumann boundary conditions. Domains are
of length 160 on a side. The bottom shows the absolute and essential spectra obtained by Sandstede and Scheel
for the parameter values used in the simulations. Note that these spectra repeat periodically in the imaginary
direction, but this can be seen only in (d). Model parameters are (left) a = 0.75, b = 0.0006, and ε = 0.0741;
(right) a = 0.84, b = −0.045, and ε = 0.075.

place in the outer regions of the spiral and is called far-field breakup [4, 18, 22, 26, 29].

The case of far-field breakup, Figure 3(right), has been the subject of several past studies
[1, 2, 4, 9, 18, 22, 25, 26, 29]. The breakup can be mostly understood from analysis and
simulations of one-dimensional systems. While many of these studies are based on the complex
Ginzburg–Landau equation, results appear to be similar for the case of reaction-diffusion
equations [2, 4, 26]. The typical scenario is that as a parameter is varied, the spiral first
becomes convectively unstable. In a bounded domain the onset of convective instability does
not generally lead to breakup, because unstable modes typically propagate away from the core
and are not reflected at the boundary. As the parameter is varied further, the spiral becomes
absolutely unstable. Only at the absolute-instability threshold will instability surely occur
in a bounded domain. Absolute instability corresponds to a growing “global mode” [25, 26],
which here means an eigenfunction on the bounded domain whose eigenvalue has positive real
part.

In the analysis of Sandstede and Scheel, convective instability is signaled by the crossing
of the essential spectrum into the right-half plane [21, 22]. Figure 3(d) shows that the spiral
is convectively unstable. However, the spiral was already convectively unstable prior to the
breakup seen in Figure 3, and this is not the cause of breakup. The breakup is caused by an
eigenvalue with positive real part and the corresponding global mode on the finite (bounded)
domain. In principle such an eigenvalue could be associated with the absolute spectrum or it

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/62427_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/62427_02.gif
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could be a point eigenvalue. In Figure 3(d) the absolute spectrum is away from the imaginary
axis and thus is not expected to play a direct role in the far-field breakup. Thus we expect
there to be at least one positive point eigenvalue not contained in Figure 3(d).

It is worth being clear about potentially confusing terminology. Absolute instability is
not associated only with the absolute spectrum. The union of the absolute spectrum and
the point spectrum determines absolute stability. If part of the absolute spectrum lies in the
right-half plane, then the spiral will necessarily be absolutely unstable. However, the converse
is not true, since absolute instability can arise due to point eigenvalues, even if the absolute
spectrum lies entirely in the left-half plane.

We should warn the reader that simulations at the stated parameters in Figure 3(b) are
very sensitive to numerical resolution. As we shall see, this is because the particular parameters
considered by Sandstede and Scheel are extremely close to a transition between far-field and
core breakup.

The case of core breakup, Figure 3(left), has not been extensively analyzed, in large part
because one cannot expect to capture much of the spiral core structure in one-dimensional
studies. (See, however, [2].) Sandstede and Scheel [22] have raised the possibility that core
breakup may be due to the absolute spectrum. In Figure 3(c) it can be seen that the absolute
spectrum is very near the imaginary axis, although it is entirely in the left-half plane. (The
argument of Sandstede and Scheel is not simply that the absolute spectrum is close to the
real axis, but the details are not important here.) The other possibility for core breakup is
that the instability is again due to point eigenvalues. The essential spectrum in 3(c) extends
into the right-half plane, and so the spiral is convectively unstable.

Computing the eigenvalue spectra of spiral waves on large domains has thus become im-
portant. First and foremost, it is desirable to test the absolute spectra of Sandstede and Scheel
in at least a few cases. The primary issue is whether or not eigenvalues tend to the absolute
spectrum for typical domains sizes used in studies of spiral waves, e.g., domains such as those
in Figure 3. The theory is still developing, and we would like to know whether absolute spectra
in fact have any implications for domains of reasonable size. The other important issue which
computations can address is the abundance and importance of point eigenvalues not predicted
by the absolute spectrum. For example, it is desirable to know how many point eigenvalues
are present within the region shown in Figure 3(c)–(d), how many of these eigenvalues have
positive real part, and whether or not these are associated with breakup. For these reasons
we have undertaken the large-scale eigenvalue computation reported here.

Throughout this paper we shall use point eigenvalue to mean those eigenvalues that remain
isolated as the domain radius becomes large, as contrasted with the eigenvalues associated with
the absolute spectrum that approach one another as the radius becomes large. To simplify
discussion we shall use positive eigenvalue to mean an eigenvalue, or a complex-conjugate pair
of eigenvalues, with positive real part. Similarly we shall use positive eigenfunction to mean
an eigenfunction whose corresponding eigenvalue has positive real part.

2. Model and methods.

2.1. Model. We will consider a standard two-component reaction-diffusion model [5]
given by the equations
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∂u

∂t
= ∇2u + f(u, v),(2.1a)

∂v

∂t
= δ∇2v + g(u, v),(2.1b)

where

f(u, v) =
1

ε
u(1 − u)

(
u− v + b

a

)
.(2.2)

There is freedom in the choice of g(u, v), and our methods will not depend on this choice.
However, the results we report will be for the g proposed by Bär and Eiswirth [3] and used
by Sandstede and Scheel [22], namely,

g(u, v) =

⎧⎨
⎩

−v, 0 ≤ u < 1/3,
1 − 6.75u(u− 1)2 − v, 1/3 ≤ u ≤ 1,
1 − v, 1 < u.

(2.3)

The equations are posed on a disk of radius R and with homogeneous Neumann boundary
conditions at r = R:

∂u

∂r
(R, θ) =

∂v

∂r
(R, θ) = 0,

where r, θ are standard polar coordinates. For chemically reacting systems these are the most
natural boundary conditions, as they correspond to zero chemical flux through the boundary
of the domain. Other boundary conditions could give different spiral solutions and linear
stability spectra on finite domains, but we do not consider any other boundary conditions
here.

The parameters of the model are kinetics parameters a, b, and ε and the diffusion coefficient
δ. If b > 0, the equations model an excitable medium. In this case the homogeneous state
with u = v = 0 everywhere is linearly stable, and finite amplitude perturbations are required
to initiate waves. The perturbation threshold is set by b/a. For b < 0 the equations model
an oscillatory medium. In both cases ε controls the time-scale ratio between the u- and v-
equations. We consider ε � 1 corresponding to a fast time-scale for u relative to v. We shall
report results only for the case δ = 0; δ = 1 is the other case commonly considered. As stated
at the outset, these equations model generic features of spiral waves in a variety of excitable
and oscillatory media.

2.2. Computational tasks. Consider rotating-wave solutions of (2.1) rotating at fre-
quency ω. We use (u∗, v∗) to denote such solutions and refer to them as steady spirals,
since these are steady states when viewed in the frame of reference which is rotating with the
spiral. Transforming to a system of coordinates corotating at frequency ω, steady spirals obey
the equations

0 = ∇2u∗ + ω
∂u∗

∂θ
+ f(u∗, v∗),(2.4a)

0 = ω
∂v∗

∂θ
+ g(u∗, v∗),(2.4b)
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subject to homogeneous Neumann boundary conditions. These steady-state equations can be
written in the form

F
(

u∗

v∗

)
= 0,(2.5)

where F is the nonlinear operator given by the right-hand side of (2.4).
Next, given a steady spiral, we seek the leading part of its linear stability spectrum. Con-

sider the linearized evolution equations, in the rotating frame, for infinitesimal perturbations
(u′, v′) of the steady solution (u∗, v∗):

∂u′

∂t
= ∇2u′ + ω

∂u′

∂θ
+ fu(u

∗, v∗)u′ + fv(u
∗, v∗)v′,(2.6a)

∂v′

∂t
= ω

∂v′

∂θ
+ gu(u

∗, v∗)u′ + gv(u
∗, v∗)v′,(2.6b)

where fu, . . . , gv denote the derivatives of the kinetic functions. In this frame of reference the
eigenvalue problem is

L
(

ũ
ṽ

)
= λ

(
ũ
ṽ

)
,(2.7)

where
(
ũ
ṽ

)
are eigenfunctions, λ are the corresponding eigenvalues, and L is

L =

(
∇2 + ω∂θ + fu(u

∗, v∗) fv(u
∗, v∗)

gu(u
∗, v∗) ω∂θ + gv(u

∗, v∗)

)
.(2.8)

Thus our primary numerical tasks are the solution of steady-state problem (2.5) and the
determination of the leading eigenvalues of problem (2.7).

In addition, it is necessary to perform a few simulations of the time-dependent equations
(2.1), e.g., the simulations shown in Figure 3. In the case of Figure 3 the numerical methods
are described fully elsewhere [5, 12] and will not be discussed here.

2.3. Computational methods. Equations (2.5) and (2.7) are common in large-scale nu-
merical bifurcation problems, and the computational methods we employ are more or less
standard [11]. For completeness we provide a basic description of our methods and stress a
few points concerning implementation which are essential to the efficiency of the computations.

The fields are discretized on a regular polar grid (rj , θk) = (j�r, k�θ), where 0 < j ≤ Nr

and 0 ≤ k < Nθ, plus the center point (0, 0). There are thus NrNθ + 1 grid points. The
r-derivatives in the differential operators are evaluated using second-order finite differences,
taking into account the boundary condition at r = R. The θ-derivatives are evaluated spec-
trally using Fourier transforms. In this way (2.5) and (2.7) become

F(U∗) = 0,(2.9)

LŨ = λŨ,(2.10)

where the U’s are vectors of length N = 2(NrNθ + 1), F is a nonlinear function, and L is an
N ×N matrix.
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Figure 4. Banded structure of matrix DF or L. Solid black represents full blocks of size 2Nθ×2Nθ mainly
due to using spectral representation of θ-derivatives. The lines are due to the second-order finite-difference
representation of r-derivatives.

Newton’s method is used to solve steady-state problem (2.9). One iteration of Newton’s
method is

DF(Un)�Un = −F(Un),(2.11)

Un+1 = Un + �Un,(2.12)

where DF(Un) is the linearization of F about the current iterate Un. This is the same matrix
as L, except that it is evaluated at Un rather than at the steady state U∗.

The work of each Newton’s iteration is dominated by the work necessary to solve the
N ×N linear system of equations (2.11) for the nth correction �Un. This can be done by a
direct method if care is taken to order variables so as to keep the matrix bandwidth of DF as
small as possible. Let ujk and vjk be values at grid point (rj , θk). Then these are ordered in
Ui such that the chemical species changes fastest with index i, followed by the angular index
k, followed by the radial index j. This ordering is not that suggested by (2.8). With the
ordering we use, the bandwidth is approximately 4Nθ. See Figure 4. Even for moderately
large discretizations a direct method can be used to solve (2.11). For example, on a grid
Nr ×Nθ = 600 × 256, N is approximately 3 × 105, while the bandwidth is only about 103.

The only other issue concerning the steady-state computations is that the frequency ω
must be found in addition to fields u∗ and v∗. The existence of the additional unknown is
consistent with the fact that the solution to (2.4) is not unique due to the rotational symmetry
in θ. One more algebraic equation must be added to (2.9) to remove the phase degeneracy
and thus give N + 1 equations in N + 1 unknowns. The constraint we add is simply to fix
u as some point in the domain. While the constraint destroys the banded structure of DF,
a Sherman–Morrison technique [19] is used to find solutions of the augmented linear system
using only the banded DF.

We now describe our computations of the leading eigenvalue spectrum of L. The basis
of our approach is to employ a Cayley transformation to transform the eigenvalues we seek
(those with largest real part) to dominant eigenvalues (of largest magnitude), and then to
find iteratively dominant eigenvalues of the transformed operator. Reference [17] gives a
nice review of such methods. Specifically, we consider the matrix A defined by the Cayley
transform

A = (ξI + L)−1(ηI + L),(2.13)
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Figure 5. Plot showing the effect of the Cayley transform on the absolute spectrum in Figure 3(c). Left
is the original and right is the transformed spectrum. The right includes two periodic repeats of the absolute
spectrum, which are outside of the region shown on the left. Shading indicates magnitude of eigenvalues after
the transformation.

where ξ and η are real parameters and I is the identity. Letting μ and λ be the eigenvalues
of A and L, respectively, we have the relation

μ =
η + λ

ξ + λ
.(2.14)

The parameters ξ and η can be adjusted so as to map the regions of interest in the λ-plane
to large magnitude in the μ-plane. Using the predicted absolute spectra of Sandstede and
Scheel, it is easy to find appropriate values of ξ and η. Figure 5 shows the effect of the
Cayley transform on the absolute spectrum for one of the cases predicted by Sandstede and
Scheel [22] (the other case is similar) for the values of ξ and η used in our computations:
ξ = −0.4 and η = 4.0. In the μ-plane we include transforms of two periodic repeats of the
absolute spectrum, one corresponding to the larger imaginary part and one to the smaller
imaginary part (in the λ-plane). These repeats are outside the region of the λ-plane shown.
Most of the eigenvalues of L lie far to the left in the λ-plane (outside the range of the figure).
These are all mapped to near the origin by (2.13).

There is no need to form or store the matrix A in order to iteratively calculate its eigen-
values. All one needs is the ability to compute AU for arbitrary U. This is accomplished
using the same basic technique as in Newton’s method. Letting U′ = AU, we see that U′

obeys

(ξI + L)U′ = (ηI + L)U.(2.15)

However, (ξI + L) has the same structure, in particular the same bandwidth, as L, and
(ηI + L) requires mostly the same computations as evaluating F. Thus we act with A on
U by computing (ηI + L)U to form a right-hand side and then solving a linear system with
matrix (ξI + L). Since this is a fixed matrix, for any given L, it is factored only once for all
actions of A.

Dominant eigenvalues A are easily found by subspace iteration [17, 27]. This method
guarantees that we can obtain any required number of dominant eigenvalues to arbitrarily high
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Figure 6. Graphs illustrating the convergence of steady states (top) and eigenvalues (bottom) as functions
of grid resolution �r2, where ω is the spiral frequency and λc is a complex eigenvalue. The domain radius is
R = 40. Crosses represent Nθ = 256. For �r = 0.1333 computations have been repeated with Nθ = 128, and
results are shown with circles. Parameters are a = 0.75, b = 0.0006, and ε = 0.0741.

precision. While Arnoldi’s method generally converges faster, in practice we find that with
this method not all eigenvalues we require are found with high enough precision. While there
are methods, such as block Arnoldi, which could probably address this, we have used subspace
iteration. From the eigenvalues μ of A we invert (2.14) to find the required eigenvalues λ.

2.4. Accuracy. We conclude this section by considering the accuracy of our computations
and providing details of numerical parameters used in the results reported. The sources of
error are the following:

1. discretization error of the steady state problem, i.e., approximation of (2.5) by (2.9);
2. residual error arising from determining the roots of (2.9) to a finite accuracy;
3. discretization error of the eigenvalue problem, i.e., approximation of (2.7) by (2.10);
4. residual error arising from computing eigenvalue/eigenfunction pairs (2.10) to finite

accuracy.

The two residual errors are least important. We always iterate sufficiently to reduce these
to negligible size. The following hold for all reported results. Solutions U∗ of (2.9) are found
such that ‖F(U∗)‖ < 10−8. Solutions of (2.10) are found such that ‖LŨ−λŨ‖ < 10−8, where
‖Ũ‖ = 1. The norm is the vector 2-norm. The dimension k of the subspaces used in subspace
iteration is k = 30 for R = 20 and R = 40, and k = 75 for R = 80. In all cases we stop itera-
tions when ∼ 0.7k of the eigenvalue-eigenvector pairs have residual less than 10−8. In the case
of R = 80, we thus obtain 53 pairs with the required residual. We initially start with a subspace
generated from k random vectors, but we restart iterations from previous runs when necessary.

The discretization errors are dominated, in both the steady-state and eigenvalue computa-
tions, by the second-order finite-derivative approximation to the r-derivatives in the Laplacian
operator. This is expected since the θ-derivatives are computed with spectral accuracy. Thus
the dominant error in the computations depends on �r in a well-understood way. Figure 6
shows examples of how results from steady-state and eigenvalue computations scale with �r2.
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The domain radius is R = 40, half the maximum considered in our work. For the steady
states we show the frequency ω, and for the eigenvalues we show the magnitude of λc, a
complex eigenvalue associated with core breakup that will be considered in detail later in
the paper. In both cases the second-order convergence is evident. We are interested only in
leading eigenvalues (roughly 102 out of 105), all of which correspond to eigenfunctions with
variation on approximately the same spatial scale (roughly the wavelength of the underlying
spiral) so that the effects of the finite-difference discretization will be approximately the same
for all eigenvalues we report.

Based on these plots, we use �r = 0.1333 for all results reported in section 3. At this
value of �r we have performed computations at both Nθ = 128 and Nθ = 256. These results
show clearly that Nθ = 128 gives sufficient resolution for domain radius R = 40. Therefore,
for radii up to at least R = 80, Nθ = 256 should produce errors smaller than the already
small errors due to the radial discretization. In summary, for all results in section 3 we use
�r = 0.1333 and Nθ = 256.

3. Results.

3.1. Spectra. We begin with results for the eigenvalue spectra. Figure 7 shows leading
eigenvalues of L for the two cases considered by Sandstede and Scheel. The spectrum corre-
sponding to core breakup is at the top, and the spectrum corresponding to far-field breakup
is at the bottom. In each figure eigenvalues computed for three domain radii, R = 20, R = 40,
and R = 80, are plotted as points with dashed lines connecting eigenvalues associated with the
absolute spectrum. For comparison, the absolute and essential spectra obtained by Sandstede
and Scheel are shown as solid curves.

Before considering either case in detail, we note that the predominant feature in both is the
presence of many eigenvalues which approach the predicted absolute spectra as the domain
radius increases. Each doubling of R results in approximately a halving of the distance
of eigenvalues to the absolute spectrum, thus supporting 1/R convergence to the absolute
spectrum. Furthermore the density of eigenvalues approximately doubles with each doubling
of R. We return to this while considering each case in more detail. It should be noted that
in the far-field case we have not obtained all eigenvalues associated with the periodic repeats
of the absolute spectrum for R = 80 due to the difficulties of computing these with sufficient
accuracy. This results in an abrupt termination of the eigenvalue branches for R = 80 at the
top and bottom of Figure 7(b).

Consider first the spectrum in Figure 7(a) corresponding to core breakup. Within the
region of the complex plane shown, there are three point eigenvalues. All other eigenvalues
are associated with the absolute spectrum. Specifically, we find three eigenvalues which are
insensitive to the domain radius and which are separated from the absolute spectrum. Of
these, one is the zero eigenvalue arising due to rotational symmetry. There are three points
indistinguishable from zero in Figure 7(a) corresponding to the three domain radii studied.
The other two point eigenvalues are a complex-conjugate pair at approximately 0.050±0.543i.
As we shall show in section 3.3, these eigenvalues are associated with core breakup. We
will denote them by λc. (These are the eigenvalues considered in the convergence study in
Figure 6.) All other eigenvalues vary with domain radius and approach the absolute spectrum
as the radius becomes large.
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(a)

(b)

Figure 7. Eigenvalue spectra. Shown are spectra corresponding to (a) core breakup and (b) far-field breakup.
In each case eigenvalues are shown for three domain radii: R = 20 (green diamonds), R = 40 (red crosses), and
R = 80 (blue circles). For each radius, the eigenvalues associated with the absolute spectrum are connected with
lines. Point eigenvalue are not. Parameters are as follows: (a) a = 0.75, b = 0.0006, ε = 0.0741, ω = 1.71;
(b) a = 0.84, b = −0.045, ε = 0.0751, ω = 1.50.
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The enlargement in Figure 7(a) clarifies the situation around the complex point eigen-
values. Even on the enlarged scale the point eigenvalues for R = 40 and R = 80 coincide.
At R = 20, however, there are two nearby eigenvalues. The lower one corresponds to the
absolute spectrum (indicated by the connecting dashed line) because it moves, as R is in-
creased, toward the absolute spectrum. The other eigenvalue converges, as R is increased, to
the point eigenvalue. Note that while the edge of the eigenvalue branch associated with the
absolute spectrum is near the point eigenvalue at R = 20, the branch does not approach the
point eigenvalue as the domain becomes small. It is nevertheless interesting that the point
eigenvalue is near the edge of the absolute spectrum. We find this throughout and return to
it in the conclusion.

As already noted, the distance of eigenvalues to the absolute spectrum is approximately
proportional to 1/R, and the density of eigenvalues is approximately proportional to R. Be-
cause we are not able to extend the computations significantly beyond the radius R = 80
(already quite large), there is not enough data to draw strong conclusions about these scal-
ings. In particular it is not clear from the data whether or not the scaling in the vicinity of the
edge of the absolute spectrum is different from those elsewhere. Near the edge of the spectrum
the eigenvalues are more dense and closer to the absolute spectrum than elsewhere. More im-
portantly we observe a curving and perhaps folding at the edge of the eigenvalue branch as
the radius becomes large. This would again suggest a different scaling at the spectrum’s edge,
but the numerical results are inconclusive.

We have focused our study on the eigenvalues within the region shown in Figure 7(a),
but we have computed some eigenvalues outside of this region. In particular our iterative
technique frequently finds eigenvalues associated with the periodic repetition of the absolute
spectrum in the complex plane. We have not attempted to resolve the details of the other
eigenvalue branches. Also there is a complex-conjugate pair of point eigenvalues near 0 ± iω
due to approximate translational symmetry.

Now consider the spectrum corresponding to far-field breakup. In Figure 7(b) we find
four complex-conjugate eigenvalue pairs that we can clearly classify as point eigenvalues. One
of these pairs has small positive real part, and hence the spiral wave is absolutely linearly
unstable; see section 3.3. Again we observe that the point eigenvalues, except for the zero
eigenvalue, appear near the edge of the absolute spectrum.

We observe approximately 1/R convergence of eigenvalues to the absolute spectrum. The
only apparent deviation is again at the edge of the spectrum. In this case we do not observe
any curving of the eigenvalue branch as seen in the enlargement in Figure 7(a); however, we
do find that the right-most point of the computed branch does not appear to approach the
edge of the predicted absolute spectrum. One possibility is that this last eigenvalue is in fact
a point eigenvalue very close to the edge of the absolute spectrum.

3.2. Eigenfunctions. In Figures 8 and 9 we plot eigenfunctions for a representative se-
lection of eigenvalues. All eigenfunctions have been obtained on a domain with R = 80, the
largest we consider. Each eigenfunction is shown in two formats. In the left column eigen-
functions are visualized on the computational domain. Specifically the ũ-field of the real part
of the eigenfunction is plotted, with black used where the field values are near zero. The
imaginary parts of the eigenfunctions are not fundamentally different. In the right column
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|ũ|

0 40 80

10
−6

10
−4

10
−2

(a)

|ũ|
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Figure 8. Representative eigenfunctions for parameters corresponding to core breakup. The left column
shows the real part of each eigenfunction. The ũ-field is plotted, with black used where the field is near zero.
The right column shows the r-dependence of |ũ|, with predicted growth/decay rates also shown with lines (see
text). Plot at the far right is a guide to the corresponding eigenvalues. (a) Zero (rotational) eigenvalue, (b) pos-
itive eigenvalue λc, and (c), (d), (e) three representative eigenvalues associated with the absolute spectrum.
Parameters as in Figure 7(a).

the modulus of each eigenfunction is shown as a function of radius. Specifically, we generate
16 radial sections |ũ(r, θs)|, where θs = sπ/8 and s = 0, 1, . . . , 15, and plot all 16 sections
simultaneously as a function of r. The envelope of these sections gives a simple representation
of the modulus of the eigenfunction as a function of r.
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|ũ|

0 40 80
10

−10

10
−6

10
−2

10
2(b)

|ũ|
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Figure 9. Representative eigenfunctions for parameters corresponding to far-field breakup. Same format
is used as in Figure 8. The rotational eigenfunction is not shown. Two eigenfunctions corresponding to point
eigenvalues are shown with (a) slightly positive eigenvalue and (b) slightly negative eigenvalue. (c), (d), (e) are
three representative eigenvalues associated with the absolute spectrum. Parameters as in Figure 7(b).

The technique used by Sandstede and Scheel [23] to obtain absolute and essential spectra
also predicts large-r behavior of eigenfunctions. The main prediction is that if an eigenvalue
is to the left of the essential spectrum, then the corresponding eigenfunctions will be expo-
nentially growing at large r, whereas if an eigenvalue is to the right of the essential spectrum,
then the corresponding eigenfunctions will be exponentially decaying at large r. In addition to
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the general prediction, the numerical technique employed by Sandstede and Scheel to obtain
spectra for specific problems also provides the growth/decay rates for eigenfunctions. These
rates [20] are indicated by the (red) lines in the right column of Figures 8 and 9. For eigen-
functions corresponding to the absolute spectrum, the predicted exponential growth rates
have been taken from the point on the absolute spectrum nearest to the computed eigenvalue.
Only the slope of the lines is relevant. The intercept is chosen for ease of comparison with the
eigenfunctions.

Consider first the eigenfunctions in Figure 8 corresponding to the case of core breakup.
The top eigenfunction is the zero mode due to rotational symmetry. This eigenfunction is
given by the θ-derivative of the underlying spiral wave and hence closely resembles the spiral.
The eigenfunction neither grows nor decays at large r.

Figure 8(b) shows the eigenfunction corresponding to the positive complex-conjugate point
eigenvalues λc. Since the eigenvalues are to the right of the essential spectrum, the eigenfunc-
tion decays with r. While there is generally good agreement between the computed eigen-
function and prediction, there is some deviation from prediction that is more pronounced at
larger r.

Figures 8(c)–(e) show three eigenfunctions associated with the absolute spectrum. The
agreement between the computed eigenfunctions and predictions is extremely good away from
the edge of the absolute spectrum. Near the edge the agreement is less good. In particular,
eigenfunctions are not pure exponential, even at large r, and the computed eigenfunctions
systematically grow more slowly than prediction. While not shown, we find that the eigen-
functions computed on smaller domains show even slower growth as a function of r. This
would suggest that the deviation shown in Figure 8(c) is due to finite domain size.

Figure 9 shows eigenfunctions corresponding to parameters for which far-field breakup
occurs. We plot eigenfunctions corresponding to two of the complex-conjugate point eigenval-
ues and show three representative eigenfunctions associated with the absolute spectrum. The
eigenfunction corresponding to the zero eigenvalue is similar to Figure 8(a) and is not shown.

The eigenfunctions corresponding to the point eigenvalues agree very well with predic-
tion. The growth rate of the positive eigenfunction in Figure 9(a) is very small since the
corresponding eigenvalue is almost exactly on the essential spectrum (Figure 7(b)). This is a
fortuitous situation which illustrates nicely that the essential spectrum delimits the crossover
from growth to decay of eigenfunctions. While quantitatively the agreement is very good,
there is a qualitative disagreement between the computed eigenfunction and prediction. Our
computed eigenfunction is growing with r, indicating that the eigenvalue is actually slightly
to the left of the essential spectrum, whereas in Figure 7(b) the eigenvalue is slightly to the
right of the essential spectrum, and the predicted exponent is slightly negative. Quantitatively
the difference is very small and is likely due to a small numerical difference, e.g., a difference
between the value of ω found in our computations and that used by Sandstede and Scheel.
The closeness of this eigenvalue to the essential spectrum is just by chance. If parameters are
changed, the eigenvalue moves away from the essential spectrum. It is because of this close-
ness of the eigenvalue to the essential spectrum that numerical simulations at these parameter
values are so sensitive to numerical resolution (as noted in section 1).

The eigenfunction in Figure 9(b) is exponentially growing since the corresponding eigen-
value is to the left of the essential spectrum. There are no observable deviations from pure
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Figure 10. Two time series showing the evolution starting from different perturbations of the steady spi-
ral with parameters leading to core breakup. In one case (solid green) the perturbation is the eigenfunction
corresponding to positive eigenvalue λc ( (b) in Figure 8). In the other (dashed red) the perturbation is the
eigenfunction corresponding to right-most eigenvalue associated with the absolute spectrum ( (c) in Figure 8).
The dotted blue curve shows exponential growth at rate given by λc. Parameters are as in Figure 7(a).

exponential growth at large r, and the agreement with prediction is very good.

The three eigenfunctions associated with the absolute spectrum show the same trend as in
Figure 8. The agreement between the computed eigenfunctions and predictions is extremely
good away from the edge of the absolute spectrum, while near the edge eigenfunctions are
not pure exponential and systematically grow more slowly than prediction. This case is even
more striking than in Figure 8 for the following reasons. The growth rates in Figure 8 are
much larger than in Figure 9. (Note the scale change.) The numerical values representing the
eigenfunctions span a larger range, and yet the computed eigenfunctions away from the edge
agree very well with predictions. There is every reason to believe that these eigenfunctions
are numerically well resolved within the finite domain. Unlike the case in Figure 8(c), here
the eigenfunction closest to the edge of the spectrum, Figure 9(c), deviates from exponential
growth only at large r. There is a clear range r, up to approximately r = 40, where the
eigenfunction agrees well with the predicted exponential growth. This strongly suggests that
the lack of agreement is due to finite-size effects. It is nevertheless interesting that these are
more pronounced near the edge of the spectrum.

3.3. Implications for breakup. We now return to the issue of spiral breakup discussed at
the outset (Figure 3). We begin with the case of core breakup. Recall that while this was
treated by Sandstede and Scheel [22, 23], they were not able to draw definite conclusions about
the role of the absolute and essential spectrum in core breakup. It is already clear from the
spectra in Figure 7 that the steady spiral is linearly unstable due to the presence of positive
point eigenvalues λc. Here we present additional nonlinear simulations of the breakup.

Figure 10 shows the time evolution from two different initial conditions, each composed of
the steady spiral plus a small amount of one of the computed eigenfunctions. The amplitude
plotted is defined as A = min θ ‖U∗ − RθU‖, where Rθ is a rotation by angle θ. The norm
is the vector 2-norm. Essentially A is the norm of the difference between the u-field of the
steady spiral, U∗, and the u-field of the nonlinear solution, U . The minimization over rotation
is included to take into account the small drift of the nonlinear solution relative to the steady
spiral.
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(a) (d)

(b) (e)

(c) (f)

Figure 11. Snapshots of evolution from the perturbed steady spiral leading to far-field breakup (solid green
curve in Figure 10). The u-field is shown with u � 0 blue and u � 1 red. (a) t = 0, (b) t = 20 (� 5 periods),
(c) t = 25, (d) t = 85 (� 23 periods), (e) t = 120 (� 33 periods), (f) eigenfunction. Parameters are as in
Figure 7(a).

Consider the evolution starting from the initial condition formed from the positive eigen-
function corresponding to λc. Accompanying visualizations are presented in Figure 11. The
dynamics is initially linear, obeying the exponential growth dictated by the real part of λc.
After a short time the growth becomes nonlinear, and almost immediately core breakup occurs
[Figure 11(c); time 25]. Beyond this time the amplitude A loses most of its meaning. Visu-
alizations at much later times are shown. One of the more striking aspects of the breakup is
that it occurs at r � 20, not at the center of the spiral. This radius is near where the unstable
eigenfunction has maximal magnitude. Visually one sees the similarity between the nonlinear
breakup and the unstable eigenfunction in Figure 11.

The initial nonlinear growth in Figure 10 is faster than linear. This means that, at lowest
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Figure 12. Two time series showing the evolution starting from different perturbations of the steady spi-
ral with parameters leading to far-field breakup. In one case (solid green) the perturbation is the eigenfunction
corresponding to a positive eigenvalue (Figure 9(a)). In the other (dashed red) the perturbation is the eigenfunc-
tion corresponding to the weakly stable point eigenvalue (Figure 9(b)). The dotted blue curve shows exponential
growth at a rate given by the positive eigenvalue. Parameters are as in Figure 7(b).

order, the effect of nonlinearity on the instability is destabilizing. Such behavior occurs, for
example, sufficiently close to a subcritical bifurcation; see, e.g., [13]. This nonlinear destabi-
lization is consistent with the fact that small positive eigenvalues lead to the dramatic breakup
of the spiral wave. If nonlinearity were stabilizing, one would expect the linear instability to
saturate in a state resembling a superposition of the original spiral and a small amount of the
unstable eigenmode (as occurs, for example, in spiral meandering [6, 7, 8]). We note that in
systems such as this one the behavior can change very rapidly with parameters following a
bifurcation [25, 26], and hence we are not able to conclude that the nonlinear growth follows
from a subcritical bifurcation, only that at these parameter values it is destabilizing.

For completeness we have also computed the nonlinear evolution from an initial condi-
tion formed from the eigenfunction corresponding to the right-most eigenvalue of the absolute
spectrum (Figure 8(c)). Figure 10 shows the initial dynamics from this simulation. Not sur-
prisingly A does not change much on the scale of Figure 10 because the associated eigenvalue is
very near zero. The simulation eventually leads to core breakup if run long enough. However,
this is simply because the steady spiral is linearly unstable. When breakup does eventually
occur, it follows the same route (e.g., same exponential growth) as for the initial condition
based on the positive eigenfunction.

The conclusion is that, in this case, core breakup is due to nonlinear effects following from
linear instability due to a complex-conjugate pair of point eigenvalues. The absolute spectrum
plays no direct role in the spiral breakup.

Next we briefly consider far-field breakup. We have directly computed the eigenfunction
associated with absolute instability causing far-field breakup, Figure 9(a). The leading eigen-
function shows exactly the long wavelength modulation of the steady spiral expected for this
instability [1, 4, 9, 18, 26, 29]. Figures 12 and 13 show the dynamics following from the steady
spiral perturbed by the unstable eigenfunction. The dynamics is initially that of exponential
growth with the expected growth rate. The growth becomes nonlinear, and long-wavelength
modulation of the spiral becomes visible (time 80 in Figure 13). Shortly thereafter the spi-
ral breaks near the domain boundary. At these parameter values the eigenfunction grows
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(a) (d)

(b) (e)

(c) (f)

Figure 13. Snapshots of evolution from the perturbed steady spiral leading to far-field breakup (solid green
curve in Figure 12). The u-field is shown. (a) t = 0, (b) t = 50 (� 12 periods), (c) t = 80 (� 19 periods),
(d) t = 85, (e) t = 120 (� 29 periods), (f) eigenfunction. Parameters are as in Figure 7(b).

weakly with radius, as seen in Figure 9(a), and for this reason one would expect a preference
for breakup near the domain boundary. However, in this case the qualitative character of
the eigenfunction depends sensitively on parameters, and for slightly different parameters the
eigenfunction may decay weakly with the radius.

The far-field case is similar to the core breakup case in most other respects. The nonlinear
growth in Figure 12 is faster than linear. No other eigenvalues appear to play a direct role in
the far-field breakup. Figure 12 shows the evolution from an initial condition formed from the
eigenfunction corresponding to the complex-conjugate point eigenvalues near the imaginary
axis (Figure 9(b)).
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4. Conclusions. In this paper we have examined in detail the linear stability spectra and
associated eigenfunctions for spiral waves in large domains. Everywhere, except possibly near
the edges of the absolute spectra, numerically computed eigenvalues and eigenfunctions agree
extremely well with the results of Sandstede and Scheel. Our results answer the question posed
at the outset. Absolute spectra can be relevant and predictive for typical domain sizes used
in studies of spiral waves. Even in domains containing only a few spiral wavelengths (the case
R = 20) eigenvalues show signs of the absolute spectrum—they lie along curves located roughly
in the correct part of the complex plane. For domains containing five spiral wavelengths or
more (R � 40) eigenvalues lie quite close to the absolute spectra. Of course these results
are for the particular equations and parameters studied here, and absolute spectra will not
necessarily be such good predictors for domains of these sizes in other systems. Nevertheless,
in at least two cases, one with excitable dynamics and one with oscillatory dynamics, absolute
spectra are predictive.

The computed eigenvalues support convergence to the absolute spectrum inversely with
the domain radius, at least away from the edge of the absolute spectrum. In most cases the
eigenfunctions agree with the exponential forms deduced by Sandstede and Scheel. This is
even the case for point eigenvalues not associated with the absolute spectrum. Near the edges
of the absolute spectrum, however, eigenfunctions do not exhibit exponential growth at large
radius, even in the largest domains we have considered. While results suggest that this is due
to finite-size effects, more work is necessary to understand the behavior of eigenvalues and
eigenfunctions near the edges of the spectrum.

We have computed the positive point eigenvalues giving rise to both core and far-field
breakup of spiral waves. The essential difference between the two cases is the form of the
eigenfunctions. For core breakup the eigenfunction has a maximum not far from the core
of the spiral and decays at large radius. For far-field breakup the eigenfunction grows with
radius. Moreover, the far-field eigenfunction shows long-wavelength modulation known to
precede far-field breakup. Nonlinearity also plays a role in breakup, and we have presented
nonlinear simulations showing the destabilizing effects of nonlinearity in each case.

The most intriguing aspect of this work is that all point eigenvalues we have found appear
near edges of the absolute spectra. This may be a coincidence, but it would not seem so from
Figure 7. We leave this as an open problem.
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Entrainment and Chaos in a Pulse-Driven Hodgkin–Huxley Oscillator∗
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Abstract. The Hodgkin–Huxley model describes action potential generation in certain types of neurons and is
a standard model for conductance-based, excitable cells. Following the early work of Winfree and
Best, this paper explores the response of a spontaneously spiking Hodgkin–Huxley neuron model to a
periodic pulsatile drive. The response as a function of drive period and amplitude is systematically
characterized. A wide range of qualitatively distinct responses are found, including entrainment
to the input pulse train and persistent chaos. These observations are consistent with a theory of
kicked oscillators developed by Q. Wang and L.-S. Young. In addition to general features predicted
by Wang–Young theory, it is found that most combinations of drive period and amplitude lead
to entrainment instead of chaos. This preference for entrainment over chaos is explained by the
structure of the Hodgkin–Huxley phase-resetting curve.

Key words. entrainment and phase-locking, strange attractors, Hodgkin–Huxley model, driven nonlinear os-
cillators
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1. Introduction. The Hodgkin–Huxley model describes action potential generation in
certain types of neurons and is a standard model for conductance-based, excitable cells [5, 18,
20]. There is an extensive literature on the response of the Hodgkin–Huxley model to different
types of inputs [1, 2, 11, 14, 15, 16, 17, 19, 24, 25], and understanding how single neurons
respond to external forcing continues to be relevant for the study of information transmission
in neural systems [21, 23]. Because neurons typically communicate via pulsatile synaptic
events, it is natural to investigate the response of the Hodgkin–Huxley model to pulsatile
inputs. Early studies by Best [3] and Winfree [38] examine the response of a Hodgkin–Huxley
model to periodic impulse trains, characterizing in detail the structure of phase singularities
and the transition from degree 1 to degree 0 phase resetting. However, their work does not
systematically address the asymptotic dynamical behavior as a function of drive period and
amplitude.1

This paper studies a spontaneously spiking (i.e., oscillatory) Hodgkin–Huxley neuron
model driven by periodic, pulsatile input of fixed amplitude and period, and systematically
classifies the response as a function of drive period and amplitude. It is found that the
following hold:
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1. In response to periodic pulsatile forcing of fixed amplitude A and period T , a sponta-
neously spiking Hodgkin–Huxley system can exhibit a wide range of distinct behaviors
depending on A and T :
(a) Entrainment. The driven system is stably periodic, and its period is a rational

multiple of the drive period T .
(b) Transient chaos. The system experiences a transient period of exponential insta-

bility before entraining to the input. This transient chaos is caused by a Smale
horseshoe [13].

(c) Chaos. The system becomes fully chaotic: it possesses a positive Lyapunov expo-
nent and a mixing attractor. (See [39] for a review of these concepts.)

The response of the pulse-driven neuron is approximately T0-periodic in the drive
period T , where T0 is the intrinsic period of the unforced Hodgkin–Huxley oscillator.
For example, if the pulse-driven oscillator is chaotic for some drive amplitude A and
drive period T , then it is likely to be chaotic when driven by a pulse train of amplitude
A with period near T + T0.

2. The scenarios enumerated above are prevalent in the sense that they correspond to
positive-area subsets of the drive period–drive amplitude space. Prevalence, together
with the approximate periodicity stated above, implies that each scenario occurs with
positive “probability.” (See the discussion of Figure 3 in section 3 for the precise
meaning of probability in this context.) The range of responses and their prevalence
are consistent with a theory of nonlinear oscillators developed recently by Wang and
Young [33, 34, 35, 36].

3. While chaotic behavior is readily observable, most combinations of drive period and
drive amplitude lead to entrainment instead of chaos. This preference for entrainment
can be explained by the structure of the phase-resetting curve (see section 4) of the
Hodgkin–Huxley system.

This paper relies heavily on numerical computation, the conceptual framework provided
by Winfree’s theory of biological rhythms [38], and the work of Wang and Young on nonlinear
oscillators [34, 35]. Phase-resetting curves, introduced by Winfree, play a particularly impor-
tant role here. The phase-resetting curve of a nonlinear oscillator is an interval map which
captures the asymptotic response of a nonlinear oscillator to a single, pulsatile perturbation.
Because they are one-dimensional objects, phase-resetting curves are often easier to under-
stand than the nonlinear oscillators they represent. They are frequently used to infer stable
dynamical behavior like phase locking. Wang–Young theory provides a mathematical frame-
work for using phase-resetting curves to infer the existence and prevalence of chaotic behavior.
Rather than numerically verify the hypotheses of their theorems, we have opted to examine
the consequences of the theory directly, relying on a combination of numerical simulation and
geometric reasoning to characterize the specific response of the Hodgkin–Huxley model to a
periodic pulsatile drive.

For the sake of clarity, parameters are selected to ensure that the Hodgkin–Huxley system
possesses a unique limit cycle and no other attracting invariant set. This corresponds to a
repeatedly spiking neuron with an unstable rest state. While the scenarios stated above should
still hold when the limit cycle coexists with other stable invariant sets, this choice simplifies
the interpretation of numerical simulations. Otherwise, a trajectory may jump out of the
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Figure 1. The time course for the Hodgkin–Huxley equations at the parameter values (2.5). The rapid
“spike” followed by a long “recovery” period is typical of the Hodgkin–Huxley equations. Note that this paper
uses the original definition of membrane voltage used by Hodgkin and Huxley, so that action potentials are
downward (rather than upward) spikes.

basin of the limit cycle, which obscures the mechanism described by Wang–Young theory.
This last scenario has been investigated thoroughly by Winfree [38] and Best [3].

The rest of this paper is organized as follows. Section 2 briefly reviews the unforced
Hodgkin–Huxley equations and their properties. Main numerical results are summarized in
section 3 and discussed in section 4. Section 5 discusses further numerical results, addressing
some issues raised in sections 3 and 4. Section 6 discusses possible extensions and generaliza-
tions.

2. Brief review of the Hodgkin–Huxley model. The Hodgkin–Huxley equations are a
system of nonlinear ordinary differential equations2 that describe the way neurons generate
spatially and temporally localized electrical pulses [5, 18, 20]. These electrical pulses, called
action potentials, are the primary way in which neurons transmit information. Action poten-
tials are triggered by sufficiently large membrane voltages, which can be set up by the influx
of ions into the cell. A neuron is said to fire or spike when it generates an action potential
(Figure 1). The Hodgkin–Huxley model describes action potential generation in terms of the
membrane voltage and dimensionless gating variables which quantify the effective permeability
(or conductance) of the membrane to various types of ions.

The original Hodgkin–Huxley equations model action potential generation in the squid
giant axon. This giant axon contains two types of membrane ion channels. One type of
channel is specific to potassium ions, the other to sodium ions. The state variables of the
model are the membrane voltage v, the activation n of the potassium channels, and the

2This paper does not treat the Hodgkin–Huxley PDEs: spatial dependence is not relevant here.
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activation m and inactivation h of the sodium channels. The equations are [18]

v̇ = C−1
[
−I − ḡKn

4(v − vK) − ḡNam
3h(v − vNa) − ḡleak(v − vleak)

]
,

ṁ = αm(v)(1 −m) − βm(v)m,

ṅ = αn(v)(1 − n) − βn(v)n,

ḣ = αh(v)(1 − h) − βh(v)h,

(2.1)

where

αm(v) = Ψ
(
v+25
10

)
, βm(v) = 4 exp

(
v
18

)
,

αn(v) = 0.1Ψ
(
v+10
10

)
, βn(v) = 0.125 exp

(
v
80

)
,

αh(v) = 0.07 exp
(

v
20

)
, βh(v) = 1

1+exp( v+30
10 )

,

Ψ(v) = v
exp(v)−1 .

(2.2)

Each ion channel consists of independent identical subunits, which must all open to allow
ions to pass through. The gating variables m, n, and h take values in (0, 1) and represent
the fraction of subunits which are open. The term n4 enters into the potassium conductance
because potassium channels consist of four identical subunits; analogous structures account
for the m3h term in the sodium conductance [5]. The gating variable equations are master
equations for continuous-time Markov chains with voltage-dependent transition rates α and
β; the Markov chains describe the opening and closing of the corresponding channel subunits.
The v̇ equation is Kirchoff’s current law. Action potentials are downward voltage spikes and
a positive I corresponds to an inflow of positively-charged ions. The voltage convention here
is that of [18] and opposite contemporary usage: the membrane voltage v is defined by

v = voltage outside − voltage inside.

Action potentials are generally initiated by perturbations to the membrane voltage. Such
perturbations may be caused, for instance, by the flow of ions across the cell membrane. Be-
cause neurons transmit signals through spatially and temporally localized pulses, it is natural
to model stimuli as impulses [31]. The simplest type of repetitive, pulsatile stimulus to a
neuron is a periodic impulse train. This means replacing the v̇ equation above by

v̇ = C−1
[
−I − ḡKn

4(v − vK) − ḡNam
3h(v − vNa) − ḡleak(v − vleak)

]
(2.3)

+ A
∑
k∈Z

G(t− kT ),

where G is a “bump” function such that
∫
G(t) dt = 1. For simplicity, most of this paper uses

the choice G(t) = δ(t); section 5.2 discusses the response of the Hodgkin–Huxley system to a
pulsatile drive with

G(t) =

{
1/t0, 0 ≤ t ≤ t0,
0 otherwise.

(2.4)
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Mathematically, one can also choose to perturb the gating variables, but such perturbations
are not entirely natural and are not considered here.

This paper uses the original Hodgkin–Huxley parameters [18]:

vNa = −115 mV, ḡNa = 120 mΩ−1/cm2,

vK = +12 mV, ḡK = 36 mΩ−1/cm2,

vleak = −10.613 mV, ḡleak = 0.3 mΩ−1/cm2,

C = 1 μF/cm2.

(2.5)

Time is measured in milliseconds and current density in μA/cm2.

Figure 2 shows a bifurcation diagram for the unforced Hodgkin–Huxley equations. When
I ≤ 6 (not shown in figure), in particular when I = 0, the neuron maintains a stable rest
state. This corresponds to a branch of stable fixed points continuing beyond the left edge of the
diagram. A sufficiently large value of I causes a neuron to fire repeatedly, which corresponds
to the creation of a limit cycle through a saddle-node bifurcation of periodic orbits. Further
increasing I destabilizes the rest state through a subcritical Hopf bifurcation.

In this paper, the injected current is always set to a value near I ≈ 14, corresponding to a
steady ionic current which destabilizes the rest state. The phenomena studied here are insen-
sitive to the precise value of I, as long as it ensures the existence of a stable limit cycle and an
unstable fixed point. As explained in the introduction, these properties simplify the interpreta-
tion of numerical simulations. For this choice of I, the Jacobian of the Hodgkin–Huxley vector
field (see (2.1)) at the unstable fixed point has two real eigenvalues {−4.97815,−0.146991} in
the left half plane, and a complex conjugate pair 0.0763367± 0.61866i in the right half plane.
The fixed point thus has two-dimensional stable and unstable manifolds. The Lyapunov ex-
ponents associated with the limit cycle are 0, ≈ −0.20, ≈ −2.0, and ≈ −8.3. Its period is
T0 ≈ 12.944.

3. Main numerical results. Lyapunov exponents provide a convenient way to characterize
the asymptotic dynamics of (2.3). Let φt : R

4 → R
4 denote the flow map generated by the

unforced Hodgkin–Huxley equations, T the drive period, and A the drive amplitude. The
Poincaré map

FT (v,m, n, h) = φT (v + A,m, n, h)(3.1)

takes a Hodgkin–Huxley state vector (v,m, n, h), applies a pulse of amplitude A to the mem-
brane voltage, then evolves it for time T . Iterating the map FT thus gives a stroboscopic record
of the state of our pulse-driven Hodgkin–Huxley system before the arrival of each pulse. The
long-term dynamical behavior of the pulse-driven Hodgkin–Huxley oscillator can be deduced
from the asymptotic dynamics of FT , which is characterized by its (largest) Lyapunov expo-
nent λmax [13]:

λmax < 0 ⇔ FT has sinks ⇔ kicked flow is entrained to input,
λmax = 0 ⇔ FT is quasi-periodic ⇔ kicked flow drifts relative to input,
λmax > 0 ⇔ FT is chaotic ⇔ kicked flow is chaotic.
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Figure 2. The bifurcation diagram for the Hodgkin–Huxley equations as the injected current I is varied.
The line in the middle marks the v coordinate of the rest state. The solid blue part is stable, while the dashed
red part is unstable. Solid black dots near the top and the bottom of the figure are the maximum and minimum v
values of limit cycles. Empty black circles are the maximum and minimum v values of unstable cycles. The fixed
point undergoes a subcritical Hopf bifurcation as I increases. This diagram is computed using XPPAUT [7].

(Sinks refer to stable fixed points and stable periodic orbits.) Note that, of the scenarios given
in the introduction, transient chaos alone does not appear in this list: Lyapunov exponents,
being long-time average quantities, cannot detect transient chaos.

Figure 3 shows the Lyapunov exponents of FT as a function of T/T0, where T0 is the
period of the Hodgkin–Huxley limit cycle. Different colors correspond to different values of
A. The periodicity of the response as a function of T is apparent. Because the response
type as a function of T is approximately identical over each period [nT0, (n + 1)T0], it makes
sense to speak of the probability that a randomly chosen drive period T will elicit a particular
asymptotic behavior, for example chaos. More precisely, periodicity ensures that the fraction
pn of drive periods T in [0, nT0] for which λmax > 0 converges to a well-defined limit as n → ∞.
Similar statements hold for λmax < 0 and λmax = 0.
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Figure 3. Asymptotic properties of the pulse-driven flow are described by the dynamics of the time-T map
FT (see (3.1)) and its largest Lyapunov exponent λmax. Entrainment corresponds to λmax < 0, and chaos
corresponds to λmax > 0. This figure shows λmax as a function of the drive period T , with T ranging from
T0 ≈ 13 (the intrinsic period of the unforced Hodgkin–Huxley system; see section 2) to 8 · T0 ≈ 101. Left: Kick
amplitude is A = 5. Right: Kick amplitude is A = 40. Note (i) λmax(T + T0) ≈ λmax(T ); (ii) presence of both
positive and negative exponents for strong kicks (right), and only zero and negative exponents for weak kicks
(left); and (iii) the presence of more negative exponents than positive ones. See section 4 for a discussion.
Lyapunov exponents are estimated by iterating FT for 1000 steps and tracking the rate of growth of a tangent
vector.

Figure 4 shows these probabilities as functions of A. At A = 10, the probability of obtain-
ing a positive exponent is roughly 20%, and the probability of obtaining a negative exponent
is roughly 70%. Thus, if one were to pick T randomly out of an interval [NT0, (N + 1)T0]
for large fixed integer N , the probability that λmax (FT ) > 0 would be about 20%. Figure 4
shows that when A is small, the most likely type of behavior is rotation-like behavior. This
possibility becomes less likely as A increases. At the same time, sinks and chaos both be-
come more likely, with sinks dominating the scene. One feature of Figure 4 specific to the
pulse-driven Hodgkin–Huxley flow is that when A is large, the system prefers entrainment



186 KEVIN K. LIN

40.030.020.010.0

Drive amplitude

1.0

0.8

0.6

0.4

0.2

0.0

P
ro

ba
bi

lit
y Sinks

Chaos

Rotations

Unknown

Figure 4. The probability of different response types, as a function of the drive amplitude A. For each
drive amplitude A, the fraction of drive periods T ∈ [T0, 8T0] for which λmax (FT ) > 0, etc., is computed by
sampling from a uniform grid in [T0, 8T0]. It is natural to equate these fractions with probabilities because
the Lyapunov exponents are roughly periodic functions of T (and become more so as T → ∞), as shown in
Figure 3 and explained in section 4. Empirical definitions: Let λ̂ denote the estimated Lyapunov exponent and
ε the estimated standard error. Then “chaos” is defined as λ̂ > 3ε, “entrainment” λ̂ < −3ε, and “rotation”∣∣λ̂∣∣ < ε/3.

over chaos, in the sense that entrainment has higher probability. This preference is more
pronounced as A increases. Note that in computing Lyapunov exponents numerically, we only
have access to finite time information. In principle, this means that it is virtually impossible
to distinguish persistent chaotic behavior from transient chaos caused by a “large” horseshoe
(but see section 5.1).

In all numerical simulations shown in this paper, (2.1) is integrated using an adaptive
integrator of Runge–Kutta–Fehlberg type, with an error tolerance of 10−6 (in the sup norm)
[30]. The largest Lyapunov exponent λmax of FT is computed in a straightforward manner, by
choosing a nonzero unit vector w ∈ R

4 and estimating the rate of growth of ||(DFT )nw||. The
matrix-vector product (DFT )nw is easily computed via the variational equations ẋ = H(x),
ẇ = DH(x) · w for the Hodgkin–Huxley vector field H. (DH is the Jacobian matrix of H;
see [10] for details.)

4. Discussion.

4.1. Response to a single pulse: Phase-resetting curves. This section reviews phase-
resetting curves. See Winfree [38], Glass and Mackey [11], and Brown, Moehlis, and Holmes
[4] for more details and applications, and Guckenheimer and Holmes [13] for background
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information on dynamical systems theory. See [7, 8, 9, 37] for further discussions of phase-
resetting curves.

Let φt : R
n → R

n be a flow generated by a smooth vector field with a hyperbolic limit
cycle γ. Such a limit cycle represents a stable nonlinear oscillator. The basin of attraction
of γ is denoted B(γ). The hyperbolicity of γ guarantees that points in B(γ) converge to γ
exponentially fast. (It is convenient to use γ to refer to both the trajectory γ : R → R

n

and the invariant point set it defines.) An impulsive perturbation (“kick”) to the nonlinear
oscillator can be defined by specifying a kick amplitude A and a kick direction K̂ : R

n → R
n

and defining a family of kick maps

KA(x) = x + A · K̂(x),(4.1)

so that kicks send each point x ∈ R
n to KA(x). For what follows, KA should be smooth and

satisfy KA(B(γ)) ⊂ B(γ).
The Hodgkin–Huxley system with the value of I given in section 2 is a nonlinear oscillator

whose basin B(γ) is an open subset of R
4. The kick map corresponding to an instantaneous

voltage spike is simply KA(v,m, n, h) = (v + A,m, n, h). As in section 3, it is convenient to
introduce the time-T map

FT = φT ◦KA,(4.2)

where ◦ denotes function composition. Iterating FT gives a stroboscopic record of the system
state before the arrival of each kick, and thus describes the long-time dynamics of the flow φt

under repeated, T -periodic kicks.
Because the phase dimension n may be large, the dynamics of FT : R

n → R
n may be

difficult to analyze. Winfree observed that every point near the limit cycle γ must converge
to γ as t → ∞, and so the flow near γ is dominated by the rotational motion along γ. Thus,
one can reduce the dimension of the phase space from n to 1, at least heuristically. To do this,
first define the phase function θ : γ → [0, T0) by fixing a reference point x0 ∈ γ and requiring
that φθ(x)(x0) = x for all x ∈ γ. By construction, θ satisfies d

dt (θ(γ(t))) = 1, 0 ≤ t < T0.
The function θ can be extended to a function θ : B(γ) → [0, T0) by projecting along strong-
stable manifolds:3 if y is a point in the basin of γ, then θ(y) is defined to be θ(x), where x is
the unique point such that y ∈ Wss(x). This definition of phase preserves the property that
d
dt (θ(φt(x))) = 1.

Consider the limit [12]

F̄T = lim
n→+∞

FT+nT0 .(4.4)

The map F̄T is well defined on the basin of γ and retracts the basin onto γ; i.e., F̄T (x) ∈ γ for
all x ∈ B(γ). Thus, F̄T induces an interval map fT : [0, T0) → [0, T0) which, given the current

3The strong-stable manifold Wss(x) of x ∈ γ is the set

Wss(x) =

{
y ∈ R

n : lim
n∈Z,n→+∞

φnT0(y) → x

}
.(4.3)

When the vector field generating φt is smooth, the strong-stable manifolds are (locally) smooth submanifolds
of R

n. The strong-stable linear subspace Ess(x) is the tangent space of Wss(x) at x. See [12, 13].
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phase of the system, yields the new phase after kicking and evolving the system for time T .
That is, fT (θ(x)) = θ(FT (x)) for all x ∈ B(γ).

The map fT is the phase-resetting curve4 or, more precisely, the finite phase-resetting
curve (infinitesimal phase-resetting curves [4, 7] are not needed here). By construction, it has
the property that

fT+δ(t) = fT (t) + δ (mod T0).(4.5)

Thus, the family of maps {fT } is periodic in T .

Periodicity in drive period T . The approximate periodicity of λmax(FT ) seen in Figure 3 is
easy to understand heuristically: kicking the oscillator every T seconds and kicking it every T+
T0 seconds should yield the same asymptotic response because the oscillator simply traverses
γ at frequency 1/T0 between kicks. One can restate this using phase-resetting curves: if the
drive period T is sufficiently large and θ(x0) = t0, then the fT -orbit (t0, fT (t0), f

2
T (t0), . . . )

should closely follow the phases (θ(x0), θ(FT (x0)), θ(F
2
T (x0)), . . . ) of the corresponding FT -

orbit. Since fT+T0 = fT , this suggests that λmax(FT+T0) ≈ λmax(FT ).

Preference for entrainment. Figure 5 shows phase-resetting curves for the Hodgkin–Huxley
equations for various values of drive period T and drive amplitude A. For sufficiently small
values of A, the phase-resetting curves are circle diffeomorphisms: either there are sinks (i.e.,
stable fixed points or stable periodic orbits), or the map is conjugate to a rotation on a circle
and the response of the kicked oscillator drifts relative to the periodic drive. As A increases,
the graph of fT rather quickly folds over and acquires critical points. A striking feature of the
graphs in Figure 5 is the “plateau,” a phase interval over which fT varies very slowly. Another
striking feature is the “kink” around θ ≈ 9.8. These features are discussed in more depth in
section 5. For now, notice that the plateau provides a simple mechanism for creating sinks:
changing the kick period T shifts the graph of fT vertically. Whenever the graph intersects
the diagonal with a derivative |f ′

T | < 1, then a stable fixed point is created.

This mechanism can be used to verify the results of Figure 4: compute the graph of the
first return map of fT to an interval around the plateau, then shift the graph vertically using
a number of different values of T and estimate the fraction of T ’s for which fT has a stable
fixed point (see Figure 6). Table 1 shows the results. For A = 10, the 58% probability of
sinks corresponds fairly closely with Figure 4. It is unclear whether the ambiguous exponents
in Figure 4 really represent positive or negative Lyapunov exponents. If a significant fraction
of the ambiguous exponents are really negative, then they must come from small sinks.

Note on numerics. Phase-resetting curves are computed here using a variation of the
Ermentrout–Kopell adjoint method [4, 8]. The method is described in the appendix. A sys-
tematic comparison of this method to existing methods for computing phase-resetting curves
is beyond the scope of the present paper and will be presented elsewhere.

4.2. Response to repeated pulses: Wang–Young theory. Phase-resetting curves pro-
vide simple, intuitive explanations for many dynamical properties of pulse-driven nonlinear
oscillators. For our spiking Hodgkin–Huxley oscillator, explicitly computed phase-resetting

4Wang and Young refer to phase-resetting curves as singular limits. Phase-resetting curves are also some-
times called phase transition curves [11].
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Figure 5. The graph of the lift f̃T of fT , i.e., the unique continuous map R → R such that f̃T = fT on
[0, T0) and f̃T (t + T0) = f̃T (t) (mod T0), for the pulse-driven Hodgkin–Huxley equations. Drive amplitudes are
given under each panel. The precise value of the drive period T is not so important; varying T shifts the graph
vertically (see (4.5)). Note that fT has winding number 1 for A = 5 and A = 10, and has winding number
0 for A = 20. The numerical data suggests that the degree changes around A ≈ 13.589; the precise geometric
mechanism is not clear. Note that phase ranges from 0 to the intrinsic period T0 ≈ 12.9 of the Hodgkin–Huxley
limit cycle.

curves show why our pulse-driven neuron prefers entrainment over chaos. In order to infer
asymptotic behavior, there needs to be a correspondence between the orbits of fT and FT ,
and the phase of x ∈ B(γ) generally does not determine the phase of FT (x): it may only



190 KEVIN K. LIN

10.09.08.07.06.05.04.0

Old phase

10.0

9.0

8.0

7.0

6.0

5.0

4.0

N
ew

 p
ha

se

Figure 6. The first return map RfT to the interval [4, 10] (chosen to enclose the plateau), for A = 10 and
T = 17.6. The blue line marks the diagonal.

Table 1
Estimates of the probability of obtaining sinks near the plateau, as a function of A. The data for this table

is computed by trying about 40 values of T for each choice of A and examining the graph of the first return
map to the interval [4, 10] (chosen to coincide with the “plateau”) and its intersection(s) with the diagonal.

Drive amplitude A Prob. of sink near plateau Prob. of λmax < 0

5 41% 48%
10 58% 62%
20 68% 70%
30 76% 78%

do so approximately for a finite number of iterates. When λmax(fT ) < 0, this is enough to
show that fT orbits indeed approximate the phases of FT . Inferring chaotic behavior for FT

from fT is far more difficult. Wang–Young theory provides a mathematical framework for
inferring chaotic behavior using phase-resetting curves and, in addition, explains why chaotic
phenomena (and all the other scenarios) are prevalent.

Shear is an important ingredient of Wang–Young theory. Let γ be the limit cycle which
represents the unforced nonlinear oscillator. Near γ, the dynamics follows the periodic rota-
tional motion on γ. Shear refers to the presence of an angular velocity gradient around γ:
the stronger the shear, the sharper the angular velocity changes at γ. In two dimensions, this
means the flow runs much faster on one side of γ than on the other; in the presence of strong
shear, strong stable manifolds tend to become more nearly tangent to γ.

Shear and its interaction with kicks are illustrated in a simple model in Figure 7. In the
presence of strong shear, most ways of kicking the oscillator which take advantage of shear
(e.g., kicks which do not take x ∈ γ too close to the strong-stable manifold Wss(x)) will cause
segments of the limit cycle to stretch and fold as they fall back toward γ. The phase space
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Figure 7. A simple model (see (4.6)) which illustrates the effect of shear. In (a), a large number of initial
conditions are placed around a limit cycle (the black circle), and a radial kick is applied to each point. The blue
curve shows the resulting positions of each initial condition. In (b), the kicked points are allowed to flow. The
red box contains one of the turning points (see section 4.2).

stretching caused by shear manifests itself in phase intervals over which |f ′
T | > 1. This ex-

pansion is conducive to chaotic behavior. However, shear also creates regions of contraction
around “turning points,” an example of which is highlighted in Figure 7. Such turning points
correspond to critical points on the phase-resetting curve and can easily counteract the ex-
pansion needed for a positive Lyapunov exponent. The competition between expansion and
contraction is the main source of difficulty in proving λmax(FT ) > 0.

To infer the existence of parameters for which the time-T map FT is fully chaotic, Wang
and Young use results from their previous work on strange attractors with one expanding
direction and a roughly toroidal geometry [33, 36]. Their main result gives conditions under
which there must be T for which λmax(FT ) > 0. Furthermore, one can find such “chaotic
parameters” near “nice” values of T for which fT has a positive Lyapunov exponent. Applying
the general theory to kicked oscillators requires checking certain geometric conditions. This
has been done for a few concrete classes of models [27, 34, 35]. To illustrate the consequences
of the theorems, consider the simple mechanical system [34]

θ̈(t) + λθ̇(t) = μ + A · K̂(θ(t))
∑
n∈Z

δ(t− nT ).(4.6)

This model was first studied by Zaslavsky, who discovered that this simple system can exhibit
fully chaotic behavior [40]. For (4.6), it can be shown that the full range of scenarios enumer-
ated in the introduction take place and that they are all prevalent. More precisely, Wang and
Young prove (see Theorems 1–3 in [34]) that the following hold:

1. Invariant curve and weak kicks. When the drive amplitude A is sufficiently small
(which is equivalent to having a large enough contraction rate λ), there exists a simple
closed curve γ̃ to which all orbits of FT converge and which is invariant under FT .
Moreover, we have the following dichotomy:



192 KEVIN K. LIN

(a) Quasi-periodic attractors. There exists a set of T of positive Lebesgue measure
for which FT is topologically conjugate to an irrational rotation. In this case, FT

is uniquely ergodic on γ̃.
(b) Gradient-like dynamics. There exists an open set of T such that FT has a finite

number of periodic sinks and saddles on γ̃, and every orbit converges to one of
these periodic orbits.

2. Gradient-like dynamics without an invariant curve. As A increases (or λ decreases),
the invariant curve γ̃ breaks up. Nevertheless, there continues to be an invariant set
(no longer a simple closed curve) on which gradient-like dynamics persists.

3. Transient chaos. For even larger A or smaller λ, Smale horseshoes (see [13]) will form.
Horseshoes can coexist with sinks and saddles, creating transient chaos.

4. Chaos. In the presence of sufficiently strong shear, there exists a positive measure set
of drive periods T for which FT is fully chaotic in the sense that it possesses (i) a
strange attractor with a positive Lyapunov exponent, (ii) at least one and at most
finitely many ergodic SRB measures5 with no zero Lyapunov exponents, (iii) a central
limit theorem, and (iv) exponential decay of correlations if a power FN

T is mixing for
some SRB measure ν.

Note that this list of (fairly well understood) scenarios may not be exhaustive. Other scenarios
or combinations of scenarios are not excluded by the theory. Also, the kicks in (4.6) are purely
radial. This is not strictly necessary; any kick map which takes advantage of shear will do.
See [34] for precise conditions and proofs.

5. Further results.

5.1. More on the Hodgkin–Huxley phase-resetting curve.

Plateau. The plateau in the phase-resetting curve for our pulse-driven Hodgkin–Huxley
model (see Figure 5) corresponds to a segment γ̄ of the limit cycle γ, which becomes nearly
parallel to a strong-stable manifold after receiving a kick. This can be seen by examining the
factors which contribute to the derivative f ′

T and which can potentially cause f ′
T to become

small over a relatively large phase interval. This can be checked by writing fT as a composition
of other functions and differentiating.

Let γ : R → R
4 denote the limit cycle trajectory. If we choose γ(0) so that θ(γ(0)) = 0,

then θ(γ(t)) = t for all t ∈ [0, T0), and

fT = θ ◦ FT ◦ γ
= θ ◦ φT ◦KA ◦ γ.

Changing T does not affect f ′
T , so we can set T = 0. Let f = f0. Then f = θ ◦KA ◦ γ, and

the chain rule gives

f ′ = (Dθ ◦KA ◦ γ) · (DKA ◦ γ) · γ̇.(5.1)

5SRB measures are natural invariant measures for dissipative dynamical systems. They characterize the
asymptotic behavior of a Lebesgue-positive measure set of initial conditions and have a number of nice math-
ematical properties. See Young [39] for an introduction.
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However, KA(v,m, n, h) = (v+A,m, n, h), and thus its Jacobian DKA is the identity matrix,
and for all t ∈ [0, T0),

f ′(t) = Dθ(KA(γ(t))) · γ̇(t)

= |Dθ(KA(γ(t)))| · |γ̇(t)| · cos(angle(Dθ(KA(γ(t))), γ̇(t)))(5.2)

= |Dθ(KA(γ(t)))| · |γ̇(t)| · sin(�(t)),

where �(t) is the angle between γ̇(t) and the strong-stable manifold at KA(γ(t)). The last
step uses the fact that the phase function θ : B(γ) → [0, T0) is constant on strong-stable
manifolds (see section 4). This implies that the gradient Dθ(x) is everywhere orthogonal to
Wss(x

∗), where x∗ is the unique point in γ having the same phase as x. The factors in (5.2)
thus have simple, geometric meaning: γ(t) is a point on the limit cycle γ, and |γ̇(t)| is the
speed of the limit cycle at that point; �(t) is the angle between γ̇(t) and the strong-stable
manifold at KA(γ(t)); and |Dθ| measures the rate at which the phase is changing at KA(γ(t)).

Figure 8 shows f ′ alongside the three factors in (5.2). The figure shows that the plateau,
where f ′

T becomes nearly 0 over a long phase interval, coincides with the near-vanishing of
�(t). The other factors of f ′ stay nearly constant over this interval. Thus, there is a segment
γ̄ of the limit cycle γ, corresponding to the phase interval where �(t) is small, such that KA(γ̄)
is nearly tangent to a strong-stable manifold. That the segment γ̄, which may be small as a
subset of R

4, corresponds to a large phase interval is due to the relatively slow speed of the
limit cycle near γ̄.

What this argument does not explain is the robustness of this tangency (equivalently, the
robustness of the plateau) as the drive amplitude A increases (see Figure 5). This requires a
detailed analysis of the geometry (in R

4!) of the strong-stable manifolds (see section 6).
Numerical computation of Dθ. Figure 8 requires the numerical computation of the gradient

Dθ(x) for x ∈ B(γ). This can be done as follows.
Fix x ∈ B(γ) and consider φn

T0
(x). Clearly, the limit limn→∞ φn

T0
(x) = x∗ exists and has

the property that x∗ ∈ γ, θ(x∗) = θ(x), and x ∈ Wss(x
∗). Set πss(x) = x∗. Then πss projects

B(γ) onto γ and is the identity map on γ. Furthermore, the nullspace of the Jacobian matrix
Dπss(x) of πss is the tangent to Wss(πss(x)) at x, by construction.

To compute Dθ(x), the foregoing discussion suggests that we compute Dφn
T0

(x) for some
large finite n. For any finite n, the singular values of Dφn

T0
(x) consist of a dominant singular

value σ1 and three nearly zero singular values σ2, σ3, and σ4. The σi → 0 as n → ∞ for
i = 2, 3, 4. Denote the left and right singular vectors associated with σ1 by u and v. It is
easy to check that the right eigenvector v is orthogonal to the null space of Dπss(x) and hence
tangent to Dθ.

This computation requires a relatively accurate estimate of the intrinsic period T0 of the
limit cycle γ, without which the computation would not converge. This paper adopts the
following strategy: instead of estimating T0 just once and reusing its value, solve the system
of 24 equations

ẋ1 = H(x1), ẋ2 = H(x2), J̇ = DH(x2) · J(5.3)

with initial conditions

x1(0) ∈ γ, x2(0) = x, J(0) = Id4×4,(5.4)
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Figure 8. The origin of the plateau: in (a), the curves are (i) black: |f ′(t)|; (ii) blue: |sin(�(t))|; (iii) red:
|Dθ(KA(t))|; (iv) purple: |γ̇(t)|. In (b), the graph of fT near the plateau is shown for reference. Here, A = 10.
(c) The speed of the Hodgkin–Huxley flow along γ. The vertical lines mark the interval [5, 9], which is part of
the plateau.

where H is the Hodgkin–Huxley flow field and x is the point at which we would like to
evaluate Dθ. Note that x1, x2 ∈ R

4 and J ∈ R
4×4. The solution of these equations then

gives x2(t) = φt(x) and J(t) = Dφt(x). The reference trajectory x1 is used only to count the
number of periods which have elapsed, and the trajectory (x2, J) is used to compute Dπss(x).
This procedure works fairly well in practice.
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Figure 9. (a) The graph of fT ◦ g−1 with drive amplitude A = 10, with the abscissa shown in a new
coordinate system θ′ = g(θ) to magnify the region around the “kink.” No interpolation is done in this figure:
only actually computed points are shown. (b) The graph of the coordinate transformation g. The map g is
generated automatically by the simple adaptive algorithm described in the appendix.

Kink. It is natural to ask whether fT (see Figure 5), for A = 10 or A = 20, is discontinuous
around the kink. A discontinuity indicates that there are points in a neighborhood of γ which
can be kicked outside the basin of γ. This is not likely the case: Figure 9 shows a magnified
view of the phase-resetting curve near the kink; the graph does not include any numerical
interpolation. The figure is obtained by fixing a small parameter δ > 0 and adaptively refining
the grid {θn} on which the phase-resetting curve is evaluated until |fT (θn+1) − fT (θn)| ≤ δ.
In Figure 9, δ is set to 0.1. The adaptive procedure (see the appendix) continues to converge
for smaller values of δ.

Figure 10 suggests an explanation for the kink: that it is likely caused by a segment of
γ being kicked near the stable manifold of the unstable fixed point. This would cause the
segment to wind around the stable manifold and eventually spiral away from the fixed point.
(Recall that the two unstable eigenvalues of the fixed point form a complex conjugate pair.)
In the process the kicked segment spreads apart, and its subsets pick up different amounts of
time delays. However, because the Hodgkin–Huxley phase space is four-dimensional, Figure 10
cannot give a reliable picture of the dynamics: projecting onto two dimensions loses too much
information.

The scenario sketched above predicts that there exist a critical kick amplitude Acrit at
which KA(γ) intersects the stable manifold of the fixed point. (There may be more than one
intersection, and more than one value of A which cause intersections.) As A → Acrit, the phase-
resetting curve should start winding around S1 more and more. This can be numerically tested:
an estimate of Acrit is computed using the Nelder–Meade algorithm [30] to minimize the closest
distance of a trajectory to the fixed point. This yields a critical value Acrit ≈ 13.58953 . . . .
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Figure 10. A suggestive picture: in (a), a segment of γ, starting in the upper left corner of the picture, is
kicked straight across to the upper right corner. It then follows the flow toward the fixed point for some time
before spiraling away. The overall direction of motion is top to bottom. (b) Another view of the approach to
the fixed point. The overall direction of motion here is right to left. The kick amplitude is A = 13.589.

When A = Acrit exactly, fT should wind around infinitely many times and possess a singularity
near the location(s) of intersection. For A 
= Acrit, fT remains smooth, but as A → Acrit, fT
should develop a singularity and blow up. See Figure 11.

Horseshoes and transient chaos. Wang–Young theory also guarantees the existence of T ’s
for which FT exhibits transient chaos; i.e., FT possesses a Smale horseshoe [13] together with
a sink. The coexistence of a horseshoe with a sink has the following effect on the dynamics:
almost every FT -orbit would eventually fall into a sink, but an orbit which wanders near a
horseshoe would dance around unpredictably for a finite number of iterations. Two nearby
orbits which enter the vicinity of a horseshoe can emerge widely separated and fall into the
sink out of phase (unless the sink happens to be a fixed point). In terms of time series data,
this kind of behavior can be recognized by looking at pairs of trajectories and finding that
they chaotically “flutter” about before settling down into a steady periodic motion, likely out
of phase.

In contrast to entrainment and chaos, transient chaotic behavior is difficult to observe
in the pulse-driven Hodgkin–Huxley system. This is because the most likely place to find a
horseshoe is near the kink, where the expansion is so strong that most trajectories escape very
quickly. Nevertheless, it is possible to find indirect evidence for horseshoes in the pulse-driven
Hodgkin–Huxley model. To do so, one looks for an interval I ⊂ [0, T0) such that fT (I) gets
mapped completely across I at least twice. It is easy, for example, to find a “small” horseshoe
around the kink in the phase-resetting curve; see Figure 12. The phase interval I tells us the
rough location of a horseshoe for FT .
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Figure 11. Graphs of fT for kick amplitudes A approaching Acrit from below (a)–(c) and above (d)–(f).
The horizontal lines mark integral multiples of T0.

To go from such an interval I to a horseshoe for the full map FT , it is necessary to (i) blow
up the corresponding segment of γ to form an open set U ⊂ R

4 such that FT (U) intersects U
at least twice, and such that the intersection stretches all the way across U in the unstable
direction (along γ); and (ii) find invariant cones [13]. This can be done in a straightforward
manner and is not discussed further here.

5.2. Miscellany.

Decay of correlations. Wang–Young theory predicts that when the dynamics of a pulse-
driven oscillator is chaotic and there is a unique SRB measure, time correlations (more pre-
cisely time autocovariance functions) decay exponentially fast in time. Figure 13 shows the
time autocovariance function

Cvv(n) =

∫
(v ◦ Fn

T ) · v dμ−
(∫

v dμ

)2

(5.5)
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Figure 12. The phase-resetting map and an interval I (marked by the straight lines) which maps across
itself twice. The abscissa (but not the ordinate) is shown in transformed coordinates. Here, A = 10 and T = 81.
This is a “small” horseshoe: because the derivative of fT is so large there (on the order of 103 ∼ 104), most
numerically computed orbits escape the horseshoe after a few iterations.

for the voltage variable v (μ is an ergodic invariant measure). While it clearly decays as
n → ∞ and thus provides evidence that the invariant measure is mixing, the data is not
sufficient to confirm that the decay is exponential.

Response to finite-duration pulses. A natural variation on the numerical experiments
of previous sections is to replace instantaneous impulses with finite-duration pulses. Heuris-
tically, if the pulse duration t0 is less than the fastest of the intrinsic time scales of γ, the
resulting response should be essentially the same as the response to instantaneous impulses.
With I ≈ 14, these time scales are 12.944 (= the period), 5.1, 0.50, and 0.12 (corresponding
to the negative Lyapunov exponents).

Figure 14 summarizes the numerical results for t0 = 0.05 (shorter than all time scales),
0.3 (shorter than all but one time scale), 2.75 (shorter than all but two fastest time scales),
and 9.0 (very slow, not really pulsatile in any sense of the word). These graphs should be
compared to Figure 4. The pulse amplitude is adjusted so that the total amount of charge
delivered is the same as for an impulse of amplitude A. Interestingly enough, the behaviors
seen earlier are quite robust and disappear only when t0 = 9. These results suggest that the
contracting directions do not mix very much over γ, and only the slowest contracting time
scale participates in the production of chaotic behavior.
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Figure 13. Normalized autocorrelation function Cvv(n) for the v variable of the time-T map FT . This graph
indicates that the dynamics is mixing, but the data is insufficient to confirm that the system is exponentially
mixing.

6. Outlook. The results reported here show that the pulse-driven Hodgkin–Huxley model
(2.3) responds to low-frequency (relative to the intrinsic period T0 of the spiking neuron) pe-
riodic impulse forcing in a wide range of ways. Depending on the drive period and drive
amplitude, the response can range from entrainment to fully chaotic behavior. This is con-
sistent with the predictions of Wang–Young theory. Furthermore, as shown in section 4, it is
possible to explain some phenomena specific to our pulse-driven Hodgkin–Huxley oscillator in
terms of special features of the phase-resetting curve and provide a partial understanding of
the source of these features.

Some interesting directions for future work include the following.

Random kick times. The shape of the Hodgkin–Huxley phase-resetting curve suggests that
if one were to drive a Hodgkin–Huxley neuron using a pulse train with random kick times,
the resulting random dynamical system could have a negative Lyapunov exponent. This is
because the phase-resetting curve moves up and down from kick to kick, and for any kick time
distribution which is sufficiently uniform (e.g., an exponential distribution), the probability
that the plateau intersects the diagonal is high. The size of the plateau suggests that over
many iterates, contraction may dominate expansion, leading to a negative Lyapunov exponent.
A negative Lyapunov exponent implies that two Hodgkin–Huxley neurons, when driven by a
common pulse train with random kick times, will synchronize. That is, the plateau provides a
way to create a “random fixed point” [22]. These predictions are consistent with preliminary
numerical results and with a perturbation theory developed by Nakao et al. for randomly
kicked oscillators in the limit of weak kicks [26]. The heuristic geometric argument sketched
above may lead to an extension of their result to the regime of strong kicks.

This synchronization mechanism has also been studied numerically by Doi in the context of
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Figure 14. Distribution of Lyapunov exponents for I ≈ 14 with finite-duration pulse of duration (a)
t0 = 0.05, (b) t0 = 0.3, (c) t0 = 2.75, and (d) t0 = 9.0. See Figure 4 caption for details. Recall that the
Lyapunov exponents of the unperturbed limit cycle γ are −0.196, −2.01, and −8.31, corresponding to relaxation
times of 5.1, 0.50, and 0.12.

a simple piecewise linear map [6]. In addition, there is an extensive literature on noise-induced
synchrony in neural models, including white-noise-driven Hodgkin–Huxley equations [29, 41].
Models exhibiting noise-induced synchrony provide a concrete framework for exploring neural
reliability [21, 23].

Robustness of the phase-resetting curve. How robust are the features (plateau, kink) of the



ENTRAINMENT AND CHAOS IN THE HODGKIN–HUXLEY MODEL 201

Hodgkin–Huxley phase-resetting curve under perturbations to parameters? How robust is the
geometry of the near-tangency of kicked segments and strong-stable manifolds responsible for
forming the plateau? As the range of phenomena predicted by Wang–Young theory may be
present in two-dimensional models like the Morris–Lecar or FitzHugh–Nagumo, these models
may provide a good starting point for exploring these questions in lower-dimensional settings.

Appendix. Computation of phase-resetting curves. All numerical calculations of phase-
resetting curves reported in this paper use the algorithm described here. It is closely related
to an algorithm due to Ermentrout and Kopell [8]. It is presented here for the sake of
completeness; a systematic comparison with existing methods will appear elsewhere. The
algorithm computes the phase-resetting curve for finite-size perturbations but can be adapted
to compute phase-resetting curves for infinitesimal perturbations. See Appendix A in [4] and
[28, 37] for more general discussions of phase-resetting curves, and Ermentrout, Pascal, and
Gutkin [9] for a discussion of computing phase-resetting curves experimentally.

The basic idea is to numerically compute the strong-stable linear subspaces along the limit
cycle. Then, using these linear subspaces as approximations to strong-stable submanifolds,
project a kicked point down to the limit cycle, where the phase can be estimated. The algo-
rithm really computes strong-stable linear subspaces along γ and uses these linear subspaces
to approximate the phase-resetting curve.

Some preliminaries: the limiting map F̄T = limn→∞ FT+nT0 can be characterized ab-
stractly by the equation

F̄T = πss ◦ φT ◦KA = φT ◦ πss ◦KA,(A.1)

where πss(x) = y if and only if x ∈ Wss(y), i.e., πss : B(γ) → γ maps the basin of γ onto the
limit cycle γ along strong-stable manifolds. The abstract notations (and notions) have their
uses: the projection πss encapsulates the properties of the strong-stable manifolds; e.g., by
definition, the strong-stable manifold Wss(πss(x)) passes through x for any x ∈ B(γ), and the
nullspace of the Jacobian matrix Dπss(x) is precisely the tangent space of the strong-stable
manifold Wss(πss(x)) at x.6

Algorithm (phase resetting curves via stable subspaces).

1. Estimate the period T0 of the limit cycle γ by numerically solving the unforced equa-
tions starting with a point on or near γ.

2. Discretize γ by subdividing the time interval [0, T0) into N intervals and computing
the corresponding points xi ∈ γ. Fix an arbitrary reference point x0 on γ so that each
point on γ can be assigned a unique phase θ ∈ [0, T0).

3. For each point xi computed in the previous step, compute the Jacobian DH(xi) of the
Hodgkin–Huxley flow field H at that point.

6Note that the commutation relation φt ◦πss = πss ◦φt expresses the invariance of the strong-stable foliation
under φt. The map KA, in general, has nothing to do with the flow and does not commute with the other
maps.
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4. Using the results of the previous two steps, solve

ẋ = −H(x),

ξ̇ = η − 〈η, ξ〉ξ,
η = DH(x)T ξ,

(A.2)

using the grid points {xi} computed in the previous steps. The ẋ part of the equation
above is clearly numerically unstable, but that is not a problem because we already
have a numerical representation of γ.
The equations above are a variant of the usual method for computing Lyapunov ex-
ponents [13]. They preserve the length of ξ(t), although in practice it is necessary
to rescale ξ(t) to ensure that this constraint is maintained. As t → ∞, ξ(t) becomes
orthogonal to the strong-stable linear subspace Ess(x(t)) of γ. The subspace Ess(x(t))
is tangent to the strong-stable manifold Wss(x(t)) at x(t).7

5. Using (A.1) in combination with the linear subspaces computed in the previous step,
we can now approximate the phase-resetting curve. Start with a point x ∈ γ and
compute Φt(KA(x)) for increasing t. Let t0 > 0 be the minimum positive time at which
(i) Φt0(KA(x)) has returned to a small, fixed neighborhood of γ (in this paper this is
chosen to be a neighborhood of distance 10−4 around γ), and (ii) Φt0(KA(x)) lies within
one of the precomputed linear subspaces Ess(x∗) for some point x∗. Let θ∗ denote the
phase of the point x∗. Then the new phase of the system is (T + θ∗ − t0) (mod T0).

6. Proceed to the next grid point and repeat.
7. When the derivative of the phase-resetting curve becomes large or infinite, it may

be necessary to adaptively generate the grid points on which the curve is evaluated.
Generally speaking, the grid {xi} constructed in step 2 need not equal the grid {x′i}
on which the phase-resetting curve is evaluated. In particular, the grid {x′i} can be
adaptively chosen to ensure that

∣∣f̂a(x′i+1)−f̂a(x
′
i)
∣∣ ≤ ε, where f̂a denotes the computed

phase-resetting curve and ε is a fixed number, in this paper usually 0.1. This adaptive
mechanism provides a way to detect discontinuities in fT .
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7These equations can be generalized to the following:

ẋ = −H(x),

ξ̇i = ηi − 〈ηi, ξi〉ξi −
∑

j<i

(
〈ξi, ξ̇j〉 + 〈ηi, ξj〉

)
ξj ,

ηi = DH(x)T ξi.

(A.3)

If the vectors (ξi) form an orthonormal basis at t = 0, then the equations will guarantee that (ξi(t)) are
orthonormal for all t > 0. Again, it will be necessary to perform Gram–Schmidt orthogonalizations periodically
to maintain this constraint. The vector ξ1(t), as before, converges to a vector orthogonal to Ess(x(t)). Thus
(ξ2(t), ξ3(t), ξ4(t)) span Ess(x(t)). Similarly, the vectors (ξ3(t), ξ4(t)) span the subspace consisting of the two
fastest contracting directions, and (ξ4(t)) spans the fastest contracting direction.
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Nilpotent Hopf Bifurcations in Coupled Cell Systems∗

Toby Elmhirst† and Martin Golubitsky‡

Abstract. Network architecture can lead to robust synchrony in coupled systems and, surprisingly, to codimen-
sion one bifurcations from synchronous equilibria at which the associated Jacobian is nilpotent. We
prove three theorems concerning nilpotent Hopf bifurcations from synchronous equilibria to periodic
solutions, where the critical eigenvalues have algebraic multiplicity two and geometric multiplicity
one, and discuss these results in the context of three different networks in which the bifurcations
occur generically. Phenomena stemming from these bifurcations include multiple periodic solutions,

solutions that grow at a rate faster than the standard λ
1
2 , and solutions that grow slower than the

standard λ
1
2 . These different bifurcations depend on the network architecture and, in particular, on

the flow-invariant subspaces that are forced to exist by the architecture.

Key words. Hopf bifurcation, coupled cells, nonsemisimple normal form

AMS subject classifications. 34C23, 34C25, 37G05

DOI. 10.1137/050635559

1. Introduction. Stewart, Golubitsky, Pivato, and Török (see [9, 5]) formalized the con-
cept of a coupled cell network, where a cell is a system of ordinary differential equations
(ODEs) and a coupled cell system consists of cells whose equations are coupled. These re-
searchers defined the architecture of coupled cell networks and developed a theory that shows
how network architecture leads to synchrony. The architecture of a coupled cell network is a
graph that indicates which cells have the same phase space, which cells are coupled to which,
and which couplings are the same. Coupled cell systems with a given architecture are called
admissible. In this theory, local network symmetries (which form a groupoid; see [9] for de-
tails) generalize symmetry as a way of organizing network dynamics, and synchrony-breaking
bifurcations replace symmetry-breaking bifurcations as a basic way in which transitions to
complicated dynamics occur.

This paper is concerned with homogeneous networks. These are networks in which there is
only one type of cell and one type of coupling. In particular, the differential equations defining
the time evolution of each cell in any admissible system are identical. Thus these networks
have the property that the diagonal subspace Δ, formed by setting the coordinates in all cells
equal, is flow-invariant for all admissible coupled cell systems. It is therefore expected that
branches of synchronous equilibria can exist in Δ and that synchrony-breaking bifurcations
from these equilibria (bifurcations in which critical eigenvectors of the Jacobian J at the
equilibrium are not in Δ) can occur naturally as one parameter in the differential equations
is varied.
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1 2 3

Figure 1. The three-cell feed-forward chain.

Golubitsky, Nicol, and Stewart [2] observed that a certain three-cell feed-forward network
(see Figure 1) has codimension one synchrony-breaking bifurcations where J restricted to
the center subspace is nonsemisimple. The corresponding Hopf bifurcation, which we call a
nilpotent Hopf bifurcation, leads to periodic solutions whose amplitudes grow with the sur-
prising growth rate of 1/6, rather than the expected growth rate from Hopf bifurcation of
1/2. Leite [6] and Leite and Golubitsky [7] showed that there are 34 different types of homo-
geneous three-cell networks where the number of inputs to each cell is either one or two, and
that several of these, in addition to the feed-forward network, lead to nilpotent bifurcations.

In this paper we develop an approach to nilpotent Hopf bifurcation theory which enables
us to complete the work in [2] by showing that the 1/6 power growth rate is generic in the
codimension one nilpotent Hopf bifurcations of the feed-forward network, and to classify the
periodic solutions that can emanate from codimension one nilpotent Hopf bifurcations in
certain other homogeneous cell networks.

Nilpotent (or 1:1 resonant nonsemisimple) Hopf bifurcations have been considered previ-
ously in a generic setting in [10, 1, 8]. Without the coupled cell framework, such bifurcations
occur in codimension three. However, the structure imposed on admissible vector fields at the
linear level by certain network architectures implies that nilpotent Hopf bifurcations can occur
in these systems at codimension one. Moreover, these same architectures can also put restric-
tions on the higher order terms of admissible vector fields, which force surprising branching
of the solutions.

When investigating structured systems, one fundamental question is “How does the archi-
tecture of the system affect the dynamics,” and already we see unexpected, complex behavior
in simple-looking systems. In addition to aiding our understanding of natural systems, we also
expect applications of a more synthetic nature. In particular, we believe that the “amplifica-
tion” seen in the 1/6 growth rate in the network of Figure 1 could have interesting engineering
consequences.

We begin with a brief review of ordinary Hopf bifurcation and a summary of our main
results.

The standard Hopf theorems. Hopf bifurcation occurs at an equilibrium x0 and at a
parameter value λ0 of

ẋ = F (x, λ), x ∈ Rn, λ ∈ R,(1.1)

when the linearization of (dF )x0,λ0 has a pair of purely imaginary eigenvalues. Generically,
the critical eigenvalues are simple, and no other eigenvalues lie on the imaginary axis. Under
these assumptions we may assume, after a change of coordinates and a rescaling of time, that
x0 = 0, λ0 = 0, the critical eigenvalues of (dF )0,0 are ±i, and locally F (0, λ) = 0.

Let σ(λ) + iω(λ), where σ(0) = 0 and ω(0) = 1, be the eigenvalue extension in (dF )0,λ of
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i. Assume that the eigenvalue crossing condition holds, that is,

σ′(0) �= 0.(1.2)

The two standard Hopf bifurcation theorems [4] then state the following:
1. There is a unique branch of small amplitude periodic solutions to (1.1) with period

near 2π.
2. Generically, the amplitude of the periodic solutions on this branch grows at a rate of

order λ1/2; that is, the bifurcation is of pitchfork type.

The main results. We present three theorems concerning nilpotent Hopf bifurcations in
coupled cell systems. Specifically, in this paper we shall use the term nilpotent Hopf bifurcation
to indicate that there are critical eigenvalues ±ωi of (dF )0,0 at the equilibrium (0, 0), where
ω > 0, that are each double, but with only one (complex conjugate) pair of corresponding
eigenvectors. Typically we will also rescale time so that ω = 1. We note that network
architectures can easily be found that lead to codimension one bifurcations in admissible
vector fields in which the critical eigenvalues have algebraic multiplicity greater than two and
geometric multiplicity one. For example, the n-cell feed-forward chain, obtained by attaching
additional cells to the end of the network in Figure 1, has eigenvalues of algebraic multiplicity
n− 1 and geometric multiplicity one.

We show below that nilpotent Hopf bifurcations can occur generically in codimension one
bifurcations from a synchronous equilibrium in coupled cell networks. This point was noted
previously in [2, 6]. Our focus here is on the nonlinear theory, in which we show that network
architecture can lead generically to multiple periodic solutions whose amplitude growth rate
is greater than, equal to, or less than 1/2.

This variety in nilpotent Hopf bifurcations is due to the type of nonlinear degeneracies
forced by different network architectures on their admissible vector fields. In our approach
we study classes of networks whose architectures force, in codimension one, a particular type
of nonlinear degeneracy in the Liapunov–Schmidt reduced equation. Given this assump-
tion on architecture, we classify the branches of periodic solutions that occur generically in
codimension one bifurcations. Each network architecture can, in principle, lead to different
codimension one bifurcations, just as each symmetry group can lead to different equivariant
bifurcations.

We illustrate our results by discussing the following three specific networks:
(a) the three-cell feed-forward network in Figure 1, whose nilpotent Hopf bifurcation gener-

ically leads to two branches of periodic solutions with amplitude growth at rates of 1/6
and 1/2. The existence of these solutions in a restricted class of coupled cell systems
is shown in [2].

(b) the three-cell network in Figure 2, whose nilpotent Hopf bifurcation generically leads
either to two or four branches of periodic solutions with amplitude growth at the
standard rate of λ1/2.

(c) the five-cell network in Figure 3, whose nilpotent Hopf bifurcation generically leads to
two branches of periodic solutions with amplitude growth at rate λ.

Coupled cell networks and nilpotent normal forms. A general theory for the differential
equations associated with coupled cell networks is outlined in [9, 5]. In particular, an algo-
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Figure 2. A three-cell network with nilpotent linear part.
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Figure 3. A five-cell network with nilpotent linear part.

rithmic way of identifying a class of systems of differential equations with a directed graph is
given. The identification is reasonably intuitive, so we do not describe the general setup here.
Rather, we just list the results for the three networks of Figures 1–3.

(a) Following [2], the coupled cell systems corresponding to the three-cell feed-forward
network in Figure 1 have the form

ẋ1 = f(x1, x1),

ẋ2 = f(x2, x1),

ẋ3 = f(x3, x2),

(1.3)

where x1, x2, x3 ∈ Rk and f : Rk × Rk → Rk is arbitrary. Note that the synchrony
subspace x1 = x2 = x3 is flow-invariant for such systems, and the existence of a
synchronous equilibrium (satisfying f(a, a) = 0) is to be expected. Without loss of
generality we may assume that the synchronous equilibrium is at the origin. The
Jacobian of (1.3) at the origin has the form

J =

⎛
⎝ A + B 0 0

B A 0
0 B A

⎞
⎠ ,

where A = f1(0) is the linearized internal dynamics and B = f2(0) is the linearized
coupling. The 3k eigenvalues and eigenvectors of J are

Eigenvector Eigenvalues Algebraic multiplicity Geometric multiplicity

(0, 0, u)t A 2 1
(v, v, v)t A + B 1 1
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where u is an eigenvector of A and v is an eigenvector of A+B. It follows that when
k ≥ 2, (1.3) can have a codimension one nilpotent Hopf bifurcation.

(b) The coupled cell systems corresponding to the three-cell network in Figure 2 have the
form

ẋ1 = f(x1, x1, x3),

ẋ2 = f(x2, x1, x3),

ẋ3 = f(x3, x2, x3),

(1.4)

where x1, x2, x3 ∈ Rk and the overbar indicates that f : Rk × R2k → Rk satisfies
f(a, b, c) = f(a, c, b). The synchrony subspace x1 = x2 = x3 is still flow-invariant for
such systems, and the existence of a synchronous equilibrium, which without loss of
generality we may assume is at the origin, is to be expected. The Jacobian of (1.4) at
the origin has the form

J =

⎛
⎝ A + B 0 B

B A B
0 B A + B

⎞
⎠ ,(1.5)

where A = f1(0) is the linearized internal dynamics and B = f2(0) = f3(0) is the
linearized coupling. The 3k eigenvalues and eigenvectors of J are

Eigenvector Eigenvalues Algebraic multiplicity Geometric multiplicity

(u, u,−u)t A 2 1
(v, v, v)t A + 2B 1 1

where u is an eigenvector of A and v is an eigenvector of A + 2B. Thus, if k ≥ 2,
codimension one nilpotent Hopf bifurcations occur in this network as well.

(c) The coupled cell systems corresponding to the five-cell network in Figure 3 have the
form

ẋ1 = f(x1, x1, x4, x4),

ẋ2 = f(x2, x1, x2, x5),

ẋ3 = f(x3, x2, x4, x4),

ẋ4 = f(x4, x2, x4, x5),

ẋ5 = f(x5, x1, x2, x3),

(1.6)

where xj ∈ Rk, f : Rk × R3k → Rk, and the overbar indicates that f(a, b, c, d) is
invariant under permutation of b, c, d. The synchrony subspace x1 = x2 = x3 = x4 =
x5 is flow-invariant, and a synchronous equilibrium, which again we may assume is at
the origin, is therefore to be expected. The Jacobian of (1.6) at the origin is

J =

⎛
⎜⎜⎜⎜⎝

A + B 0 0 2B 0
B A + B 0 0 B
0 B A 2B 0
0 B 0 A + B B
B B B 0 A

⎞
⎟⎟⎟⎟⎠ ,
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where A = f1(0) is the linearized internal dynamics and B = f2(0) = f3(0) = f4(0) is
the linearized coupling. The 5k eigenvalues of J are

Eigenvalues Algebraic multiplicity Geometric multiplicity

A± iB 2 1
A + 3B 1 1

Assuming that (1.6) depends on a parameter λ, we can arrange for a codimension one
nilpotent Hopf bifurcation at λ = 0 by taking k = 1, A(λ) = λ, and B(λ) ≡ −1.

Review of the Liapunov–Schmidt reduction proof of Hopf bifurcation. We use the
standard procedure of Liapunov–Schmidt reduction for finding periodic solutions through
Hopf bifurcation (see [3]), but nilpotence dramatically changes this analysis.

Since periodic solutions to (1.1) will not in general have period 2π, rescale time in the
usual way by letting s = (1 + τ)t so that (1.1) becomes

(1 + τ)
dz

ds
= F (z, λ).(1.7)

Fixing the period allows us to define the operator Φ : C1
2π × R × R −→ C2π by

Φ(x, λ, τ) = (1 + τ)
dx

ds
− F (x, λ),(1.8)

where C2π and C1
2π are respectively the Banach spaces of continuous and continuously differ-

entiable 2π-periodic functions x : S1 −→ Rn. Note that
(a) the solutions to Φ(x, λ, τ) = 0 correspond to near 2π-periodic solutions of (1.1),
(b) Φ(0, λ, τ) ≡ 0 since F (0, λ) ≡ 0,
(c) Φ is S1-equivariant, where θ ∈ S1 acts on u ∈ C2π by

(θ · u)(s) = u(s− θ).

In standard Hopf bifurcation, the kernel and cokernel of the Frechet derivative (dΦ)0 are
two-dimensional, and these spaces may be identified with C. Liapunov–Schmidt reduction
implies the existence of a mapping φ : C×R×R → C, whose zeros near the origin parameterize
the small amplitude periodic solutions of Φ = 0. Moreover, this reduction can be performed
to preserve symmetry; that is, we can assume that

φ(eiθz, λ, τ) = eiθφ(z, λ, τ).(1.9)

It follows that

φ(z, λ, τ) = p(|z|2, λ, τ)z + q(|z|2, λ, τ)iz,(1.10)

where p, q are real-valued smooth functions satisfying p(0) = q(0) = 0. Using (1.9), we need
only look for solutions where z = x ∈ R. Hence solutions to φ = 0 are of two types: x = 0
(the trivial equilibrium) and solutions to the system p = q = 0 (the desired small amplitude
periodic solutions).
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In standard Hopf bifurcation, a calculation shows that qτ (0) = −1. Hence, the equation
q = 0 can be solved by the implicit function theorem for τ = τ(x2, λ), where τ(0) = 0, and
small amplitude periodic solutions to (1.1) are found by solving

r(x2, λ) ≡ p(x2, λ, τ(x2, λ)) = 0.(1.11)

Another (more complicated) calculation shows that

rλ(0) = σ′(0).

It follows from the eigenvalue crossing condition that r = 0 can be solved by another applica-
tion of the implicit function theorem for λ = λ(x2), where λ(0) = 0, and the first Hopf theorem
is proved. Setting u = x2, the second Hopf theorem (the square root growth of amplitude) is
proved by making the genericity assumption ru(0) �= 0. The calculation of ru(0) in terms of
(1.1) is the most difficult of the calculations.

Statements of the main theorems. In a nilpotent Hopf bifurcation the kernel and cokernel
of the Frechet derivative (dΦ)0 are still two-dimensional—just like ordinary Hopf bifurcation.
It follows that the Liapunov–Schmidt reduced equation φ = 0 has the same S1-equivariance
as in standard Hopf bifurcation and hence has the form of (1.10).

We show in section 2.2 that a nilpotent Hopf bifurcation leads to the following result.
Proposition 1.1. Let p and q be as in (1.10). Then

pτ (0) = 0, qτ (0) = 0,(1.12)

pλ(0) = 0, qλ(0) = 0.(1.13)

It follows from Proposition 1.1 that we cannot employ the implicit function theorem in
the same way as it is used in the standard Hopf theorem; higher derivatives are necessary
to understand the bifurcation. Note that Proposition 1.1 does not require any assumptions
about network architecture. Indeed, it follows simply from the fact that (dF )0 is nilpotent.

All is not lost, however. In section 2.3 we assume that F is a homogeneous coupled
cell system with nilpotent linearization, and we obtain the following generalization of the
eigenvalue crossing condition (see [10] for a version of this proposition for generic vector
fields).

Proposition 1.2. If F is a homogeneous coupled cell system, then

pττ (0) = −2, qττ (0) = 0,(1.14)

pλλ(0) = 2(σ′(0)2 − ω′(0)2), qλλ(0) = −4σ′(0)ω′(0),(1.15)

pλτ (0) = 2ω′(0), qλτ (0) = 2σ′(0).(1.16)

These explicit calculations enable us to proceed with the calculation of solutions to p =
q = 0. The three theorems mentioned previously can now be stated (in reverse order) and the
proofs sketched.

We begin by stating the following theorem, which is proved in section 3.
Theorem 1.3. Assume

qu(0) �= 0(1.17)
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and the eigenvalue crossing condition (1.2). Then there exist two branches of near 2π-periodic
solutions, each one growing at order λ. Moreover, one branch is subcritical, and the other is
supercritical.

This theorem is proved by a straightforward application of the implicit function theorem.
We also show that the network in Figure 3 generically satisfies (1.17).

Observe that Theorem 1.3 refers to the class of networks whose architecture does not force
restrictions on the nonlinear terms of the reduced equation. The linear structure alone forces
a different branching pattern than for generic Hopf bifurcation. It does not follow, however,
that this situation is somehow the “generic” case for coupled cell networks. Indeed, there are
network architectures, such as the feed-forward network, that do force pu = qu = 0.

In section 4 we prove the next theorem.

Theorem 1.4. Assume

pu(0) = qu(0) = 0,(1.18)

puu(0) �= −1
2puτ (0)2, puλ(0) �= −ω′(0)puτ (0),

quu(0) �= −puτ (0)quτ (0), quτ (0) �= 0,

quλ(0) �= −
(
σ′(0)puτ (0) + ω′(0)quτ (0)

)
,

(1.19)

puu(0) �= quu(0)

quτ (0)

(
puτ (0) +

quu(0)

2quτ (0)

)
,(1.20)

and the eigenvalue crossing condition (1.2). Then there exist either two or four branches of
near 2π-periodic solutions to (1.1), with the number of branches depending on F , and each

branch grows as λ
1
2 .

The constraint (1.18) means that the implicit function theorem cannot be used to solve
p = q = 0, so the proof of Theorem 1.4 takes a form different from that for Theorem 1.3. We
show that there are either two or four branches of solutions to p = q = 0 (depending on the
uu, uτ , and uλ derivatives of p and q). Each of these solution branches is defined by λ = O(u),
and the growth rate of the amplitude is the standard 1/2 power. The proof of this theorem,
given in section 4, is based on showing that generically solution branches to p = q = 0 are
determined at quadratic order in u, λ, and τ . Then in section 4.3 we show that the network
in Figure 2 generically satisfies (1.18) and (1.19).

In section 5 we prove a third result.

Theorem 1.5. Generic nilpotent Hopf bifurcation in the feed-forward chain yields two
branches of near 2π-periodic solutions, the amplitude of one growing as λ

1
2 and the amplitude

of the other growing as λ
1
6 .

We show, using Poincaré–Birkhoff normal form techniques, that the feed-forward network
has two branches of solutions: one with growth rate 1/2 and the other with growth rate 1/6.
This step builds on the results in [2]. Then we show that the existence of these branches of
solutions implies that

pu(0) = puu(0) = puuu(0) = qu(0) = quu(0) = quuu(0) = 0.(1.21)
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Furthermore, using the Liapunov–Schmidt reduction, we show that

puuuu(0) �= 0 and quuuu(0) �= 0.(1.22)

It follows that there are no other branches of solutions to p = q = 0, or else these fourth
derivatives would also vanish.

In all three theorems and their corresponding examples, flow-invariant subspaces play a
vital role since they force the derivatives of p and q to vanish in (1.18) and (1.21). The five-cell
network of Figure 3 has no nontrivial invariant subspaces, and thus the derivatives are not
constrained. On the other hand, the feed-forward chain in Figure 1 and the three-cell network
of Figure 2 both possess a synchrony subspace S = {(u, u, v) : u, v ∈ Rk}. Furthermore, at
nilpotent Hopf bifurcations both networks satisfy the following:

The network has a flow-invariant subspace, S, that contains the critical

eigenspace but does not contain the corresponding generalized eigenspace.
(1.23)

An immediate consequence of (1.23) is the following.

Proposition 1.6. Suppose that a coupled cell system satisfies (1.23). Then at a nilpotent

Hopf bifurcation there exists a branch of solutions that grows at O(λ
1
2 ), and (1.18) holds.

Proof. Note that (1.23) implies that we can restrict the vector field to S, and because
S does not contain the generalized eigenvectors we can apply the standard Hopf theorem to
deduce that there is a standard Hopf bifurcation in S. Thus there is at least one branch that
grows as O(λ

1
2 ). This branch can be parameterized by u, so that

p(u, λ(u), τ(u)) ≡ 0 and q(u, λ(u), τ(u)) ≡ 0.

Differentiating both expressions with respect to u and evaluating at the origin yields

pu(0) + pλ(0)λu(0) + pτ (0)τu(0) = 0 and qu(0) + qλ(0)λu(0) + qτ (0)τu(0) = 0.

So by Proposition 1.1, pu(0) = qu(0) = 0.

Observe that the feed-forward chain has an additional flow-invariant subspace Ŝ ={
(0, 0, v) : v ∈ Rk

}
, and it turns out that Ŝ also satisfies (1.23). However, Ŝ is not a syn-

chrony subspace since it is not a polydiagonal, and this implies stronger consequences than in
Proposition 1.6. It is this that underlies the additional degeneracies in (1.21).

Theorems 1.3, 1.4, and 1.5 are concerned only with the existence of solutions branches, and
we do not consider the stability of the solutions or other dynamical features of the systems.
We would expect such an analysis to turn up some interesting features.

In section 6 we give three more examples of three-cell networks that can undergo nilpotent
Hopf bifurcation in codimension one. One of these falls into the same category as the network
in Figure 2, in that it has two or four branches of solutions given by Theorem 1.4. The
other two are similar to the feed-forward chain of Figure 1, in that they have two branches of
solutions, one growing at O(λ

1
2 ) and the other at O(λ

1
6 ).

Finally, we have placed the (lengthy) expressions for the derivatives of p and q into the
appendix, so as not to distract from the flow of the calculations.
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2. Reduction with nilpotent normal form. In this section we derive information about
the λ and τ derivatives of the Liapunov–Schmidt reduced mapping. Throughout we make the
standard assumptions that there exists a trivial (synchronous) equilibrium F (0, λ) = 0, that
J(λ) = (dF )0,λ has a complex conjugate pair of eigenvalues σ(λ) ± iω(λ) with σ(0) = 0 and
ω(0) = 1, and that the eigenvalue crosses the imaginary axis with nonzero speed, σ′(0) �= 0.
In addition we assume that the critical eigenvalues of (dF )0,0 have algebraic multiplicity 2
and geometric multiplicity 1. We also assume throughout that F is a coupled cell system,
since nilpotent Hopf bifurcations are nongeneric in systems without a coupled cell structure.

In section 2.1 we set up the generalities of the Liapunov–Schmidt reduction for a nilpotent
Hopf bifurcation and obtain a reduced bifurcation problem of the form (1.10). Then in sec-
tion 2.2 we prove Proposition 1.1. Finally, in section 2.3 we make the additional assumption
that F is a homogeneous coupled cell system and prove Proposition 1.2.

2.1. The Liapunov–Schmidt reduction. We study the Liapunov–Schmidt reduction of
(1.8) onto the kernel of the linearization of Φ at the origin. The linearization of Φ at the
origin is given by

Lu ≡ (dΦ)0u =
du

ds
− Ju,(2.1)

where J = (dF )0. Then K = kerL consists of the 2π-periodic solutions to the linear system

du

ds
= Ju.(2.2)

The Liapunov–Schmidt reduction requires an invariant splitting,

C1
2π = K ⊕M,

C2π = N ⊕R,

where R = rangeL, such that L|M : M → R is invertible. As we now show, we can take
M = K⊥ and N = K∗, where K∗ is the kernel of

L∗u = −du

ds
− J tu,(2.3)

which is the adjoint of L with respect to the inner product

〈u, v〉 =
1

2π

∫ 2π

0
v(s)tu(s) ds.(2.4)

Proposition 2.1. Assume that J has eigenvalues ±i with algebraic multiplicity 2 and geo-
metric multiplicity 1 and no other eigenvalues on the imaginary axis. Then

1. dimK = dimK∗ = 2;
2. there are bases {v1, v2} for K and {v∗1, v∗2} for K∗ such that K and K∗ can be identified

with R2 so that S1 acts on both spaces by counterclockwise rotation;
3. there are invariant splittings of C1

2π and C2π:

(a) C2π = K∗ ⊕R,

(b) C1
2π = K ⊕K⊥.

(2.5)
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Proof. We show that K and K∗ are two-dimensional by constructing bases. Note that
if n > 4, then J has eigenvalues off the imaginary axis, so solutions not lying in the space
spanned by the eigenvectors of ±i will not be periodic.

Let c ∈ Cn be an eigenvector of J with eigenvalue i. Then setting

v1(s) = Re{eisc}, v2(s) = Im{eisc}(2.6)

forms a basis for K, and in particular, dimK = 2.
Since J t has the same eigenvalues as J , and in particular has double eigenvalues ±i and

no other eigenvalues on the imaginary axis, we can construct a basis for K∗ in a similar way.
Let d ∈ Cn be an eigenvector J td = −id. Then

v∗1(s) = Re{eisd} and v∗2(s) = Im{eisd}(2.7)

forms a basis for K∗, and dimK∗ = 2.
We can identify K and K∗ with R2 via the mappings

(x, y) 
→ xv1 + yv2 and (x, y) 
→ xv∗1 + yv∗2.(2.8)

Observe that S1 acts on K as

θ · v1(s) = v1(s− θ) = Re{e−iθeisc} = cos θ v1(s) + sin θ v2(s),

and similarly

θ · v2(s) = − sin θ v1(s) + cos θ v2(s).

Therefore, the action of S1 on K, coordinatized by (2.8), is given by

θ ·
(

x
y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
.(2.9)

That is, θ ∈ S1 acts by counterclockwise rotation through θ. By the same argument applied
to the identification given for K∗ in (2.8), S1 also acts on K∗ by counterclockwise rotation as
in (2.9).

The invariant splittings given in (2.5a,b) follow from the fact that L is Fredholm of index
zero. Specifically, the Fredholm alternative states that

R⊥ = K∗,(2.10)

which gives the decomposition in (2.5a).
An important point of departure of this case from the standard Hopf bifurcation is that

here we have

K∗ ⊥ K,(2.11)

as is shown in Lemma 2.2 below. This is essentially the reason why the first λ and τ derivatives
of p and q vanish in Proposition 1.1. The derivatives in Proposition 1.2 come from the fact
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that the generalized eigenvectors of J with eigenvalues ±i are not orthogonal to K∗. Notice
also that K ⊥ K∗ = R⊥ implies that K ⊂ R.

Let b be a generalized eigenvector of J such that

Jb = ib + c,(2.12)

and choose b so that

btc̄ = 0.

Then define

u1 = Re{eisb} and u2 = Im{eisb}(2.13)

by analogy with vj and v∗j . Note that

Luj = −vj .

The following lemma summarizes the relations between b, c, and d, and can be contrasted
with [3, Chapter VIII, Lemma 2.4].

Lemma 2.2. Let F be any vector field such that (dF )0,0 is nilpotent, and let b, c, and d be
defined as above. Then

ctd̄ = 0(2.14)

and the eigenvector d can be scaled so that

btd̄ = 2.(2.15)

Proof. Observe that

ibtd̄ = bt[J td̄] = [Jb]td̄ = (ib + c)td̄ = ibtd̄ + ctd̄.

Therefore, ctd̄ = 0.
Similarly, let v be any eigenvector of J with eigenvalue μ. Then

μvtd̄ = [Jv]td̄ = vtJ td̄ = ivtd̄.(2.16)

Thus every eigenvector of J with eigenvalue different from i is orthogonal to d̄. But ctd̄ = 0,
so btd̄ must be nonzero or d̄ is orthogonal to every eigenvector of J , which is a contradiction.
Therefore btd̄ �= 0, and we can scale d so that btd̄ = 2.

Before continuing with the reduction, we give the following useful formulas concerning vj ,
v∗j , and uj .

Lemma 2.3.

dv1

ds
= −v2,

dv1

ds
= −v2,

du1

ds
= −u2,

du2

ds
= u1,(2.17)

〈
v∗j , vk

〉
= 0,

〈
v∗j , uk

〉
= δjk,(2.18)
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where 〈·, ·〉 is the inner product defined in (2.4).
Proof. These formulas are straightforward calculations from the definitions of vj , v

∗
j , and

uj in (2.6), (2.7), and (2.13). We give two examples of these calculations; the others follow
very similar lines.

Observe that (2.6) implies

dv1

ds
=

d

ds
Re{eisc} = Re{ieisc} = −Im{eisc} = −v2.

Similar calculations yield the other derivatives in (2.17).
We verify only that

〈
v∗j , uk

〉
= δjk. Since

v∗1 = Re{eisd} = 1
2(eisd + e−isd̄), v∗2 = Im{eisd} = − i

2(eisd− e−isd̄),

u1 = Re{eisd} = 1
2(eisb + e−isb̄), u2 = Im{eisd} = − i

2(eisb− e−isb̄),

we can write

v∗j =
(−i)j−1

2
(eisd + (−1)j−1e−isd̄) and uk =

(−i)k−1

2
(eisb + (−1)k−1e−isb̄).

Then using (2.4) and the fact that btd̄ = 2 by (2.15),

〈
v∗j , uk

〉
=

ik−1(−i)j−1

8π

∫ 2π

0
(e−isb̄ + (−1)k−1eisb)t(eisd + (−1)j−1e−isd̄)ds

=
ik−1(−i)j−1

8π

∫ 2π

0

(
(−1)k−1e2isbtd + (−1)j+kbtd̄

+ b̄td + (−1)j−1e−2isb̄td̄t
)
ds

=
1

2
ik−1(−i)j−1(1 + (−1)j+k)

= δjk.

To continue the reduction, let E : C2π → R be the projection with kerE = K∗, and write
x ∈ C1

2π as x = v + w, where v ∈ K and w ∈ K⊥. Then Φ(v + w, λ, τ) = 0 if and only if

(a) EΦ(v + w, λ, τ) = 0,

(b) (I − E)Φ(v + w, λ, τ) = 0,
(2.19)

where I−E is the complementary projection of C2π onto K∗ with kernel R. The differential of
EΦ(v +w, λ, τ) with respect to w at the origin is just L|K⊥ , and L|K⊥ : K⊥ → R is invertible
because L is Fredholm of index zero. Thus the implicit function theorem implies that (2.19a)
can be solved for w = W (v, λ, τ), where W : K × R × R → K⊥ is such that W (0) = 0 and

EΦ(xv0 + W (xv0, λ, τ), λ, τ) ≡ 0(2.20)

for any v0 ∈ K and x ∈ R. Solving (2.19b) is therefore equivalent to solving Φ(u, λ, τ) = 0,
and hence, to finding the near 2π-periodic solutions to (1.1).
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The following lemma greatly simplifies a number of formulas later on.
Lemma 2.4.

Wx(0) = Wα(0) = Wαβ(0) = 0,(2.21)

where α and β are placeholders for λ and τ .
Proof. Differentiating (2.20) with respect to x and evaluating all derivatives at the origin

yields

dΦ(v0 + Wx(0)) = 0

and therefore

0 = Lv0 + LWx(0) = LWx(0).

However, Wx(0) ∈ K⊥, and thus Wx(0) = 0.
Observe that setting v = 0, w = W (0, λ, τ) in (2.19a) yields

E

(
(1 + τ)

d

ds
W (0, λ, τ) − F (W (0, λ, τ), λ)

)
≡ 0.

This is solved for W (0, λ, τ) ≡ 0 since F (0, λ) ≡ 0, and this must be the only solution since
the implicit function theorem guarantees that W (0, λ, τ) is the unique solution to (2.19a).
This implies that all λ and τ derivatives of W evaluated at the origin vanish.

Define the reduced mapping φ : K × R × R → K∗ by

φ(v, λ, τ) = (I − E)Φ(v + W (v, λ, τ), λ, τ).(2.22)

Then for j = 1, 2

φj(x, y, λ, τ) =
〈
v∗j , φ(xv1 + yv2, λ, τ)

〉
.

Since K and K∗ are invariant subspaces under the action of S1 as specified in (2.9), it
follows from Proposition 3.3 of Chapter VII in [3] that φ commutes with this action of S1 on
K and K∗. Therefore, by Proposition 2.3 of Chapter VIII in [3], the reduced mapping has the
form in (1.10), where x and y come from the identification of K with C given by (2.8).

Solutions to (1.7) that are 2π-periodic correspond to solutions to φ(x, y, λ, τ) = 0, and by
(1.10) these solutions are given by x = y = 0 or p = q = 0. The former correspond to the
trivial steady-state solutions z = 0 to (1.7), whereas the latter (with x2 + y2 > 0) correspond
to nonconstant 2π-periodic solutions to (1.7).

Because φ is S1-equivariant, solutions to φ(x, y, λ, τ) = 0 come in group orbits, and we
can therefore rotate the plane so that y = 0 and

x ≥ 0.(2.23)

In particular,

φ1(x, 0, λ, τ) = 〈v∗1, φ(xv1, λ, τ)〉 = p(x2, λ, τ)x,

φ2(x, 0, λ, τ) = 〈v∗2, φ(xv1, λ, τ)〉 = q(x2, λ, τ)x.
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2.2. Linear terms in the reduced equation. We now consider the λ and τ derivatives of
p and q. The first x derivatives of φ,

∂φ1

∂x
(0) = p(0) and

∂φ2

∂x
(0) = q(0),

are both zero because linear terms vanish in the Liapunov–Schmidt reduction. Indeed, suppose
that linear terms remained in φ = (I − E)Φ. Then we could have used the implicit function
theorem to solve for these terms as we did for (2.19a). Since we could not do this, there can
be no linear terms in φ. The second x derivatives,

∂2φ1

∂x2
(0) = px(0) and

∂2φ2

∂x2
(0) = qx(0),

are also clearly zero because p and q are quadratic in x.
Proof of Proposition 1.1. For any parameter α, the general formula for φαx is

φαx = (I − E)
(
dΦα(v1 + Wx) + dΦ(Wαx) + d2Φ(v1 + Wx,Wα)

)
,(2.24)

from (A.5), but we can simplify this by using (2.21). With these results, and bearing in mind
that

(a) d2Φ(·, ·) is bilinear, so any terms of the form dΦα(·, 0) vanish, and
(b) range dΦ = ker(I − E), so any terms in the range of dΦ also vanish,

formula (2.24) becomes

φαx = (I − E) (dΦα(v1)) .(2.25)

To verify (1.12), (2.25) implies

φτx = (I − E) (dΦτ (v1)) .

Observe that

dΦτ (v1) =
dv1

ds
= −v2,

since dΦτ = d
ds and by (2.17). Since v2 ∈ K ⊂ R = ker(I − E), it follows that φτx = 0 and

therefore that pτ (0, 0, 0) = qτ (0, 0, 0) = 0. This verifies (1.12).
To verify (1.13), (2.25) implies

φλx = (I − E) (dΦλ(v1)) .

Observe that

Φλ(x, λ, τ) = −Fλ(x, λ)(2.26)

and that F (x, λ) can be written as

F (x, λ) = J(λ)x + h.o.t.
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Thus Fλ(x, λ) = J ′(λ)x + h.o.t., and therefore, evaluating at the origin,

dΦλ = −dFλ(x, λ)|0 = −J ′(0).(2.27)

In (2.28) in Lemma 2.5, below, we prove that

J ′(0)c = (σ′(0) + iω′(0))c− (J − iIn)c′(0),

from which it follows that

J ′(0)v1 = Re{eisJ ′(0)c}
= σ′(0)Re{eisc} + ω′(0)Re{ieisc} − Re{(J − iIn)c′(0)}
= σ′(0)v1 − ω′(0)v2 − Re{eis(J − iIn)c′(0)}.

So, recalling from (2.18) that 〈v∗i , vj〉 = 0,〈
v∗j ,dΦλ(v1)

〉
=

〈
v∗j , σ

′(0)v1 − ω′(0)v2

〉
−

〈
v∗j ,Re{eis(J − iIn)c′(0)}

〉
=

〈
v∗j ,Re{eis(J − iIn)c′(0)}

〉
.

Observe that

[(J − iIn)c′(0)]td̄ = c′(0)t(J − iIn)td̄ = 0,

since d̄ is an eigenvector of J t with eigenvalue i. Therefore,

〈
v∗1,Re{eis(J − iIn)c′(0)}

〉
=

1

2
Re{[(J − iIn)c′(0)]td̄} = 0,

〈
v∗2,Re{eis(J − iIn)c′(0)}

〉
= −1

2
Im{[(J − iIn)c′(0)]td̄} = 0,

which verifies (1.13).
The following calculations are needed.
Lemma 2.5. Let μ(λ) = σ(λ) + iω(λ) be the eigenvalue of J(λ) such that μ(0) = i with

eigenvector c(λ) such that c(0) = c. Let b(λ) be the corresponding generalized eigenvector such
that J(λ)b(λ) = μ(λ)b(λ) + c(λ). Then

J ′(0)c = μ′(0)c− (J − iIn)c′(0),(2.28)

J ′′(0)c = μ′′(0)c− 2(J ′(0) − μ′(0)In)c′(0) − (J − iIn)c′′(0),(2.29)

J ′(0)b = μ′(0)b− (J − iIn)b′(0) + c′(0).(2.30)

Proof. Since c(λ) is an eigenvector of J(λ) with eigenvalue μ(λ),

J(λ)c(λ) = μ(λ)c(λ).(2.31)

Differentiating (2.31) with respect to λ and evaluating at λ = 0 gives

J ′(0)c(0) + Jc′(0) = μ′(0)c(0) + μ(0)c′(0) = μ′(0)c(0) + ic′(0),
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since μ(0) = i, and this rearranges to give (2.28).
Differentiating (2.31) twice with respect to λ, we obtain

J ′′(0)c(0) + 2J ′(0)c′(0) + Jc′′(0) = μ′′(0)c(0) + 2μ′(0)c′(0) + ic′′(0),

which rearranges to give (2.29).
Similarly, for the generalized eigenvector we have

J(λ)b(λ) = μ(λ)b(λ) + c(λ),

and differentiating this with respect to λ and evaluating at the origin, we obtain

J ′(0)b(0) + Jb′(0) = μ′(0)b(0) + μ(0)b′(0) + c′(0),

which rearranges to give (2.30).

2.3. Quadratic terms in the reduced equation. To prove Proposition 1.2 we require
Lemmas 2.6 and 2.7, which we prove at the end of the section.

Lemma 2.6. For any vector field with nilpotent linearization

Wτx = −u2,(2.32)

Wλx = −σ′(0)u1 + ω′(0)u2 + Re{eis(c′(0) − ζc)},(2.33)

where

ζ =
1

‖c‖2 c
′(0)tc̄(2.34)

so that ζc is the projection of c′(0) onto the critical eigenspace of J .
Lemma 2.7. Suppose that F is a coupled cell system such that (dF )0 is nilpotent and that
(a) each cell in the network has identical linearized internal dynamics,
(b) the linearized coupling between any two cells takes the form mB(λ), where B(λ) is a

k × k matrix and m ∈ R.
Then

c(l)(0)td̄ = 0 for all l ≥ 0,(2.35)

[J (k)(0)c(l)(0)]td̄ = 0 for all k, l ≥ 0,(2.36)

where

J (k)(0) =
∂kJ(λ)

∂λk

∣∣∣∣
λ=0

and c(l)(0) =
∂lc(λ)

∂λl

∣∣∣∣
λ=0

.

Remark 2.8. Assumptions (a) and (b) in Lemma 2.7 are instant if the network is homo-
geneous.

Proof of Proposition 1.2. The general formula for φαβx is given by (A.6), but the same
arguments that we used to derive (2.25) can be used to obtain

φαβx = (I − E)
(
dΦαβ(v1) + dΦα(Wβx) + dΦβ(Wαx)

)
.(2.37)
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To verify (1.14), we have from (2.37)

φττx = (I − E)
(
dΦττ (v1) + 2dΦτ (Wτx)

)
= (I − E)

(
2

d

ds
Wτx

)
,

where the second equality follows because dΦτ = d
ds and Φττ = 0. By the formula for Wτx in

(2.32) and the derivative given in (2.17),

d

ds
Wτx = − d

ds
u2 = −u1.

So, by (2.18), the jth component of φττx is

φττx,j = −2
〈
v∗j , u1

〉
= −2δj1, j = 1, 2.

For the λλ derivative in (1.15), we have from (2.37)

φλλx = (I − E)
(
dΦλλ(v1) + 2dΦλ(Wλx)

)
.(2.38)

Consider the first term (I−E)(dΦλλ(v1)), and note that (2.27) can be extended to the second
λ derivative, to yield

dΦλλ(v1) = −dFλλ(v1) = −J ′′(0)v1 = −Re{eisJ ′′(0)c}.

Thus, since [J ′′(0)c]td̄ = 0 by (2.36), we have

φλλx,j =
〈
v∗j ,dΦλλ(v1)

〉
= −

〈
v∗j ,Re{eisJ ′′(0)c}

〉
= 0.

Therefore by (2.27), equation (2.38) becomes

φλλx = 2(I − E)
(
dΦλ(Wλx

)
= −2(I − E)

(
J ′(0)Wλx

)
,

and by formula (2.33) for Wλx

J ′(0)Wλx = −σ′(0)Re{eisJ ′(0)b} + ω′(0)Im{eisJ ′(0)b} + Re{eisJ ′(0)(c′(0) − ζc)}.

Using (2.30) for J ′(0)b and rearranging, this becomes

J ′(0)Wλx = −Re
{
eis

(
μ′(0)2b− μ′(0)(J − iIn)b′(0) + μ′(0)c′(0) − J ′(0)(c′(0) − ζc)

)}
,

so that

φλλx,1 = −2
〈
v∗1, J

′(0)Wλx

〉
= Re

{
μ′(0)2btd̄− μ′(0)[(J − iIn)b′(0)]td̄

+ μ′(0)c′(0)td̄− [J ′(0)c′(0)]td̄ + [ζJ ′(0)c]td̄
}
,

(2.39)

with φλλx,2 being minus the imaginary part of the same expression.
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Observe that the last three terms in (2.39) vanish by Lemma 2.7 and that the second term
vanishes because

[(J − iIn)b′(0)]td̄ = b′(0)t[(J − iIn)td̄] = 0,

since d̄ is an eigenvector of J t with eigenvalue i. Hence,

φλλx,1 = −2
〈
v∗1, J

′(0)Wλx

〉
= Re{μ′(0)2btd̄},

φλλx,2 = −2
〈
v∗2, J

′(0)Wλx

〉
= −Im

{
μ′(0)2btd̄},

which, given that btd̄ = 2 by (2.15), proves (1.15).
Turning now to (1.16), we have from (2.37)

φλτx = (I − E)
(
dΦλτ (v1) + dΦλ(Wτx) + dΦτ (Wλx)

)
.(2.40)

First note that dΦλτ = 0. For the second term in (2.40), (2.27) and (2.32) imply that

dΦλ(Wτx) = J ′(0)u2 = Im(eisJ ′(0)b).

Expanding J ′(0)b by (2.30), we obtain

dΦλ(Wτx) = Im{eis(μ′(0)b− (J − iIn)b′(0) + c′(0))}
= ω′(0)u1 + σ′(0)u2 − Im{eis[(J − iIn)b′(0) + c′(0)]}.

(2.41)

For the third term in (2.40), we have from (2.33) and the fact that dΦτ = d
ds that

dΦτ (Wλx) = −σ′(0)u̇1 + ω′(0)u̇2 + Re{ieis(c′(0) − ζc)}
= ω′(0)u1 + σ′(0)u2 − Im{eis(c′(0) − ζc)}.

Putting this together with (2.41) and taking inner products yields〈
v∗j ,dΦλ(Wτx) + dΦτ (Wλx)

〉
= 〈v∗j , 2ω′(0)u1 + 2σ′(0)u2

− Im{eis[(J − iIn)b′(0) + c′(0) + c′(0) − ζc]}〉
= 2ω′(0)

〈
v∗j , u1

〉
+ 2σ′(0)

〈
v∗j , u2

〉
,

where the second line follows because c′(0)td̄ = 0 = ctd̄ and [(J − iIn)b′(0)]td̄ = b′(0)t(J −
iIn)td̄ = 0. The formulas in (1.16) then follow from Lemma 2.3.

Proof of Lemma 2.6. To show (2.32), we have from formula (A.14) and from the facts
that Wx = Wτ = 0, dΦτ = d

ds , and Lu2 = −v2 that

Wτx = −L−1E(dΦτ (v1)) = −L−1E

(
dv1

ds

)
= L−1E(v2) = −u2,

as required.
To prove (2.33), we use (A.14) and (2.27) to obtain

Wλx = −L−1E(dΦλ(v1)) = L−1E(J ′(0)v1).



224 TOBY ELMHIRST AND MARTIN GOLUBITSKY

So, using formula (2.28) for J ′(0)v1 = Re{eisJ ′(0)c}, Wλx is the solution to the differential
equation

LWλx = σ′(0)v1 − ω′(0)v2 − Re{eis(J − iIn)c′(0)}.(2.42)

Write c′(0) = c0 + c1, where c0 ∈ ker(J − iIn) and c1 ∈ ker(J − iIn)⊥. Then

c0 =
c′(0)tc̄

‖c‖2 c

and

Re{eis(J − iIn)c′(0)} = Re

{
eis(J − iIn)

(
c′(0) − c′(0)tc̄

‖c‖ c

)}
.

With this substitution it is straightforward to check that (2.42) is solved for Wλx as in
(2.33).

Proof of Lemma 2.7. For any two matrices M and N we define [N ]M to be the matrix
obtained by replacing every entry mij in M with the block mijN . Using this notation, the
Jacobian of a coupled cell system satisfying (a) and (b) has the form

J(λ) =

⎛
⎜⎝

A(λ) · · · 0
...

. . .
...

0 · · · A(λ)

⎞
⎟⎠ +

⎛
⎜⎝

m11B(λ) · · · m1nB(λ)
...

. . .
...

mn1B(λ) · · · mnnB(λ)

⎞
⎟⎠

= [A(λ)]In + [B(λ)]M ,

(2.43)

where A(λ) is the linearized internal dynamics, B(λ) is the linearized coupling, and mij ∈ R.
As shown in [6], the eigenvalues of a homogeneous network are the eigenvalues of the

k × k matrices A(λ) + μjB(λ), where μ1, . . . , μn are the eigenvalues of M . Fix μc such that
A(0) + μcB(0) has a critical eigenvalue, and observe that μc is independent of λ. Note that
μc has algebraic multiplicity 2 and geometric multiplicity 1. Then A(0)t + μcB(0)t also has a
critical eigenvalue.

The eigenvectors u(λ) of J(λ) have the form

u(λ) =

⎛
⎜⎝

v1w(λ)
...

vnw(λ)

⎞
⎟⎠ = [w(λ)]v,

where w(λ) ∈ Ck is an eigenvector of A(λ)+μjB(λ) and v ∈ Cn is an eigenvector of M . Note
that v does not depend on λ since the matrix M does not depend on λ. Thus we can write

c(λ) = [β(λ)]α and d(λ) = [δ(λ)]γ ,

where α and γ are respectively the appropriate eigenvectors of M and M t with eigenvalues
μc, and β(λ) and δ(λ) are respectively the eigenvectors of A(λ)+μcB(λ) and A(λ)t +μcB(λ)t

with eigenvalues σ(λ) + iω(λ). Then

c(λ)td̄(λ) = ([β(λ)]α)t[δ̄(λ)]γ̄ = (αtγ̄)(β(λ)tδ̄(λ)).(2.44)
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Observe that β(0)tδ̄(0) �= 0 since β(0) and δ̄(0) are respectively the eigenvectors of A(0) +
μcB(0) and (A(0) + μcB(0))t with the same simple eigenvalue i, and recall from Lemma 2.2
that ctd̄ = 0 since (dF )0 is nilpotent. Then (2.44) implies αtγ̄ = 0.

Hence,

c(l)(0)td̄(0) = ([β(l)(0)]α)t[δ̄(0)]γ̄ = (αtγ̄)(β(l)(0)tδ̄(0)) = 0,

which proves (2.35). To show (2.36), use (2.43) to calculate

[J (k)(0)c(l)(0)]td̄(0) =
(
J (k)(0)[β(l)(0)]α

)t
[δ̄(0)]γ̄

= (αtγ̄)
(
(A(k)(0) + μcB

(k)(0))β(l)(0)
)t
δ̄(0)

= 0

since αtγ̄ = 0.

3. Hopf bifurcation with linear u terms. In this section we consider nilpotent Hopf bifur-
cations in coupled cell systems that satisfy (1.17). Note that we are making two assumptions
in (1.17); that the network architecture does not force qu(0) to vanish, and that the bifurcation
is generic for that network. Theorem 1.3 is proved below, and the corresponding bifurcation
diagram is shown in Figure 4. We then show that there exists a vector field on the five-cell
network of Figure 3 such that qu(0) �= 0. Hence, by Theorem 1.3, this system has two branches
of solutions that grow linearly with λ.

Proof of Theorem 1.3. By Propositions 1.1 and 1.2, we can write

p(u, λ, τ) = pu(0)u− τ2 + (σ′(0)2 − ω′(0)2)λ2 + 2ω′(0)λτ + · · · ,(3.1)

q(u, λ, τ) = qu(0)u− 2σ′(0)ω′(0)λ2 + 2σ′(0)λτ + · · · ,(3.2)

and we require solutions to p = q = 0. Assuming (1.17) and applying the implicit function
theorem, we can solve q = 0 near the origin for

u =
2σ′(0)λ

qu(0)
(ω′(0)λ− τ) + · · · .

Substituting this into (3.1) and setting p = 0 yields the following equation in τ and λ:

τ2 + 2

(
pu(0)

qu(0)
σ′(0) − ω′(0)

)
λτ +

(
ω′(0)2 − 2pu(0)

pu(0)
σ′(0)ω′(0) − σ′(0)2

)
λ2 + · · · = 0,

where quadratic terms are solved for

τ =

[
ω′(0) − σ′(0)

qu(0)

(
pu(0) ±

√
pu(0)2 + qu(0)2

)]
λ.(3.3)

Since these solutions are real and distinct we can apply the recognition problem for simple
bifurcation using τ as the state variable and λ as the bifurcation parameter to prove that
higher order terms are unimportant. See [3, Proposition 9.3, p. 95].

Substitute (3.3) into q = 0, for q as in (3.2), and rearrange to obtain

u =
2σ′(0)2

qu(0)2

(
pu(0) ±

√
pu(0)2 + qu(0)2

)
λ2.

Note that only the + sign is relevant, since we require u = x2 > 0. Thus, since u = x2 grows
as O(λ2), x grows as O(λ), and we obtain the bifurcation diagram in Figure 4.
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λ

x

Figure 4. Bifurcation diagram for nilpotent Hopf bifurcation with qu(0) �= 0.

The five-cell network of Figure 3. To illustrate the results of this section we consider the
five-cell system shown in Figure 3 and defined by (1.6) with the vector field defined by

f(xi;xj , xk, xl) = λxi − xj − xk − xl − x3
i .(3.4)

We compute pu(0) and qu(0) for this system and show that pu(0) �= 0 �= qu(0).

Recall that

pu(0) =
1

2
pxx(0) =

1

2

∂3φ1

∂x3
(0) and qu(0) =

1

2
qxx(0) =

1

2

∂3φ2

∂x3
(0).

By (A.1) we have

φxxx = (I − E)(d3Φ(v1, v1, v1) + 3d2Φ(v1,Wxx))(3.5)

since dΦ(Wxxx) ∈ R = ker(I − E).

As a reminder of the higher order differentials of Φ, let u1, . . . , um be any functions in C2π,
and let ui,j denote the jth component of ui. By definition, evaluating all derivatives at the
origin, we have

(dmΦ)0,0,0(u1, . . . , um) =
∂

∂t1
· · · ∂

∂tm
Φ(t1u1 + · · · + tmum, 0, 0)

∣∣∣∣
t=0

= −
n∑

i1,...,im=1

∂mF

∂xi1 . . . ∂xim

∣∣∣∣∣∣
0,0

u1,i1 · · ·um,im

= −(dmF )0,0,0(u1, . . . , um).

See [3, pp. 31–32]. Letting v1,j denote the jth component of v1 gives

d3Φ(v1, v1, v1) = −
n∑

i,j,k=1

∂3F

∂xi∂xj∂xk

∣∣∣∣
0

v1,iv1,jv1,k

= −1

4
Re

{
e3isd3F (c, c, c) + 3eisd3F (c, c, c̄)

}(3.6)

since

v1,iv1,jv1,k =
1

8
(eisci + e−isc̄i)(e

iscj + e−isc̄j)(e
isck + e−isc̄k)

=
1

4
Re{e3iscicjck + eis(cicj c̄k + cic̄jck + c̄icjck)}.
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Therefore, since second derivatives of F in (3.4) vanish, formula (3.5) becomes

φxxx = (I − E)d3Φ(v1, v1, v1) = −1

4
(I − E)Re

{
e3isd3F (c, c, c) + 3eisd3F (c, c, c̄)

}
.

Thus the components of φxxx on K∗ are

pu(0) = −1

8

〈
v∗1,Re{e3isd3F (c, c, c) + eis3d3F (c, c, c̄)}

〉
= − 3

16
Re{d3F (c, c, c̄)td̄},

qu(0) = −1

8

〈
v∗2,Re{e3isd3F (c, c, c) + eis3d3F (c, c, c̄)}

〉
=

3

16
Im{d3F (c, c, c̄)td̄}.

To compute d3F (c, c, c̄), rewrite the equations in the form ẋi = fi(x) for i = 1, . . . , 5 and
observe that

∂3fi
∂x3

i

= −6 for i = 1, . . . , 5 and
∂3fi
∂x3

j

= 0 if i �= j.

Hence

d3F (c, c, c̄) =

5∑
i,j,k=1

∂3F

∂x3
i

∣∣∣∣
0

cicj c̄k = −6

⎛
⎜⎜⎜⎜⎝

c1c1c̄1
c2c2c̄2
c3c3c̄3
c4c4c̄4
c5c5c̄5

⎞
⎟⎟⎟⎟⎠ .

The critical eigenspace is spanned by the real and imaginary parts of

c = (2,−2 + 2i,−4i,−1 − i, 2)t,

and therefore

d3F (c, c, c̄) = −12(4,−8 + 8i,−32i,−1 − i, 4)t.

The generalized eigenvector orthogonal to c is

b =
1

17
(−45 − 27i, 4 − 18i, 14 − 12i,−8 + 36i, 57 + 7i),

and the eigenvector of J t with eigenvalue −i is

d =
1

20
(−3 − i, 1 − 3i, 1 − 3i,−2 + 6i, 3 + i)t,

which is chosen so that btd̄ = 2, as in (2.15). Hence

d3F (c, c, c̄)td̄ = −36 + 24i,

and therefore, since pu(0) = 1
2pxx(0) and qu(0) = 1

2qxx(0),

pu(0) = − 3

16
Re{−36 + 24i} =

27

4
and qu(0) =

3

16
Im{−36 + 24i} =

9

2
.

Since qu(0) �= 0, Theorem 1.3 guarantees linear growth near to a bifurcation.
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4. Hopf bifurcation with quadratic u terms. In this section we consider nilpotent Hopf
bifurcations in networks that satisfy (1.18) and (1.19). In section 4.1 we prove Theorem 1.4.
Then in section 4.2 we discuss the implications of (1.23) for the Liapunov–Schmidt reduction
and derive expressions for the partial derivatives of the reduced mapping. Finally, in section 4.3
we show that the network in Figure 2 satisfies (1.23) and, using the formulas derived in
section 4.2, that admissible vector fields can be chosen to give either two or four branches, as
stated in Theorem 1.4, with any combination of super- and subcritical branches.

The number of branches is determined by the number of points in the intersection of two
quadratics in the (u, τ)-plane. These quadratics are not arbitrary because, as we show in
Lemma 4.2, the null intersection is not possible. However, in the two or four branch cases any
configuration of super- and subcritical branches may be obtained by admissible vector fields
for the network in Figure 2.

4.1. Proof of Theorem 1.4. Proposition 1.2 and (1.18) imply that p and q can be written
as

p(u, λ, τ) = 1
2puu(0)u2 + puτ (0)uτ + puλ(0)uλ− τ2

+ (σ′(0)2 − ω′(0)2)λ2 + 2ω′(0)λτ + · · · ,
q(u, λ, τ) = 1

2quu(0)u2 + quτ (0)uτ + quλ(0)uλ

− 2σ′(0)ω′(0)λ2 + 2σ′(0)λτ + · · · .

(4.1)

We seek solutions to p(u, λ, τ) = q(u, λ, τ) = 0.
The first step in finding solutions to (4.1) is to introduce changes of coordinates that

simplify the equations but do not affect the branching behavior at the bifurcation.
Lemma 4.1. The mapping (p, q) in (4.1) is strongly equivalent to

p(u, λ, τ) = αu2 + γuλ− τ2 + σ′(0)2λ2 + · · · ,
q(u, λ, τ) = au2 + buτ + cuλ + 2σ′(0)λτ + · · · ,

(4.2)

where

α =
1

4

(
2puu(0) + puτ (0)2

)
, a =

1

2

(
quu(0) + puτ (0)quτ (0)

)
,

b = quτ (0),

γ = puλ(0) + ω′(0)puτ (0), c = quλ(0) + σ′(0)puτ (0) + ω′(0)quτ (0).

(4.3)

Furthermore, the nondegeneracy conditions in (1.19) imply that all coefficients in (4.2) are
nonzero, and condition (1.20) implies that when λ = 0 the only solution to p = q = 0 near the
origin is the origin itself.

We assume that the coefficients in (4.2) are independent and arbitrary. In section 4.3 we
use the results derived in section 4.2 to show that this assumption is valid for the network
shown in Figure 2.

The second step in finding solutions to (4.1) is to truncate p and q at quadratic order and
to introduce similarity variables

û = λu and τ̂ = τλ.(4.4)
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We then prove that generically there are two or four branches of solutions to p = q = 0 in two
stages. Consider the equations

p̂(û, τ̂) ≡ αû2 + γû− τ̂2 + σ′(0)2 = 0,

q̂(û, τ̂) ≡ aû2 + bûτ̂ + cû + 2σ′(0)τ = 0.
(4.5)

Note that solutions to (4.5) correspond to lines of solutions (parametrized by λ) in the zeros
for the quadratic truncations of p and q in (4.2). We prove the following.

Lemma 4.2. Assume (1.19). Then, generically, solutions to (4.5) consist of either two or
four points, with the precise number depending on the coefficients in (4.3).

Recall that the only solutions to (4.2) of interest are those with u = x2 > 0, since we
require real solutions for x. However, any solution (û0, τ̂0) to (4.5) corresponds to a ray of
solutions to the quadratic truncations of p and q. If û0 > 0, the ray consists of points u0 = û0λ
and τ0 = τ̂0λ, where λ ≥ 0. On the other hand, if û0 < 0, the ray consists of (u0, τ0), where
λ < 0. Each ray of solutions in (u, τ) space corresponds to a parabola of solutions in (x, τ, λ)
space, where the solutions are supercritical if û0 > 0 and subcritical if û0 < 0.

Finally, we use hyperbolicity to justify truncating (4.2) at quadratic order.
Lemma 4.3. Generically in the coefficients (4.3), all solutions to (4.5) are hyperbolic.
Lemma 4.3 implies that higher order perturbations of the truncated equations merely move

the branches of solutions in (u, λ, τ) space and do not affect the existence of the branches.
The proof of Theorem 1.4 follows from Lemmas 4.1, 4.2, and 4.3.

Figures 5, 6, and 7 show that two or four branches with all choices of super- and subcritical
branches are indeed possible, given that the coefficients in (4.2) are arbitrary. Recall that
negative û solutions to (4.5) correspond to subcritical branches of solutions to p = q = 0 and
that positive solutions correspond to supercritical branches.

û

τ^

û

τ^

û

τ^

Figure 5. Two solutions to (4.5) with γ = −1, a = −1, c = 1, σ′(0) = 1. Left: Two solutions with û < 0;
α = 1, b = 3. Center: One solution with û < 0 and one with û > 0; α = −1, b = 3. Right: Two solutions with
û > 0; α = 1, b = −3.

Proof of Lemma 4.1. For strong equivalence (see [4]) we may make changes of coordinates
of the form

g(x, τ, λ) = S(x, τ, λ)φ(X(x, τ, λ), T (x, τ, λ), λ).

Thus we can transform τ by

τ 
→ τ +
puτ (0)

2
u + ω′(0)λ,
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û

τ^

û

τ^

û

τ^

Figure 6. Four solutions to (4.5) with a = −1, c = 1, σ′(0) = 1. Left: Three solutions with û < 0 and one
with û > 0; α = −1, γ = −1, b = 6. Center: Two solutions with û < 0 and two with û > 0; α = 1, γ = 2.5,
b = −3. Right: One solution with û < 0 and three with û > 0; α = −1, γ = −1, b = −6.

û

τ^

û

τ^

Figure 7. Four solutions to (4.5) with α = 1, a = −1, c = 1, σ′(0) = 1. Left: Four solutions with û < 0;
γ = 2.025, b = 10. Right: Four solutions with û > 0; γ = −2.025, b = −6.

which yields

p(u, λ, τ) = 1
4

(
2puu(0) + puτ (0)2

)
u2 +

(
puλ(0) + ω′(0)puτ (0)

)
uλ

− τ2 + σ′(0)2λ2 + · · · ,
q(u, λ, τ) = 1

2

(
quu(0) + puτ (0)quτ (0)

)
u2 + quτ (0)uτ

+
(
quλ(0) + ω′(0)quτ (0) + σ′(0)puτ (0)

)
uλ + 2σ′(0)λτ + · · · .

(4.6)

This gives (4.2) and the coefficients in (4.3). Moreover, (1.19) implies that all coefficients are
nonzero.

Note that if λ = 0, then

p(u, 0, τ) = αu2 − τ2 + · · · and q(u, 0, τ) = au2 + buτ + · · · .

Use the implicit function theorem to solve q = 0 to quadratic order for τ = −a
bu + · · · , and

substitute into p = 0, giving (
α− a2

b2

)
u2 + · · · = 0,

which has nonzero solutions for u only if αb2 − a2 = 0. By (4.3), αb2 − a2 �= 0 is equivalent to
(1.20). So the only solution for λ = 0 is the origin.
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Proof of Lemma 4.2. We show that (1.19) implies that there always exists at least one
solution. Therefore, generically, there must be either two or four solutions.

Observe that q̂ = 0 can be solved for

τ̂ = τ̂(û) = − aû2 + cû

bû + 2σ′(0)
.(4.7)

Substituting this into p̂ in (4.5) yields

p̂(û, τ̂(û)) =
1

(bû + 2σ′(0))2
[
(αû2 + γû + σ′(0)2)(bû + 2σ′(0))2 − (aû2 + cû)2

]
.

Thus p̂ = 0 only when

h(û) ≡ (αû2 + γû + σ′(0)2)(bû + 2σ′(0))2 − (aû2 + cû)2 = 0.(4.8)

Observe that

h(0) = 4σ′(0)4 > 0 and h

(
−2σ′(0)

b

)
= −(aû2 + cû)2 ≤ 0.

Hence, by the mean value theorem, there exists a û0 between 0 and −2σ′(0)/b such that
h(û0) = 0. Therefore, for τ̂0 = τ̂(û0) as given in (4.7), p̂(û0, τ̂0) = 0. Since there is at least
one solution to (4.5), generically there must be either two or four solutions.

Proof of Lemma 4.3. We show that the Jacobian of the mapping

R(û, τ̂) = (p̂(û, τ̂), q̂(û, τ̂))

is singular at a solution to (4.5) only if û satisfies a quartic equation that is different from
h = 0. Hence, generically, a point û0 will not solve both equations simultaneously.

Observe that the Jacobian of R is

dû,τ̂R =

(
∂p̂
∂û

∂p̂
∂τ̂

∂q̂
∂û

∂q̂
∂τ̂

)
=

(
2αû + γ −2τ̂

2aû + bτ̂ + c bû + 2σ′(0)

)
.

Thus dR is singular only if its determinant

(2αû + γ)(bû + 2σ′(0)) + 2τ̂(2aû + bτ̂ + c) = 0.

Evaluating this on the manifold of solutions τ̂ = τ̂(û) to q̂ = 0 given by (4.7) yields a second
quartic equation:

2(aû + c)
(
b(aû + c)û− (2aû + c)(bû + 2σ′(0))

)
û + (2αû + γ)(bû + 2σ′(0))3 = 0.(4.9)

Generically in the coefficients, the two quartics (4.8) and (4.9) will not have any simultaneous
roots. Therefore, solutions will generically be hyperbolic.
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4.2. Liapunov–Schmidt reduction with a flow-invariant synchrony subspace. In this
section we discuss the effect that (1.23) has on the derivatives of the reduced mapping φ. The
existence of a flow-invariant synchrony subspace S forces certain derivatives of the reduced
equation φ to vanish because trajectories in S are trapped in S for all time. The space of
2π-periodic solutions that lie inside S forms a subspace of C2π, and so we define

S2π = {u ∈ C2π : u(s) ∈ S for all s} .(4.10)

The essential point is that if u1, . . . , uk ∈ S2π, then dkΦ(u1, . . . , uk) ∈ R and thus vanishes
under the projection (I − E) onto K∗. This and related results are given by the following
lemma.

Lemma 4.4. Suppose that a coupled cell network has a synchrony subspace S satisfying
(1.23). Then

(a) if w ∈ S, then

wtd̄ = 0;(4.11)

(b) if c1, . . . , ck ∈ S, then

dkF (c1, . . . , ck) ∈ S;(4.12)

(c) if u1, . . . , uk ∈ S2π, then

dkΦ(u1, . . . , uk) ∈ S2π;(4.13)

(d)

S2π ⊆ R.(4.14)

Proof. To prove (4.11), note that any synchrony subspace, being invariant under J , must
be the direct sum of eigenspaces of J . In the proof of Lemma 2.2 it was shown that the
only eigenvector to which d̄ is not orthogonal is the generalized eigenvector b, which is not
contained in S by hypothesis (1.23). Therefore d̄ is orthogonal to every vector in S.

The statement in (4.12) follows simply because S is invariant for F and hence for all
differentials of F . Similarly for (4.13), S2π is invariant for Φ and hence for all differentials
of Φ.

Finally, to prove (4.14) note that, by the definitions of v∗1 and v∗2 in (2.7), and by (4.11),
trajectories in S2π are orthogonal to v∗1 and v∗2. So S2π ⊆ (K∗)⊥ = R by (2.11).

With these results in mind we compute the second partial derivatives of p and q. To
simplify these calculations we assume that F is odd, since it turns out that this is sufficient
for our purposes in section 4.3. To begin, we require the following lemma.

Lemma 4.5. Assume that a coupled cell system satisfies (1.23) with flow-invariant subspace
S and that F is odd. Then

Wxx(0) = Wxxxx(0) = Wτxx(0) = Wλxx(0) = 0(4.15)
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and

Wxxx(0) = −1

4
Re{e3isη3 + eisη1},(4.16)

where η1 and η3 are such that

(J − iIn)η1 = 3d3F (c, c, c̄) and (J − 3iIn)η3 = d3F (c, c, c).(4.17)

Proof. The statements in (4.15) follow immediately from the assumption that F is odd.
This assumption also implies that formula (A.11) in the appendix becomes

Wxxx = −L−1(d3Φ(v1, v1, v1)).

By (3.6) it follows that Wxxx is the solution to the differential equation

LWxxx =
1

4
Re

{
e3isd3F (c, c, c) + 3eisd3F (c, c, c̄)

}
.

It is straightforward to verify that this solution is given by (4.16).

Then we have the following.

Proposition 4.6. Assume the same hypotheses as in Lemma 4.5. Then

puu(0) =
5

16
Re{ξt1d̄}, quu(0) = − 5

16
Im{ξt1d̄},(4.18)

puτ (0) = −1

8
Im{ξt2d̄}, quτ (0) = −1

8
Re{ξt2d̄},(4.19)

puλ(0) =
1

8
Re{ξt3d̄}, quλ(0) = −1

8
Im{ξt3d̄},(4.20)

where

ξ1 = 2d3F (c, c̄, η1) + d3F (c, c, η̄1),(4.21)

ξ2 = 6d3F (c, c̄, b) − 3d3F (c, c, b̄) + η1,(4.22)

ξ3 = 6μ′(0)d3F (c, c̄, b) + 3μ̄′(0)d3F (c, c, b̄) + J ′(0)η1,(4.23)

where μ′(0) = σ′(0) + iω′(0).

Proof. Applying Lemmas 4.4 and 4.5 to formula (A.2) yields

φxxxxx = 10(I − E)d3Φ(v1, v1,Wxxx).(4.24)

Using (4.16) and the linearity of d3Φ, we compute

d3Φ(v1, v1,Wxxx) = 1
16Re

{
e5isd3F (c, c, η3)

+ e3is
(
d3F (c, c, η1) + 2d3F (c, c̄, η3)

)
+ eis

(
2d3F (c, c̄, η1) + d3F (c, c, η̄1) + d3F (c̄, c̄, η3)

)}
.

(4.25)



234 TOBY ELMHIRST AND MARTIN GOLUBITSKY

Note that, by (4.17), η3 ∈ S since d3F (c, c, c) ∈ S and S is invariant under J−3iIn. Therefore
eisd3F (c̄, c̄, η3) ∈ R by Lemma 4.4. Since only terms involving eis have nonzero projection
onto K∗, we obtain

φxxxxx,j = 10
〈
v∗j ,d

3Φ(v1, v1,Wxxx)
〉

=
5

8

〈
v∗j ,Re

{
eis

(
2d3F (c, c̄, η1) + d3F (c, c, η̄1)

)}〉
.

From this it is straightforward to verify that

φxxxxx,1 =
5

16
Re{ξt1d̄} and φxxxxx,2 = − 5

16
Im{ξt1d̄},

where ξ1 is as defined in (4.21).
Now consider the formulas in (4.19) and (4.20). Using formula (A.8) and recalling from

(2.21) and (4.15) that Wτ = Wλ = Wxx = 0, we obtain

φαxxx = (I − E)
(
3d3Φ(v1, v1,Wαx) + d3Φα(v1, v1, v1) + dΦα(Wxxx)

)
,(4.26)

where α is either τ or λ.
Consider the case where α = τ . By the fact that dkΦτ = d

ds if k = 1 and 0 if k > 1, we
obtain

d3Φτ (v1, v1, v1) = 0 and dΦτ (Wxxx) =
1

4
Im{3e3isη3 + eisη1}.(4.27)

Since Wτx = −u2 by (2.32) we compute

d3Φ(v1, v1,Wτx) =
1

4
Im

{
e3isd3F (c, c, b) + eis(2d3F (c, c̄, b) − d3F (c, c, b̄))

}
.(4.28)

Substituting (4.27) and (4.28) into (4.26), we obtain

φτxxx,j =
1

4

〈
v∗j , Im

{
eis

(
6d3F (c, c̄, b) − 3d3F (c, c, b̄) + η1

)}〉
and hence

φτxxx,1 = −1

8
Im{ξt2d̄} and φτxxx,2 = −1

8
Re{ξt2d̄},

where ξ2 is defined in (4.22).
In the case when α = λ we have from (4.26)

φλxxx = (I − E)
(
3d3Φ(v1, v1,Wλx) + d3Φλ(v1, v1, v1) + dΦλ(Wxxx)

)
.(4.29)

Observe that d3Φλ(v1, v1, v1) = −d3Fλ(v1, v1, v1) and note that Fλ is a vector field on the same
network as F and therefore has the same flow-invariant subspaces. Hence, by Lemma 4.4,
(I − E)d3Φ(v1, v1, v1) = 0 since v1 ∈ S2π. Then using formulas (2.33) for Wλx and (4.16) for
Wxxx we have

d3Φ(v1, v1,Wλx) =
1

4
Re

{
e3is

(
μ′(0)d3F (c, c, b) − d3F (c, c, c′(0) − ζc)

)
+ eis

(
2μ′(0)d3F (c, c̄, b) + μ̄′(0)d3F (c, c, b̄)

− 2d3F (c, c̄, c′(0) − ζc) − d3F (c, c, c̄′(0) − ζ̄ c̄)
)}

,

dΦλ(Wxxx) =
1

4
Re{e3isJ ′(0)η3 + eisJ ′(0)η1},
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where ζ is given by (2.34) and c(λ) is the continuation of the critical eigenvector for J(λ) so
that c(0) = c. Note that c(λ) ∈ S for all λ. Therefore, c′(0) ∈ S, and d3F (c, c, c′(0)− ζc) ∈ S
by (4.12). Thus we obtain

φλxxx,j =
1

4

〈
v∗j ,Re

{
eis

(
6μ′(0)d3F (c, c̄, b) + 3μ̄′(0)d3F (c, c, b̄) + J ′(0)η1

)}〉
.

It is now straightforward to verify that

φλxxx,1 =
1

8
Re{ξt3d̄} and φλxxx,2 = −1

8
Im{ξt3d̄},

where ξ3 is as in (4.23).

4.3. The three-cell network of Figure 2. In this section we show that the network in
Figure 2 can have bifurcations with either two or four branches of solutions, depending on the
specific vector field, as stated in Theorem 1.4. Recall that S = {(u, u, v) : u, v ∈ Rn} is a
flow-invariant synchrony subspace for the network, and that the critical eigenvector has the
form c = (a, a,−a), where Aa = ia. The corresponding generalized eigenvector has the form

b = ζ

⎛
⎝ a

−a
0

⎞
⎠ +

⎛
⎝ w

w
−w

⎞
⎠ ,

where ζ and w are chosen so that (A− iIk)w = −(ζB − Ik)u. Hence, S contains the critical
eigenspace but not the generalized eigenspace, since (u,−u, 0) breaks synchrony. Therefore the
network satisfies (1.23), and thus Proposition 1.6 applies and (1.18) holds. In Proposition 4.7
we use the formulas in Proposition 4.6 to show that the second partial derivatives of p and q are
independent and arbitrary, and hence that (1.19) and (1.20) also hold generically. Therefore,
in this network the coefficients of (4.2) can be varied to obtain either two or four branches of
solutions, as stated in Theorem 1.4.

Proposition 4.7. The partial derivatives puu(0), puλ(0), puτ (0), quu(0), quλ(0), and quτ (0)
are arbitrary and can be varied independently for the network defined by (1.4).

Proof. We show that the real and imaginary parts of ξtj d̄ are arbitrary and independent,
for ξj defined in (4.21) to (4.23). In fact, we can do this in a very restricted setting to simplify
the calculations. Showing that the derivatives of p and q are arbitrary and independent under
restrictive assumptions clearly implies that the result holds for generic vector fields on this
network.

The first of these assumptions is that each cell has two-dimensional internal dynamics so
that

z1 =

(
x1

x2

)
, z2 =

(
x3

x4

)
, and z3 =

(
x5

x6

)
.

We also assume that

A(0) =

(
0 −1
1 0

)
and B(0) =

(
1 0
0 1

)
.
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The matrix A′(0) is left arbitrary.

Let a = (i, 1)t be the eigenvector of A with eigenvalue i, and set

c = (a, a,−a)t.(4.30)

Then since B = I2, the corresponding generalized eigenvector is

b = (a,−a, 0)t.(4.31)

Finally, observe that a = (i, 1)t is also an eigenvector of At such that Ata = −ia, so

d = (a,−a, 0)t

is an eigenvector of J t with eigenvalue −i.

We also make a number of assumptions about the higher derivatives of F . As in Lemma 4.5
and Proposition 4.6, we assume that F is odd. Since n = 2 we can write

f(u, v, w, λ) =

(
g(u, v, w, λ)
h(u, v, w, λ)

)
,

where g, h : R6 × R −→ R, with u being the internal variable and v and w being the input
variables. Now set all third derivatives equal to zero except for fu1u1u1 , which we fix at

fu1u1u1 =

(
gu1u1u1

hu1u1u1

)
=

(
2
0

)
,(4.32)

and

fu2u2v2 =

(
gu2u2v2

hu2u2v2

)
and fv1v1w2 =

(
gv1v1w2

hv1v1w2

)
,

which we leave arbitrary. Note that fu2u2v2 = fu2u2w2 and fv1v1w2 = fw1w1v2 by the invariance
of f .

First we compute η1 and show that [J ′(0)η1]
td̄ �= 0. Then it follows that ξt3d̄ is arbitrary

and independent of ξt1d̄ and ξt2d̄ due to the occurrence of the term J ′(0)η1 in (4.23). Finally
we show that under the above assumptions about F ,

(
ξt1d̄
ξt2d̄

)
= 3

(
−6i 6 −4i 4
−i 1 2i −2

)⎛
⎜⎜⎝

gu2u2v2

hu2u2v2

gv1v1w2

hv1v1w2

⎞
⎟⎟⎠ +

(
72
24

)
.(4.33)

Because the matrix in (4.33) has full rank, and because gu2u2v2 , hu2u2v2 , gv1v1w2 , and hv1v1w2

are arbitrary, the real and imaginary parts of ξt1d̄ and ξt2d̄ can be manipulated arbitrarily from
just these four derivatives of f . Therefore, the coefficients in (4.2) are arbitrary and can be
varied independently for this network.
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Recall from (4.17) that η1 is such that (J − iIn)η1 = 3d3F (c, c, c̄). Using (4.32), we
compute

d3F (c, c, c̄) =

⎛
⎝ ifu1u1u1

ifu1u1u1

−ifu1u1u1

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

2i
0

2i
0

−2i
0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then it is easy to verify that

η1 = 3b− 3i

2
c̄(4.34)

by using the definitions of c and b in (4.30) and (4.31). Hence

[J ′(0)η1]
td̄ = 3[J ′(0)b]td̄− 3i

2
[J ′(0)c̄]td̄.

Observe that J ′(0)c̄ ∈ S since c̄ ∈ S and S is invariant for J ′(0). So by (4.11), [J ′(0)c̄]td̄ = 0.
Also observe that

J ′(0)b =

⎛
⎝ A′(0)a

−A′(0)a
0

⎞
⎠ +

⎛
⎝ B′(0)a

B′(0)a
−B′(0)a

⎞
⎠ ,

so that

[J ′(0)η1]
td̄ = 6[A′(0)a]tā

since (B′(0)a,B′(0)a,−B′(0)a)t ∈ S is orthogonal to d̄. Since the entries in A′(0) are arbitrary,
[J ′(0)η1]

td̄ is an arbitrary complex number, and therefore puλ(0) and quλ(0) can be varied
independently from each other. Furthermore, since only ξt3d̄ depends on this term, puλ(0) and
quλ(0) are independent of the other derivatives. We will therefore consider only ξt1d̄ and ξt2d̄
from here on.

By plugging (4.34) into the expressions for ξ1 and ξ2 in (4.21) and (4.22), using the linearity
of d3F , and observing that c̄td̄ = ctd̄ = 0, we obtain

ξt1d̄ = 12d3F (c, c̄, b)td̄ + 6d3F (c, c, b̄)td̄,

ξt2d̄ = 6d3F (c, c̄, b)td̄− 3d3F (c, c, b̄)td̄ + 12.
(4.35)

Using the definitions of c = (a, a,−a) and b = (a,−a, 0), we obtain by direct calculation

d3F (c, c̄, b) =

⎛
⎝ ifu1u1u1 + fv1v1w2 + 2fu2u2v2

−ifu1u1u1 + fv1v1w2 + fu2u2v2

−3fv1v1w2 − fu2u2v2

⎞
⎠ ,

d3F (c, c, b̄) =

⎛
⎝ ifu1u1u1 − fv1v1w2 + 2fu2u2v2

−ifu1u1u1 − 3fv1v1w2 + fu2u2v2

3fv1v1w2 − fu2u2v2

⎞
⎠ ,
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and thus we compute (4.35) as

ξt1d̄ = 6[6ifu1u1u1 + 3fu2u2v2 + 2fv1v1w2 ]
tā

= −18(igu2u2v2 − hu2u2v2) − 12(igv1v1w2 − hv1v1w2) + 72,

ξt2d̄ = 3[2ifu1u1u1 + fu2u2v2 − 2fv1v1w2 ]
tā + 12

= −3(igu2u2v2 − hu2u2v2) + 6(igv1v1w2 − hv1v1w2) + 24.

It is a straightforward matter to show that this can be written as (4.33).

5. Hopf bifurcation in the feed-forward chain. The proof of Theorem 1.5 divides into
two parts. First, in section 5.1 we prove the following.

Proposition 5.1. At a nilpotent Hopf bifurcation in the feed-forward chain there exist two
branches of near 2π-periodic solutions, one growing as λ

1
2 and the other growing as λ

1
6 .

Then in section 5.2 we prove the following.

Proposition 5.2. The branches given by Proposition 5.1 are generically the only branches.

Before we delve into the proofs of Propositions 5.1 and 5.2 we need to consider the various
invariant subspaces that play a role later on. Recall that the critical eigenvector of J is
c = (0, 0, a)t, where a is an eigenvector of A with eigenvalue i. The corresponding generalized
eigenvector is

b = (0, ζa, w),(5.1)

where ζ ∈ C and w ∈ Ck are chosen so that wtā = 0 and (A − iIn)w = −(ζB − In)a, and
hence c̄tb = 0.

Observe that

S =
{

(u, u, v) : u, v ∈ Rk
}
,

Ŝ =
{

(0, 0, u) : u ∈ Rk
}

(5.2)

are flow-invariant subspaces for (1.3), which both contain the critical eigenvector c but not
the generalized eigenvector given by (5.1). The feed-forward chain thus satisfies (1.23) for
both S and Ŝ. Thus Proposition 1.6 implies that there exists a branch of solutions in Ŝ that
grows as O(λ

1
2 ).

By analogy with (4.10), we define

Ŝ2π =
{
u ∈ C2π : u(s) ∈ Ŝ for all s

}
.

Recall from Lemma 4.4 that S2π ⊂ R. Thus we have

Ŝ2π ⊂ S2π ⊂ R.(5.3)

Suppose that (1.3) depends on a bifurcation parameter λ and undergoes a nilpotent Hopf
bifurcation at λ = 0. Assume that the eigenvalues of B = B(0) have negative real part and
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that z1 has reached its asymptotic state z1 = 0, so that we can restrict our attention to the
subsystem

ẏ = f(y, 0, λ) = g(y, λ),

ż = f(z, y, λ) = h(z, y, λ)
(5.4)

with linearization

J(λ) = (dF )0,λ =

(
A(λ) 0
B(λ) A(λ)

)
.

Let μ(λ) = σ(λ) + iω(λ) such that σ(0) = 0 and ω(λ) = 1 be the continuation of the critical
eigenvalue of A(0).

Proposition 5.1 is proved in [2, Lemma 6.1] with the assumption that the normal form of
the vector field on the center manifold is S1-equivariant, where S1 acts as

f(eiθy, eiθz) = eiθf(y, z).(5.5)

In section 5.1 we show that this assumption is satisfied generically, and so [2, Lemma 6.1]
holds in full generality. Specifically, we prove the following.

Proposition 5.3. Up to third order, the normal form of the subsystem (5.4) is

ẏ = μ(λ)y + c3(λ)y2ȳ + O(5),

ż = μ(λ)z + y + c3(λ)z2z̄ + αȳz2 + βyzz̄ + O(4),
(5.6)

which is S1-equivariant under the action given by (5.5).

Because of the work in [2], Proposition 5.3 suffices to prove Proposition 5.1 for the trun-
cated equations without higher order terms. For the truncated equations the λ1/6 branch is
also shown in [2] to consist of asymptotically stable solutions. Hence, a scaling argument may
be used to prove the result for (5.6).

The following two lemmas prove Proposition 5.2 and hence Theorem 1.5.

Lemma 5.4. At a nilpotent Hopf bifurcation in the feed-forward chain the reduced equation
(1.10) satisfies (1.21).

Lemma 5.5. The feed-forward chain generically satisfies (1.22).

These lemmas are proved in section 5.2 and use Liapunov–Schmidt reduction instead of
the normal form from (5.6). It may be possible to prove Theorem 1.5 using only normal
form methods, but this requires proving that (5.6) is equivariant to all orders. While we fully
expect this to be the case, a proof remains elusive.

5.1. Proof of Proposition 5.3. By [2, Lemma 6.2] there exists a center manifold M for
(5.4) such that the vector field on M is in skew-product form. On this center manifold we
can therefore change coordinates to put (dF )0,λ in complex Jordan form:

(dF )0,λ =

(
A(λ) 0
I2 A(λ)

)
,
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where

A(λ) = |μ(λ)|
(

eiθ(λ) 0

0 e−iθ(λ)

)
.

Thus we consider

ẏ = |μ(λ)|eiθ(λ)y + G(y, ȳ, λ),

ż = |μ(λ)|eiθ(λ)z + y + H(y, ȳ, z, z̄, λ),
(5.7)

where G and H are O(2).
First we make identical changes on y and z,

y 
→ y + φ(y, ȳ) and z 
→ z + φ(z, z̄),(5.8)

to put ẏ = g(y, λ) in standard normal form for Hopf bifurcation. Since the changes are the
same on both variables we have

(a) ẏ = μ(λ)y + c(|y|2, λ)y,

(b) ż = μ(λ)z + c(|z|2, λ)z + y + H2 + H3 + · · · ,
(5.9)

where Hj is order j in y, ȳ, z, and z̄, and

Hj(0, 0, z, z̄, λ) = 0(5.10)

since all the terms depending only on z and z̄ appear in c(|z|2, λ)z.
Next we make changes of the form

y 
→ y and z 
→ φ(y, ȳ, z, z̄),(5.11)

where φ is order 2. Substituting this into (5.9b), we obtain

ż = μz + y + μφ− μφyy − μ̄φȳȳ − μφzz − φzy − μ̄φz̄ z̄ − φz̄ ȳ + H2 + O(3),

and so second order terms can be eliminated if we can choose φ so that

μφ− μφyy − μ̄φȳȳ − μφzz − φzy − μ̄φz̄ z̄ − φz̄ ȳ + H2 = 0.

Let Mk denote the space of order k monomials in y, ȳ, z, and z̄, and define

M̃k = Mk−1y + Mk−1ȳ.

Then

M̃2 = span
{
y2, yȳ, yz, yz̄, ȳ2, ȳz, ȳz̄

}
,(5.12)

and H2 is a linear combination of elements of M̃2 by (5.10).
Define the map Ψ2 : M̃2 −→ M̃2 by

Ψ2(φ) = μφ− μφyy − μ̄φȳȳ − μφzz − φzy − μ̄φz̄ z̄ − φz̄ ȳ.



NILPOTENT HOPF BIFURCATIONS IN COUPLED SYSTEMS 241

Then we seek solutions to the linear equation

Ψ2(φ) + H2 = 0.

The action of Ψ2 on the basis elements in (5.12) yields

y2 
→ −μy2, yȳ 
→ −μ̄yȳ,

yz 
→ −μyz − y2, yz̄ 
→ −μ̄yz̄ − yȳ,

ȳ2 
→ (μ− 2μ̄)ȳ2, ȳz 
→ −μ̄ȳz − yȳ.

ȳz̄ 
→ (μ− 2μ̄)ȳz̄ − ȳ2,

Thus, with respect to this basis, Ψ2 can be written as

y2 yȳ yz yz̄ ȳ2 ȳz ȳz̄

y2 −μ · −1 · · · ·
yȳ · −μ̄ · −1 · −1 ·
yz · · −μ · · · ·
yz̄ · · · −μ̄ · · ·
ȳ2 · · · · μ− 2μ̄ · −1
ȳz · · · · · −μ̄ ·
ȳz̄ · · · · · · μ− 2μ̄

Note that μ(0) �= 0 and μ(0) = −μ̄(0), so for sufficiently small λ, μ(λ) �= 0 and μ − 2μ̄ �= 0.
Therefore, for sufficiently small λ, range Ψ2 = M̃2, so all quadratics may be eliminated.

Moving on to cubic terms, we again make changes of the form (5.11), but with φ being
order 3. Making this substitution into (5.9b), we obtain

ż = μz + y + μφ− μφyy − μ̄φȳȳ − μφzz − φzy − μ̄φz̄ z̄ − φz̄ ȳ + c3z
2z̄ + H3 + O(4),

and so third order terms can be eliminated if we solve the linear equation Ψ3(φ) + H3 = 0,
where Ψ3 : M̃3 −→ M̃3 is defined by

Ψ3(φ) = μφ− μφyy − μ̄φȳȳ − μφzz − φzy − μ̄φz̄ z̄ − φz̄ ȳ.

Observe that

M̃3 = span{y3, y2ȳ, yȳ2, y2z, y2z̄, yȳz, yȳz̄, yz2, yzz̄, yz̄2, ȳ3,

ȳ2z, ȳ2z̄, ȳz2, ȳzz̄, ȳz̄2}.
(5.13)
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Table 1
Matrix representation of the mapping Ψ3 : M̃3 −→ M̃3 with respect to the basis in (5.13), where α =

−(μ + μ̄) and β = μ− 3μ̄.

y3 y2ȳ yȳ2 y2z y2z̄ yȳz yȳz̄ yz2 yzz̄ yz̄2 ȳ3 ȳ2z ȳ2z̄ ȳz2 ȳzz̄ ȳz̄2

y3 −2μ · · −1 · · · · · · · · · · · ·
y2ȳ · α · · −1 −1 · · · · · · · · · ·
yȳ2 · · −2μ̄ · · · −1 · · · · −1 · · · ·
y2z · · · −2μ · · · −2 · · · · · · · ·
y2z̄ · · · · α · · · −1 · · · · · · ·
yȳz · · · · · α · · −1 · · · · −2 · ·
yȳz̄ · · · · · · −2μ̄ · · −2 · · · · −1 ·
yz2 · · · · · · · −2μ · · · · · · · ·
yzz̄ · · · · · · · · α · · · · · · ·
yz̄2 · · · · · · · · · −2μ̄ · · · · · ·
ȳ3 · · · · · · · · · · β · −1 · · ·
ȳ2z · · · · · · · · · · · −2μ̄ · · −1 ·
ȳ2z̄ · · · · · · · · · · · · β · · −2

ȳz2 · · · · · · · · · · · · · α · ·
ȳzz̄ · · · · · · · · · · · · · · −2μ̄ ·
ȳz̄2 · · · · · · · · · · · · · · · β

Then Ψ3 applied to each of the basis elements in (5.13) yields

y3 
→ −2μy3, y2ȳ 
→ −(μ + μ̄)y2ȳ,

yȳ2 
→ −2μ̄yȳ2, y2z 
→ −2μy2z − y3,

y2z̄ 
→ −(μ + μ̄)y2z̄ − y2ȳ, yȳz 
→ −(μ + μ̄)yȳz − y2ȳ,

yȳz̄ 
→ −2μ̄yȳz̄ − yȳ2, yz2 
→ −2μyz2 − 2y2z,

yzz̄ 
→ −(μ + μ̄)yzz̄ − y2z̄ − yȳz, yz̄2 
→ −2μ̄yz̄2 − 2yȳz̄,

ȳ3 
→ (μ− 3μ̄)ȳ3, ȳ2z 
→ −2μ̄ȳ2z − yȳ2,

ȳ2z̄ 
→ μȳ2z̄ − 2μ̄ȳ2z̄ − ȳ3, ȳz2 
→ −(μ + μ̄)ȳz2 − 2yȳz,

ȳzz̄ 
→ −2μ̄ȳzz̄ − yȳz̄ − ȳ2z, ȳz̄2 
→ −(μ + μ̄)ȳz̄2 − 2ȳ2z̄.

Thus Ψ3 can be represented by the matrix shown in Table 1.

Observe that

−2μ(0) = −2i, −2μ̄(0) = 2i, μ(0) − 3μ̄(0) = 4i, and μ(0) + μ̄(0) = 0.

Thus for λ sufficiently close to 0

−2μ(λ) �= 0, −2μ̄(λ) �= 0, and μ(λ) − 3μ̄(λ) �= 0.

It is straightforward to check that

ker Ψ|λ=0 =
{
ȳz2, yzz̄

}
.

Thus for λ sufficiently small, third order terms other than ȳz2 or yzz̄ can be eliminated.
Therefore the normal form up to third order is as in (5.6).

It is straightforward to verify that h(y, z) = αȳz2+βyzz̄ is S1-equivariant under the action
of (5.5). Thus it follows that (5.6) is also S1-equivariant.
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5.2. Proof of Lemmas 5.4 and 5.5.
Proof of Lemma 5.4. Observe that Proposition 1.6 implies that pu(0) = qu(0) = 0 since

the feed-forward chain satisfies (1.23) for S and Ŝ. Then by Propositions 1.1 and 1.2 the
general form of the Liapunov–Schmidt reduced equation is

0 = p(u, λ, τ) = up̂(u, λ, τ) − τ2 + λ2 + O(|τ, λ|3),
0 = q(u, λ, τ) = uq̂(u, λ, τ) + 2τλ + O(|τ, λ|3).

(5.14)

Consider the branch of solutions on which u = x2 grows at O(λ
1
3 ), and introduce a scaling

parameter s such that λ = s3. Then since τ scales linearly with λ we have

u = sv(s) and τ = s3τ̃(s),

where v(0) �= 0 and τ̃(0) �= 0. Then (5.14) becomes

0 = svp̂(sv, s3, s3τ̃) − s6τ̃2 + s6 + O(s9),

0 = svq̂(sv, s3, s3τ̃) + 2s6τ̃ + O(s9).
(5.15)

Expanding p̂ and q̂ in powers of s, we obtain

p̂(sv, s3, s3τ̃) = sp̂uv + s2p̂uuv + O(s3),

q̂(sv, s3, s3τ̃) = sq̂uv + s2q̂uuv + O(s3),

and so (5.15) becomes

0 = s2p̂uv
2 + s3p̂uuv

2 + O(s4),

0 = s2q̂uv
2 + s3q̂uuv

2 + O(s4).

Equating powers of s, we obtain

p̂u = p̂uu = q̂u = q̂uu = 0,

which implies the result, by definition of p̂ and q̂ in (5.14).

Proof of Lemma 5.5. Since the feed-forward chain satisfies (1.23) for S and Ŝ, Lemma 4.4
applies. However, the skew-product form of the feed-forward chain and the fact that Ŝ is not
polydiagonal lead to the following stronger form of Lemma 4.4.

Lemma 5.6. If one of the arguments c1, . . . , cm lies in Ŝ, then

dmF (c1, . . . , cm) ∈ Ŝ.(5.16)

If one of the arguments u1, . . . , um lies in Ŝ2π, then

dmΦ(u1, . . . , um) ∈ Ŝ2π.
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Proof. Suppose that one of the arguments c1, . . . , cm lies in Ŝ. Since dmF is symmetric
in c1, . . . , cm we can assume without loss of generality that this is the first component. Then
c1,j = 0 if j ≤ 2k, so

dmF (c1, . . . , cm) =
∑

i1=2k+1,...,3k
i2,...,im=1,...,3k

∂mF

∂xi1 · · · ∂xim

∣∣∣∣
0

c1,i1 · · · cm,im ,(5.17)

since all terms with i1 ≤ 2k vanish.
Observe that for i1 = 2k + 1, . . . , 3k,

∂mF

∂xi1 · · · ∂xim

∣∣∣∣
0

=

⎛
⎜⎜⎜⎝

∂mf(z1,z1)
∂xi1

···∂xim

∂mf(z2,z1)
∂xi1

···∂xim

∂mf(z3,z2)
∂xi1

···∂xim

⎞
⎟⎟⎟⎠

0

=

⎛
⎜⎝

0
0

∂mf(z3,z2)
∂xi1

···∂xim

⎞
⎟⎠

0

,

and so (5.17) becomes

dmF (c1, . . . , cm) =
∑

i1=2k+1,...,3k
i2,...,im=1,...,2k

⎛
⎜⎝

0
0

∂mf(z3,z2)
∂xi1

···∂xim

⎞
⎟⎠

0

c1,i1 · · · cm,im ,

which lies in Ŝ by the definition in (5.2).
Similarly, suppose that u1 ∈ Ŝ2π. Then each u1 is a linear combination of terms of the

form elisc1 for some c1 ∈ Ŝ, l ∈ Z. So dmΦ(u1, . . . , um) is a linear combination of terms of
the form

elisdmF (c1, . . . , cm),

which lie in Ŝ2π since dmF (c1, . . . , cm) ∈ Ŝ by (5.16).
In line with previous calculations, we assume that F is odd: if the result is true in this

restricted case, then it will certainly be true generically. To simplify notation, let φ(k) and
W(k) denote the kth x derivatives of φ and W . Then using the formula for φ(9) given in (A.4)
along with Lemmas 4.5 and 5.6 and the fact that dΦ(W(9)) ∈ R by definition, we obtain

φ(9) = 280(I − E)d3Φ(W(3),W(3),W(3)).(5.18)

We claim that 〈
v∗j ,d

3Φ(W(3),W(3),W(3))
〉

=
〈
v∗j ,Re{eisd3F (η1, η1, η̄1)}

〉
.(5.19)

To see this, observe that c = (0, 0, a) ∈ Ŝ, and thus d3F (c, c, c) and d3F (c, c, c̄) both lie in Ŝ by
(5.16). Now consider the occurrence of η3 in the formula for W(3) in Lemma 4.5 and observe

that η3 = (J − 3iIn)−1d3F (c, c, c) also lies in Ŝ because Ŝ is invariant for (J − 3iIn)−1. Thus
any terms in the expansion of d3Φ(W(3),W(3),W(3)) of the form e±misd3F (η3, ·, ·) will lie in Ŝ2π
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by Lemma 5.6 and vanish in the projection onto K∗ by (5.3). Furthermore, e±3isd3F (η1, η1, η1)
also vanishes in the projection, and we are left with (5.19). Therefore, if we show that

d3F (η1, η1, η̄1)
td̄ �= 0,(5.20)

then the result will follow.

Recall from (4.17) that

(J − iIn)η1 = 3d3F (c, c, c̄).

Since d3F (c, c, c̄) ∈ Ŝ, and since there are no other constraints on d3F (c, c, c̄), the projection
onto the critical eigenspace Ei will generically be nonzero. Note also that (J − iIn) is not
invertible. The kernel of (J − iIn) is Ei, and the preimage of Ei under (J − iIn) is the
generalized eigenspace Gi. Hence, the projection of η1 onto Gi will also be generically nonzero
in order to pick up the component of d3F (c, c, c̄) in Ei. Thus we can write

η1 = αb + w,

where α ∈ C and w ∈ Ŝ − Ei. Therefore η1 /∈ S since b /∈ S.

Thus, using the linearity of d3F , we have

d3F (η1, η1, η̄1)
td̄ = α3d3F (b, b, b̄)td̄

since any terms d3F (w, ·, ·) lie in Ŝ by (5.16) and are therefore orthogonal to d by (4.11).
Generically α3d3F (b, b, b̄)td̄ �= 0, because btd̄ �= 0 by (2.15). This proves (5.20), and hence
Proposition 5.5.

6. Further examples of nilpotent Hopf bifurcation. In this section we consider three
additional examples of three-cell networks, shown in Figures 8, 9, and 10, that can have
nilpotent Hopf bifurcations.

1

3 2

Figure 8. Another three-cell network with two or four branches at a nilpotent Hopf bifurcation.

6.1. Another network with multiple O(λ
1
2 ) branches. The network in Figure 8 is defined

by

ẋ1 = f(x1, x2, x2),

ẋ2 = f(x2, x1, x3),

ẋ2 = f(x3, x1, x2)

(6.1)
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1

3 2

Figure 9. A feed-forward-like three-cell network.

and has Jacobian

J =

⎛
⎝ A 2B 0

B A B
B B A

⎞
⎠ .

The 3k eigenvalues and eigenvectors of J are

Eigenvector Eigenvalues Algebraic multiplicity Geometric multiplicity

(−2u, u, u)t A−B 2 1
(v, v, v)t A + 2B 1 1

where u is an eigenvector of A − B and v is an eigenvector of A + 2B. It follows that when
k ≥ 2, (6.1) can have a codimension one nilpotent Hopf bifurcation if A − B has a purely
imaginary pair of eigenvalues.

Suppose that a is the critical eigenvector of A−B. Then the critical eigenvector of J and
the corresponding generalized eigenvector are

c =

⎛
⎝ −2a

a
a

⎞
⎠ and b = ζ

⎛
⎝ 2a

−7a
11a

⎞
⎠ +

⎛
⎝ −2w

w
w

⎞
⎠ ,

where ζ ∈ C and w ∈ Ck are chosen so that w̄ta = 0 and (A−B − iIk)w = −(6ζB − Ik)a.
Observe that S = {(u, v, v) : u, v ∈ Rk} is a synchrony subspace for this network and

that S contains the critical eigenspace but not the generalized eigenspace. Hence this network
satisfies (1.23). Therefore, Proposition 1.6 implies that there exists a branch of solutions that

grows at O(λ
1
2 ), and that (1.18) holds. Thus, in the absence of any further constraints that

force puu = quu = 0, it follows from Theorem 1.4 that there exist two or four solutions, each
growing at O(λ

1
2 ). We do not verify the absence of such constraints here, but we note that the

absence of any other flow-invariant subspaces suggests, by analogy with the networks studied
previously, that the second derivatives of p and q are indeed unconstrained.

6.2. Two networks with branches that grow at O(λ
1
6 ). In addition to the three-cell

feed-forward chain of section 5, there are two other three-cell networks, shown in Figures 9
and 10, that can have branches of solutions that grow at O(λ

1
6 ).

The network in Figure 9 is defined by

ẋ1 = f(x1, x1, x1),

ẋ2 = f(x2, x1, x1),

ẋ3 = f(x3, x1, x2)

(6.2)
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2 1 3

Figure 10. Another feed-forward-like three-cell network.

and has Jacobian

J =

⎛
⎝ A + 2B 0 0

2B A 0
B B A

⎞
⎠ .

The network in Figure 10 is defined by

ẋ1 = f(x1, x1, x2),

ẋ2 = f(x2, x1, x2),

ẋ3 = f(x3, x1, x1)

(6.3)

and has Jacobian

J =

⎛
⎝ A + B B 0

B A + B 0
2B 0 A

⎞
⎠ .

In both cases, the 3k eigenvalues and eigenvectors of J are

Eigenvector Eigenvalues Algebraic multiplicity Geometric multiplicity

(0, 0, u)t A 2 1
(v, v, v)t A + 2B 1 1

where u is an eigenvector of A and v is an eigenvector of A + 2B. It follows that when
k ≥ 2, (6.2) and (6.3) can have a codimension one nilpotent Hopf bifurcation if A has a purely
imaginary pair of eigenvalues.

Consider first the network shown in Figure 9 and defined by (6.2). Suppose that a is the
critical eigenvector of A. Then the critical eigenvector of J and the corresponding generalized
eigenvector are

c =

⎛
⎝ 0

0
a

⎞
⎠ and b =

⎛
⎝ 0

ζa
w

⎞
⎠ ,

where ζ ∈ C and w ∈ Ck are chosen so that w̄ta = 0 and (A− iIk)w = −(ζB − Ik)a.

Observe that S = {(u, u, v) : u, v ∈ Rk} and Ŝ = {(0, 0, v) : v ∈ Rk} are invariant
subspaces for this network, which both contain the critical eigenspace but not the generalized
eigenspace. Hence this network satisfies (1.23), and Proposition 1.6 implies that there exists

a branch of solutions that grows at O(λ
1
2 ) and that (1.18) holds. This branch is obtained by
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restricting the system to Ŝ so that x1 = x2 = 0 and observing that cell 3 undergoes a standard
Hopf bifurcation.

This branch of solutions is unstable because the origin is unstable for cell 2. However,
the same argument used in [2, Lemma 6.1] can be employed to show that there exists an

additional branch of solutions that grows at O(λ
1
6 ). Suppose that the eigenvalues of B are

negative so that the origin in the first cell is stable for ẋ1 = f(x1, x1, x1, λ) if λ is sufficiently
small. Thus we may assume that x1 = 0.

ẋ2 = f(x2, 0, 0, λ) = g(x2, λ),

ẋ3 = f(x3, 0, x2, λ) = h(x3, x2, λ),

which is precisely the form of the reduced feedforward network in (5.4). Thus the same S1-
equivariant normal form can be obtained as in section 5.1, and hence the arguments of [2,
Lemma 6.1] are applicable.

Now consider the network shown in Figure 10 and defined by (6.3). Suppose that a is the
critical eigenvector of A. Then the critical eigenvector of J and the corresponding generalized
eigenvector are

c =

⎛
⎝ 0

0
a

⎞
⎠ and b =

⎛
⎝ ζa

−ζa
w

⎞
⎠ ,

where ζ ∈ C and w ∈ Ck are chosen so that w̄ta = 0 and (A− iIk)w = −(2ζB − Ik)a.

Again, observe that S = {(u, u, v) : u, v ∈ Rk} and Ŝ = {(0, 0, v) : v ∈ Rk} are invariant
subspaces that satisfy (1.23), so that Proposition 1.6 implies a branch of solutions that grows

at O(λ
1
2 ) and that (1.18) holds.

Observe that cells 1 and 2 form a Z2-equivariant subsystem that is not influenced by cell 3.
A synchrony-breaking Hopf bifurcation in this subsystem yields a branch of periodic solutions
that grows as λ

1
2 and satisfies

x1(t) = x2

(
t + 1

2

)
.

Thus the bifurcation in cell 3 is forced by x1(t) in exactly the same way as it is forced by
cell 2 in the feed-forward chain. Assuming that the normal form on the center manifold is
S1-equivariant under the action in (5.5), it follows from the proof of [2, Lemma 6.1] that there

exists a branch that grows at O(λ
1
6 ).

Appendix. Derivatives of the reduced mapping. The following is a collection of all the
derivatives of the reduced mapping φ. These are derived by definition; see [3, pp. 31–33].
For higher derivatives we use the notation φ(k) and W(k) to signify the kth x derivative of φ
and W . In order to keep these formulas as readable as possible we have used the fact that
Wx(0, 0, 0) = 0, but it should be remembered that in deriving φ(k+1) from φ(k), an argument
of v1 should be read as v1 + Wx.

φxxx = (I − E)(d3Φ(v1, v1, v1) + 3d2Φ(v1,Wxx) + dΦ(Wxxx))(A.1)
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φ(5) = (I − E)
(
d5Φ(v1, v1, v1, v1, v1) + 10d4Φ(v1, v1, v1,Wxx)

+ 15d3Φ(v1,Wxx,Wxx) + 10d3Φ(v1, v1,Wxxx)

+ 10d2Φ(Wxx,Wxxx) + 5d2Φ(v1,W(4)) + dΦ(W(5))
)(A.2)

φ(7) = (I − E)
(
d7Φ(v1, v1, v1, v1, v1, v1, v1) + 21d6Φ(v1, v1, v1, v1, v1,Wxx)

+ 105d5Φ(v1, v1, v1,Wxx,Wxx) + 35d5Φ(v1, v1, v1, v1,Wxxx)

+ 105d4Φ(v1,Wxx,Wxx,Wxx) + 210d4Φ(v1, v1,Wxx,Wxxx)

+ 35d4Φ(v1, v1, v1,W(4)) + 105d3Φ(Wxx,Wxx,Wxxx)

+ 70d3Φ(v1,Wxxx,Wxxx) + 105d3Φ(v1,Wxx,W(4))

+ 21d3Φ(v1, v1,W(5)) + 35d2Φ(Wxxx,W(4))

+ 21d2Φ(Wxx,W(5)) + 7d2Φ(v1,W(6)) + dΦ(W(7))
)

(A.3)

φ(9) = (I − E)
(
d9Φ(v1, v1, v1, v1, v1, v1, v1, v1, v1) + 36d8Φ(v1, v1, v1, v1, v1, v1, v1,Wxx)

+ 378d7Φ(v1, v1, v1, v1, v1,Wxx,Wxx) + 84d7Φ(v1, v1, v1, v1, v1, v1,Wxxx)

+ 1260d6Φ(v1, v1, v1,Wxx,Wxx,Wxx) + 1260d6Φ(v1, v1, v1, v1,Wxx,Wxxx)

+ 126d6Φ(v1, v1, v1, v1, v1,W(4)) + 945d5Φ(v1,Wxx,Wxx,Wxx,Wxx)

+ 3780d5Φ(v1, v1,Wxx,Wxx,Wxxx) + 840d5Φ(v1, v1, v1,Wxxx,Wxxx)

+ 1260d5Φ(v1, v1, v1,Wxx,W(4)) + 126d5Φ(v1, v1, v1, v1,W(5))

+ 1260d4Φ(Wxx,Wxx,Wxx,Wxxx) + 2520d4Φ(v1,Wxx,Wxxx,Wxxx)

+ 1890d4Φ(v1,Wxx,Wxx,W(4)) + 1260d4Φ(v1, v1,Wxxx,W(4))

+ 756d4Φ(v1, v1,Wxx,W(5)) + 84d4Φ(v1, v1, v1,W(6))

+ 280d3Φ(Wxxx,Wxxx,Wxxx) + 1260d3Φ(Wxx,Wxxx,W(4))

+ 378d3Φ(Wxx,Wxx,W(5)) + 315d3Φ(v1,W(4),W(4))

+ 504d3Φ(v1,Wxxx,W(5)) + 252d3Φ(v1,Wxx,W(6))

+ 36d3Φ(v1, v1,W(7)) + 126d2Φ(W(4),W(5)) + 84d2Φ(Wxxx,W(6))

+ 36d2Φ(Wxx,W(7)) + 9d2Φ(v1,W(8)) + dΦ(W(9))
)

(A.4)

The following are differentials involving parameters α and β:

φαx = (I − E)
(
dΦα(v1) + dΦ(Wαx) + d2Φ(v1,Wα)

)
,(A.5)

φαβx = (I − E)
(
dΦαβ(v1) + dΦα(Wβx) + dΦβ(Wαx) + dΦ(Wαβx)

+ d2Φα(v1,Wβ) + d2Φβ(v1,Wα) + d2Φ(Wαx,Wβ)

+ d2Φ(Wβx,Wα) + d2Φ(v1,Wαβ) + d3Φ(v1,Wα,Wβ)
)
,

(A.6)

φαxx = (I − E)
(
d3Φ(v1, v1,Wα) + 2d2Φ(v1,Wαx) + d2Φ(Wxx,Wα)

+ dΦ(Wαxx) + d2Φα(v1, v1) + dΦα(Wxx)
)
,

(A.7)
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φαxxx = (I − E)
(
d4Φ(v1, v1, v1,Wα) + 3d3Φ(v1, v1,Wαx)

+ 3d3Φ(v1,Wxx,Wα) + 3d2Φ(v1,Wαxx)

+ 3d2Φ(Wxx,Wαx) + d2Φ(Wxxx,Wα) + dΦ(Wαxxx)

+ d3Φα(v1, v1, v1) + 3d2Φα(v1,Wxx) + dΦα(Wxxx)
)
.

(A.8)

The following formulas for the W(k) are obtained by differentiating

EΦ(xv1 + W (xv1, λ, τ), λ, τ) ≡ 0(A.9)

k times with respect to x. This yields an expression of the form

E( · · · ) + EdΦ(W(k)) = 0,

which can be rearranged to give

dΦ(W(k)) = −E( · · · )

since dΦ(W(k)) ∈ R on which E acts as the identity, and hence

W(k) = −L−1E( · · · ).

In this way, we obtain

Wxx = −L−1E
(
d2Φ(v1, v1)

)
,(A.10)

Wxxx = −L−1E
(
d3Φ(v1, v1, v1) + 3d2Φ(v1,Wxx)

)
,(A.11)

Wxxxx = −L−1E
(
d4Φ(v1, v1, v1, v1) + 6d3Φ(v1, v1,Wxx)(A.12)

+ 3d2Φ(Wxx,Wxx) + 4d2Φ(v1,Wxxx)
)
.

Similarly, we obtain the following expressions for Wαx by differentiating (A.9) with respect
to α and x to obtain

E
(
d2Φ(v1 + Wx,Wα) + dΦ(Wαx) + dΦα(v1 + Wx)

)
= 0,(A.13)

which rearranges to give

Wαx = −L−1E
(
d2Φ(v1,Wα) + dΦα(v1)

)
.(A.14)

By further differentiation of (A.13) with respect to x and rearranging, we obtain

Wαxx = −L−1E
(
d3Φ(v1, v1,Wα) + d2Φα(v1, v1)

+ d2Φ(Wxx,Wα) + 2d2Φ(v1,Wαx) + dΦα(Wxx)
)
,

(A.15)

Wαxxx = −L−1E
(
d4Φ(v1, v1, v1,Wα) + 3d3Φ(v1, v1,Wαx)

+ 3d3Φ(v1,Wxx,Wα) + d3Φα(v1, v1, v1)

+ 3d2Φ(Wxx,Wαx) + d2Φ(Wxxx,Wα) + 3d2Φ(v1,Wαxx)

+ 3d2Φα(v1,Wxx) + d2Φα(Wxxx)
)
.

(A.16)
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Binary Asteroid Observation Orbits from a Global Dynamical Perspective∗
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Abstract. We study spacecraft motion near a binary asteroid by means of theoretical and computational tools
from geometric mechanics and dynamical systems. We model the system assuming that one of
the asteroids is a rigid body (ellipsoid) and the other a sphere. In particular, we are interested in
finding periodic and quasi-periodic orbits for the spacecraft near the asteroid pair that are suitable
for observations and measurements. First, using reduction theory, we study the full two body prob-
lem (gravitational interaction between the ellipsoid and the sphere) and use the energy-momentum
method to prove nonlinear stability of certain relative equilibria. This study allows us to construct
the restricted full three-body problem (RF3BP) for the spacecraft motion around the binary, as-
suming that the asteroid pair is in relative equilibrium. Then, we compute the modified Lagrangian
fixed points and study their spectral stability. The fixed points of the restricted three-body problem
are modified in the RF3BP because one of the primaries is a rigid body and not a point mass. A
systematic study depending on the parameters of the problem is performed in an effort to under-
stand the rigid body effects on the Lagrangian stability regions. Finally, using frequency analysis,
we study the global dynamics near these modified Lagrangian points. From this global picture, we
are able to identify (almost-) invariant tori in the stability region near the modified Lagrangian
points. Quasi-periodic trajectories on these invariant tori are potentially convenient places to park
the spacecraft while it is observing the asteroid pair.

Key words. asteroid pairs, spacecraft dynamics, stability, frequency analysis, invariant tori, quasi-periodic
motion
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1. Introduction. The dynamics of asteroid pairs has recently become a topic of interest,
specially since the first binary asteroid, Ida-Dactyl, was discovered by the Galileo spacecraft in
1993. It is currently estimated that up to 20% of near-earth asteroids (NEA) are binaries [26],
and other examples have been found among the asteroid main-belt, in the Trojan swarms and
as transneptunian objects [33]. The problem of two rigid bodies orbiting around each other
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attracted by their mutual gravitational forces is challenging from the geometric mechanics
point of view [5]. Moreover, a very interesting problem with applications to astrodynamics is
the description of the dynamics of a massless particle (e.g., a spacecraft) moving under the
influence of the binary [41, 11]. Indeed, binaries can be used as real-life laboratories to test
rigid-body gravitational dynamics. As such, these theoretical studies may be relevant for a
possible future mission to binaries.

The objective of this paper is to construct and study a model for the motion of a satellite
orbiting a binary asteroid. To do this, we first have to develop a model for the asteroid pair
itself. A binary asteroid provides a canonical model for general full body problems (FBPs);
see [24, 39]. FBPs are concerned with the dynamical interaction between distributed bodies
of finite mass. In particular, the full two-body problem (F2BP) considers the dynamics of two
spatially extended bodies that interact via their mutual gravitational fields. In this paper,
we consider the “sphere restriction” of the F2BP [20]. That is, it is assumed that one of the
rigid bodies is spherically symmetric and thus can be considered as a point mass. As for the
other rigid body, we assume that it is a triaxial ellipsoid. The study of this simple model of
an asteroid pair will give some hints on the dynamics of spacecrafts about binaries, and it can
be generalized further using, for instance, more complicated potentials [47].

One of our first goals is to find stable relative equilibria of this F2BP with the property
that we can later build models for the satellite motion around the pair. Moreover, as we
look first for simple relative equilibria, we also assume that the two bodies are restricted to
moving in a plane. This makes the reduction process and the equilibria characterization much
simpler, but not too simple, as the coupling between rotational and translational motion is
still there. For a probe sent to a binary asteroid, it is plausible to assume that the underlying
F2BP is in some type of relative equilibrium. As the study of more complex models will be
important in the future, we have to first understand the simplified cases. Thus, we devote
the first part of the paper to studying the F2BP by means of reduction methods [28], to
identifying its relative equilibria, and to proving nonlinear stability for some cases with the
aid of the energy-momentum method [44].

Following this, we choose a particular stable relative equilibria of the F2BP, which corre-
sponds to a periodic orbit in the original system, to construct a model for the satellite orbiting
the binary. This model is a restricted problem of three bodies, but one of the primaries is a
rigid body. In the literature this type of model has been called the restricted full three-body
problem or RF3BP [41].

As is well known [45], the restricted three-body problem (RTBP) has five equilibrium
points, and two of them form an equilateral triangle with the primaries. These equilateral
equilibrium points, also called Lagrangian points, may persist when one of the primaries is not
a point mass but a distributed body [2, 41, 12]. The position and stability properties of these
points are, of course, affected by the perturbation and are thus modified. In the second part
of the paper, we study how these equilibrium points are modified depending on the variation
of the parameters of the problem.

In some previous works [11, 12], we have studied this problem using normal form tech-
niques near the triangular points of some particular RF3BP, which are simpler than the ones
presented here. Even though these tools give quite satisfactory results for a range of param-
eters, the zone around the fixed points where the dynamics can be described by the normal
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form is not very big. In this paper, we extend the description of this dynamics to larger
regions of the phase space.

To achieve this goal, in the last part of the paper we apply a dynamical systems–based
tool, namely frequency map analysis [21, 37, 16], to study the global dynamics around the
Lagrangian points. We are able to identify relatively large neighborhoods of these equilibrium
points in phase space at which the trajectories are stable for a long time. As far as we know,
this is the first time that this powerful numerical tool (frequency analysis) has been applied
to orbit mechanics about asteroids.

Previously, a wavelet-based frequency analysis [46] has been used to study the transport
in the Sun-Jupiter RTBP. The advantage of this method appears in problems where the
frequencies vary with time, for example when there is relatively “fast” transport from one
region of phase space to another. In our problem, we are interested in the dynamics close
to an elliptic point, and the results given by the wavelet method should be similar to those
presented here. In particular, we look for tori that are “invariant enough,” i.e., tori where we
can place the spacecraft for a long enough time (the meaning of this will be clarified later on).
In this case, if there is transport between nearby tori, the transport should be slow.

The paper is organized as follows. In section 2, we develop and study a model of the
asteroid pair. The relative equilibria of the reduced binary system are characterized, and their
stability is studied by means of the energy-momentum method. In section 3, we construct
the model for the satellite orbiting the asteroid pair, i.e., the RF3BP, and we find the new
coordinates of the modified Lagrangian points of the RTBP and study its spectral stability. In
section 4, we study the global dynamics near the Lagrangian points of the RF3BP by means
of frequency analysis methods. This global study allows us to find (almost-) invariant tori and
trajectories very close to quasi-periodic, which are pretty suitable for the satellite. Finally,
in section 5, our conclusions and future directions are presented. For the convenience of the
reader, we add in the appendix a brief review on Abelian reduction theory, which is used in
section 2 to study the F2BP.

2. Stability of the asteroid pair.

2.1. Reduced model for the binary. To model the asteroid pair, we consider the me-
chanical system of a triaxial ellipsoid and a sphere that interact via the mutual gravitational
potential and are allowed to move in a plane. In an inertial reference frame, the kinetic energy
of the system is

K =
1

2
m‖q̇‖2 +

1

2
M‖Q̇‖2 +

1

2
Izzϕ̇

2,

where q and Q are the positions of the sphere’s center and the barycenter of the ellipsoid and
m and M are, respectively, the masses of the sphere and the ellipsoid. Izz is the component
orthogonal to the plane of motion of the inertia tensor of the ellipsoid, and the angle ϕ is as
shown in Figure 1.

This system is invariant under translations. Thus, defining the relative position of the
bodies as r = q − Q and taking as unit of mass the reduced mass, i.e., mM/(m + M) = 1,
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Figure 1. Gravitational interaction of a rigid body and a sphere in the plane.

the system is described by the Lagrangian functional

L(r, ϕ, ṙ, ϕ̇) =
1

2
‖ṙ‖2 +

1

2
Izzϕ̇

2 − V (r, ϕ),(2.1)

where ‖ · ‖ denotes the Euclidean norm and V (·) is the gravitational potential of the sys-
tem. The Legendre transform, (p, pϕ) = (ṙ, Izzϕ̇), gives the Hamiltonian formulation of the
problem:

H =
1

2
‖p‖2 +

1

2Izz
p2
ϕ + V (r, ϕ).(2.2)

We assume that the axes of the ellipsoid, (α, β, γ), are ordered as 0 < γ ≤ β ≤ α = 1 and
that the “γ axis” is orthogonal to the plane of motion. Thus, the longest axis of the ellipsoid
is taken as the unit of length. The unit of time is taken such that GmM = 1. The mass
parameter of the system will be denoted ν = m/(m+M), and then the moment of inertia of
the ellipsoid is Izz = (1 + β2)/(5ν). To write the mutual gravitational potential function of
the ellipsoid and sphere, we use Ivory’s theorem [25, 38]:

V (r, ϕ) = V (r, θ) = −3

4

∫ +∞

λ(r,θ)
Φ(r, θ;u)

du

Δ(u)
,(2.3)

where r = ‖r‖, θ = φ− ϕ,

Φ(r, θ;u) = 1 − r2 cos2 θ

1 + u
− r2 sin2 θ

β2 + u
,

Δ(u) =
√

(1 + u)(β2 + u)(γ2 + u), and λ(r, θ) > 0 is the largest root of Φ(r, θ;λ(r, θ)) = 0.
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This system still has an overall rotational symmetry; that is, it is invariant under rotations
in the plane of motion. In other words, the action of the symmetry group SO(2) leaves the
system invariant. Hence, to reduce the dimensionality of the problem, we apply the abelian
reduction reviewed in the appendix.

For this purpose, by introducing polar coordinates and relative angles (see [12]), we write
the Hamiltonian function in a much more convenient way:

H =
1

2
p2
r +

(
1

2r2
+

1

2Izz

)
p2
θ +

1

2Izz
p2
ϕ − 1

Izz
pθpϕ + V (r, θ),(2.4)

where pθ = r2θ̇ + r2ϕ̇ and pϕ = r2θ̇ + (r2 + Izz)ϕ̇. Notice that ϕ is a cyclic variable of
the Hamiltonian (2.4), and therefore its conjugate momentum pϕ is conserved (Noether’s
theorem).

We then apply cotangent bundle reduction (see section A.2): The momentum map is given
by J(r, θ, ϕ, pr, pθ, pϕ) = pϕ and corresponds to the total angular momentum of the system in
the new coordinates. The locked inertia tensor (instantaneous inertia tensor when the relative
motion of the two-body system is locked) is I(r, θ, ϕ) = r2 + Izz. The mechanical connection

is the 1-form given by A(r, θ, ϕ) = r2

r2+Izz
dθ + dϕ. For a fixed angular momentum pϕ = μ, we

finally perform the shift from J−1(μ) to J−1(0) as

p̃r = pr, p̃θ = pθ −
μr2

r2 + Izz
, p̃ϕ = 0.

The reduced Hamiltonian in J−1(0)/S1 has only two degrees of freedom,

Hμ(r, θ) =
1

2
p̃2
r +

1

2

(
1

r2
+

1

Izz

)
p̃2
θ + Vμ(r, θ),(2.5)

and Vμ(r, θ) is the amended potential,

Vμ(r, θ) =
μ2

2(r2 + Izz)
− 3

4

∫ +∞

λ(r,θ)
Φ(r, θ;u)

du

Δ(u)
,(2.6)

where Φ(r, θ;u), Δ(u), and λ(r, θ) > 0 are as defined before, and μ ∈ R is the total angular
momentum (fixed). The reduced symplectic form is noncanonical and given by

ωμ = dr ∧ dp̃r + dθ ∧ dp̃θ −
2μIzzr

(r2 + Izz)2
dr ∧ dθ.(2.7)

The equations of motion in the reduced space can be easily derived from i(ẋk∂
xk

+ẏk∂yk )ωμ =

dHμ, where (x, y) denote the configuration-momenta conjugate pair and iXΩ is the interior
product (or contraction) of the vector field X and the 1-form Ω:

ṙ = p̃r, ˙̃pr =
p̃2
θ

r3
− ∂Vμ(r, θ)

∂r
+

2μIzzr

(r2 + Izz)2

(
1

r2
+

1

Izz

)
p̃θ,

θ̇ =

(
1

r2
+

1

Izz

)
p̃θ, ˙̃pθ = −∂Vμ(r, θ)

∂θ
− 2μIzzr

(r2 + Izz)2
p̃r.
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2.2. Relative equilibria. We are now interested in finding the stable (we will make precise
later on in which sense) fixed points of the reduced equations. The relative equilibria (or fixed
points of the reduced equations) satisfy [27]:

p̃r = p̃θ =
∂Vμ

∂r
=

∂Vμ

∂θ
= 0.

The first two equations give

pr = 0,

pθ =
μr2

r2 + Izz
,

and the last two give

3

2
r
(
cos2 θRα + sin2 θRβ

)
− μ2r

(r2 + Izz)2
= 0,(2.8)

− 3

4
r2 sin 2θ (Rα −Rβ) = 0,(2.9)

where Rα and Rβ denote the elliptic integrals

Rα =

∫ +∞

λ(r,θ)

du

(1 + u)Δ(u)
, Rβ =

∫ +∞

λ(r,θ)

du

(β2 + u)Δ(u)
.

2.2.1. Spheroid. First, let us look at the case where the in-plane axes of the ellipsoid
are equal. In this case, 0 < γ < β = α = 1, and thus Rα = Rβ. Then, (2.9) is satisfied
automatically ∀θ ∈ T.

From (2.8) and assuming r > 1,

μ2

(r2 + Izz)2
=

3

2
Rα,

where in this case

Rα =

∫ +∞

r2−1

du

(1 + u)2
√

γ2 + u
.

In relative equilibria, the distance between the two bodies is constant (r ≡ constant). We can
thus define the following parameter:

ω ≡ μ

r2 + Izz
.(2.10)

The relative equilibria can be seen in the unreduced space as uniformly rotating systems.
Then, ω is precisely the angular velocity of this rotating system.

In this degenerate case, the elliptic integral Rα is trivially integrable, and we obtain the
following condition for relative equilibria: Given r > 1 and γ < 1,

ω2 = 3π − 3
√

r2 − 1 + γ2

4(1 − γ2)r2
− 3

2(1 − γ2)3/2
arctan

√
r2 − 1 + γ2

1 − γ2
.(2.11)
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Figure 2. Two types of relative equilibria for the planar ellipsoid–sphere Full 2-Body Problem. (a) Long-
Axis Equilibrium (LAE). (b) Short-Axis Equilibrium (SAE).

Note: For fixed γ < 1 and r > 1, we have a degenerate “circle” of relative equilibria
(∀θ ∈ T) with the binary rotating (in an inertial frame) at a constant angular velocity ω
satisfying (2.11). Also, for fixed mass parameter ν, we can compute Izz = 2/(5ν) and then
the angular momentum μ from (2.10).

2.2.2. Triaxial ellipsoid. Now, we focus on the triaxial ellipsoid, where 0 < γ ≤ β < α =
1. Here, Rα �= Rβ, and (2.9) yields sin 2θ = 0, which means that relative equilibria satisfy

θ = k
π

2
for any k ∈ Z.

Geometrically, we can distinguish between two types of solutions [40]:
1. LAE (long-axis equilibria) when θ = 0 or π (see Figure 2(a)), and

2. SAE (short-axis equilibria) when θ = ±π

2
(see Figure 2(b)).

Again, defining the angular velocity of the system as in (2.10), we obtain the following relations
between ω and r:

1. LAE:

ω2 =
3

2

∫ +∞

r2−1

du

(1 + u)Δ(u)
,(2.12)

2. SAE:

ω2 =
3

2

∫ +∞

r2−β2

du

(β2 + u)Δ(u)
,(2.13)

where recall that Δ(u) =
√

(1 + u)(β2 + u)(γ2 + u). Here, for fixed 0 < γ ≤ β < 1 and R ≥ 1,
there is a fixed point with coordinates (r, θ) = (R, kπ/2) for an angular velocity ω satisfying
(2.12) for kmod 2 = 0, or (2.13) for kmod 2 = 1. Moreover, given the mass parameter, ν,
one can compute the ellipsoid’s moment of inertia Izz = (1 + β2)/(5ν) and, using (2.10), the
angular momentum of the system μ.
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2.3. Stability of relative equilibria: Energy-momentum method. We apply the energy-
momentum method of Simo, Lewis, and Marsden [44] to study the stability of the relative
equilibria that we have just found. According to this method (see also [31, 3]), to carry out
the stability analysis of the LAE and SAE, we must compute δ2Vμ on the subspace orthogonal
to the group Gμ-orbit (in this case, Gμ = SO(2) = S1).

From (2.6), it is easy to see that

δ2Vμ =

(
A 0
0 B

)
,

for θ = k π
2 (LAE and SAE) and where A,B ∈ R and their values depend, of course, on the

particular relative equilibrium.

In the spheroid case, α = β, and thus

A =
4r2ω2

r2 + Izz
− 3

r2
√

r2 + γ2 − 1
,

where ω satisfies (2.11) and B = 0. This is due to the fact that the relative equilibria are
degenerate. Therefore, the energy-momentum method is not conclusive for the “circle” of
relative equilibria in the spheroid-sphere particular case.

1. Stability of LAEs. In this case, θ = 0 or π and thus

B = −3

2
r2 (Rα −Rβ) ,

A =
4r2ω2

r2 + Izz
− 3

r
√

(r2 + β2 − 1)(r2 + γ2 − 1)
,

where ω is given by (2.12). As α > β, Rα < Rβ and thus B > 0. Then,
(a) if A > 0, the LAE is (linearly and nonlinearly) stable;
(b) if A < 0, the LAE is unstable (the index is odd [31, 35]).
In Figure 3, we show some ranges for the parameter values that give stability of the
LAE.
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Figure 3. LAE. Nonlinear stability (red zone) and instability (white zone) of the long-axis relative equilibria
of the binary with respect to the mass parameter ν and the distance between the two bodies R for some values
of the ellipsoid axes: (a) β = γ = 0.5, (b) β = γ = 0.8, (c) β = 0.5 and γ = 0.25.
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2. Stability of SAEs. In this case, θ = ±π
2 and

B =
3

2
r2 (Rα −Rβ) ,

A =
4r2ω2

r2 + Izz
− 3

r
√

(r2 + 1 − β2)(r2 + γ2 − β2)
,

where ω is given by (2.13). As α > β, Rα < Rβ and thus B < 0. Then,
(a) if A > 0, the SAE is unstable (the index is odd [31, 35]);
(b) if A < 0, the stability of the SAE requires further analysis. In this case, we study

their spectral stability by computing numerically the eigenvalues of the linearized
vector field at the fixed points of the reduced system.

In Figure 4, we show ranges for the parameter values for which the SAE are spectrally
stable, unstable, or complex unstable.
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Figure 4. SAE. Unstable zone (green), complex unstable zone (white), and spectrally stable zone (red) of
the short-axis relative equilibria of the binary with respect to the mass parameter ν and the distance between the
two bodies R for some values of the ellipsoid axes: (a) β = γ = 0.5, (b) β = γ = 0.8, (c) β = 0.5 and γ = 0.25.

3. RF3BP. We focus now on a satellite influenced by the gravitational potential of the
binary. To model the motion of this satellite, we assume that the binary is in a relative
equilibrium, and we use the study performed in the last section. As the relative equilibria
found in section 2.2 are periodic orbits for the unreduced system, we will write the equations
of motion for the satellite in a rotating reference in which the asteroid pair is fixed.

We consider binaries such that the rigid body (ellipsoid) is “big” and the spherical body
is “small.” Hence, we assume that ν 
 1. This situation is thought to be the most common
in the main belt [33]. Moreover, as for ν 
 1 and moderate R values the SAE are spectrally
stable, we will also assume that the binary is moving in this particular solution of the F2BP.
For a study of the motion of a spacecraft near a binary in LAE, see [41].

We will now derive the equations of motion for a satellite orbiting a binary in SAE.
We start by assuming that the barycenter of the system is at the origin. As in an inertial
reference frame, the SAE is a uniformly rotating motion [12], and we write the equations for
the spacecraft in a rotating frame for which the two massive bodies, ellipsoid and sphere, are
fixed. More concretely, we choose a reference system where the centers of mass of the ellipsoid
and sphere are at the configuration points (−νR, 0, 0) and ((1 − ν)R, 0, 0), respectively; see
Figure 5. In this case, note that the longest axis of the ellipsoid is parallel to the y axis.
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Figure 5. Model for the spacecraft motion around the binary asteroid. The asteroid pair is assumed to be
in SAE, and the equations of motion for the spacecraft are written in a rotating frame.

Even though the uniformly rotating motion of the binary is in the xy-plane, we will
consider that the satellite is allowed to move in the entire three-dimensional xyz-configuration
space. The equations of motion for the spacecraft in this situation can be constructed similarly
to the RTBP equations [45]. They allow a Hamiltonian formulation and can be obtained from
the following Hamiltonian function:

H(px, py, pz, x, y, z) =
1

2

(
p2
x + p2

y + p2
z

)
+ ω (ypx − xpy) + V (x, y, z),

V (x, y, z) = −3(1 − ν)

4

∫ +∞

λ(x,y,z)
Φ(x, y, z;u)

du

Δ(u)
− ν

r2
,(3.1)

where (x, y, z) is the position of the spacecraft in the rotating reference frame, (px, py, pz)
are the conjugate momenta, and ω is the angular velocity of the rotating system (2.13).
We define R to be the distance between the ellipsoid and sphere barycenters. Then, r2

2 =
(x− (1− ν)R)2 + y2 + z2. The gravitational potential coming from the ellipsoid is computed
as before but considering that now the reference frame is tilted by 90◦. Then, we compute
V (x, y, z) using

Φ(x, y, z;u) = 1 − (x + νR)2

β2 + u
− y2

1 + u
− z2

γ2 + u

and Δ(u) =
√

(1 + u)(β2 + u)(γ2 + u). Finally, λ(x, y, z) > 0 is defined implicitly as the
largest positive root of Φ(x, y, z;λ(x, y, z)) = 0.

In this case, the symplectic form of the system is canonical, and the equations of motion
for the spacecraft are very easy to derive. From now on, we will denote this problem the
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RF3BP, and the differential equations are

ẋ = px + ωy, ṗx = ωpy − (1 − ν)(x + νR)Rβ − ν(x− (1 − ν)R)

r3
2

,

ẏ = py − ωx, ṗy = −ωpx − (1 − ν)yRα − νy

r3
2

,

ż = pz, ṗz = −(1 − ν)zRγ −
νz

r3
2

,

where

Rα =
3

2

∫ +∞

λ(x,y,z)

du

(1 + u)Δ(u)
,

Rβ =
3

2

∫ +∞

λ(x,y,z)

du

(β2 + u)Δ(u)
,

Rγ =
3

2

∫ +∞

λ(x,y,z)

du

(γ2 + u)Δ(u)
.

To compute these elliptic integrals, we use Carlson’s elliptic integral of the second kind [4]:

Rα(x, y, z) = RD(β2 + λ(x, y, z), γ2 + λ(x, y, z), 1 + λ(x, y, z)),

Rβ(x, y, z) = RD(1 + λ(x, y, z), γ2 + λ(x, y, z), β2 + λ(x, y, z)),

Rγ(x, y, z) = RD(1 + λ(x, y, z), β2 + λ(x, y, z), γ2 + λ(x, y, z)),

where RD(x, y, z) = 3
2

∫ +∞
0 (t + x)−1/2(t + y)−1/2(t + z)−3/2 dt.

3.1. Substitutes of the Lagrangian points. As was mentioned before, it is well known
[45] that the RTBP has five equilibrium points. Three of them lie on the x axis and are
called collinear or Eulerian points, and two of them, the triangular or Lagrangian points
(also known as L4 and L5), form an equilateral triangle with the primaries. Here, we are
interested in investigating how the rigid-body (ellipsoid) affects the position and stability of
these triangular points. See Figure 6.

The fixed points of the RF3BP satisfy the following set of equations:

px = −ωy, ω2x = (1 − ν)(x + νR)Rβ +
ν(x− (1 − ν)R)

r3
2

,

py = ωx, ω2y = (1 − ν)yRα +
νy

r3
2

,

pz = 0, 0 = (1 − ν)zRγ +
νz

r3
2

.

There are three solutions satisfying y = z = 0 that correspond to the “perturbed” collinear
points. These equilibria are unstable [2] and therefore not suitable for constructing orbits in
which to park a spacecraft. A priori, one could think that the collinear points of the RF3BP
can have applications similar to the RTBP [29], such as the Genesis Discovery Mission, and
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Figure 6. Schematic picture of the stability zones near the Lagrangian points of the RF3BP.

that it can be cheap to park a spacecraft near them by using the so-called center manifold
[18, 15]. But this is not true in the current study. The difference is that in the binary asteroid
problem the time scale is much shorter. This makes things such that the correction maneuvers,
necessary to compensate the normal instability of the orbits, have to be performed too often
to be feasible in practice.

We look for solutions such that z = 0 and y �= 0. If there were no rigid-body effects, these
fixed points would correspond to the RTBP L4 and L5. They are thus the substitutes of the
Lagrangian points and satisfy

ω2x = (1 − ν)(x + νR)Rβ +
ν(x− (1 − ν)R)

r3
2

,

ω2 = (1 − ν)Rα +
ν

r3
2

.

We have numerically solved these equations for certain values of the parameters β, γ, ν,
and R by means of Newton’s method. In Figure 7, we plot the (x, y)-projection of these fixed
points for y > 0 (there is a symmetric solution at −y) after shifting and rescaling in such a
way that the ellipsoid is centered at (0, 0) and the sphere at (1, 0). After fixing β and γ, we
vary the mass parameter ν from 10−3 to 0.5 and the distance between primaries from R = 1
to R = 10. Every red dot in Figure 7 corresponds to the substitute of the L4 fixed point for
a particular set of parameter values. More concretely, the red point at the bottom corner of
every figure corresponds to ν = 10−3 and R = 1; the point at the top-left corner to ν = 0.5
and R = 1; and, the point at the top-right corner to ν = 0.5 and R = 10. See caption for
more details.

Recall that, in these units, the Lagrangian point (L4) is at the position (x, y) = (0.5,
√

3/2).
From the pictures, we can see that for small ν (big rigid-body) and short R (the two bodies
are close) the position of the fixed point deviates a lot from the L4 position. For larger ν
values and moderate distances between the primaries, the fixed point is closer to the RTBP
triangular region.
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Figure 7. Actual positions (x, y, 0) of the substitutes of the Lagrangian point L4 in the xy-plane when the
mass parameter is varied between 10−3 and 0.5 (right to left) and the distance R increases from 1 to 10 (bottom
to top). The positions have been shifted and rescaled in such a way that the ellipsoid is centered at (0, 0, 0) and
the sphere at (1, 0, 0). (a) β = γ = 0.5, (b) β = γ = 0.8, (c) β = 0.5 and γ = 0.25.

3.2. Spectral stability of the equilibrium points. We focus now on the study of the
stability of the substitutes of the Lagrangian points in the RF3BP. In this section, we con-
sider their spectral stability, i.e., stability w.r.t. eigenvalues of the linearized vector field. In
section 4, we will study the nonlinear stability by means of a numerical method.

We begin with the linearization of the system (3.1) at the equilibrium point that substitutes
L4. We then compute numerically its eigenvalues. Similarly at the RTBP, this study shows
that for “small” mass parameter values (ν 
 1), the fixed points are spectrally stable and,
for larger ν, they are complex unstable, although in certain cases the critical value is larger
than the Routh mass [41].

In Figure 8, we show some examples of the spectral stability behavior of the perturbed
triangular fixed points of the RF3BP for different types of ellipsoids. We also superimpose on
these pictures the stability zone of the SAE of the corresponding binary system.

In the next section, to perform a numerical global study of the stability region around the
perturbed Lagrangian points in the RF3BP, we will be interested in the cases for which the
underlying binary system is in a stable SAE and for which the corresponding triangular fixed
point is spectrally stable. Thus, we will look at the intersection of the green and red zones in
Figure 8.

4. Global dynamics around the Lagrangian points. In this section, the refined Fourier
analysis method (see [16]) is used to study the dynamics around the tadpole region of the
Lagrangian points. First, we obtain a global dynamical picture of the neighborhood of the
fixed points. Later we identify trajectories that are very close to quasi-periodic motion and
place the spacecraft in them, to simulate its dynamics while it is in a position in which to
make observations of the binary system.

As the computations involved in this section are very intensive, we do not intend to
perform a systematic study of the dynamics in terms of the parameters (which we believe
was approached in the last sections), but we will choose a particular set of parameter values
close to an actual asteroid pair. We thus start by fixing the four parameters of the RF3BP
in the following manner: β = 0.7576, γ = 0.6314, ν = 1.16 × 10−3, and R = 5.873. These
particular values approximate the ones of the binary Kalliope-Linus system, placed in the
main-belt (see [17]). Even though observations suggest that this asteroid pair is not in SAE,
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Figure 8. Green: spectrally stable zones for the perturbed triangular points in the RF3BP. Red: spectrally
stable zones for the SAE of the corresponding asteroid pair. The eigenvalues are computed for fixed β and γ,
for a mass parameter ν ∈ [0, 0.1], and for a distance between the primaries R ∈ [1, 10]. The fixed values of the
ellipsoid’s axes are (a) β = γ = 0.4, (b) β = γ = 0.5, (c) β = γ = 0.6, (e) β = γ = 0.7, (f) β = γ = 0.8,
(g) β = γ = 0.9.

as an illustration of how the method works we will construct the model for the spacecraft
assuming that the underlying binary with these parameter values is actually in SAE. Here,
we use the construction of the RF3BP as in section 3. In this case, the uniform rotation of
the binary in SAE is ω = 7.01844077933 × 10−2, which corresponds to a complete revolution
every 3.6 terrestrial days.

For this particular set of parameter values, the triangular points of the RF3BP are ellip-
tic fixed points. From the eigenvalues of the linearized system, it is possible to obtain the
frequencies of the normal oscillators at the equilibrium point:

ω1 = 1.72741550738 × 10−2,

ω2 = 6.76474915889 × 10−2,

ω3 = 7.05487253096 × 10−2.

Under generic conditions, the Kolmogorov–Arnold–Moser (KAM) theorem [19, 1, 34] (see
[23] or [43] for a survey) ensures the existence of many quasi-periodic trajectories in a small
neighborhood of these fixed points. In practice, the domain of applicability of the KAM
theorem is much smaller than the actual stability region, which can be extended far from the
elliptic point [32, 14, 8, 9].

In this section, we explore numerically this stability region near the Lagrangian points of
the RF3BP by means of the frequency analysis method.
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4.1. Frequency analysis and global dynamics. Let

f(t) =
∑
k∈Zm

ake
i<k, ν>t , ak ∈ C,

be a quasi-periodic function for which we know a table of equidistant values in the time
span [0, T ]. The frequency analysis algorithm will provide the values of the frequencies νk
and the amplitudes ãk of a function f̃(t) =

∑
ãke

iνkt that approximates f(t) in [0, T ]. The
actual method used for approximating the frequencies is the one given by [16]. The procedure
consists, basically, of equating the discrete Fourier transforms of the sampled initial data
and of the quasi-periodic approximation. For an introduction to the frequency analysis (FA)
method, see [21].

With the help of the FA method, we construct pictures of the global phase space dynamics
near the Lagrangian fixed points. As the phase space is six-dimensional (the RF3BP is a three
degrees of freedom problem), we need to reduce dimensionality by fixing some coordinates to
constants. We thus study particular slices of phase space that are relevant for the dynamics.

The practical implementation is as follows. First, we transform the Cartesian coordinates
of (3.1), (x, y, z, px, py, pz), to spherical coordinates (ρ, θ, λ, pρ, pθ, pλ) centered at the rigid-
body barycenter by means of the canonical change of variables given by the generating function

W (px, py, pz, ρ, θ, λ) = −ρ (px cos θ cosλ + py sin θ cosλ + pz sinλ) .

This change is useful in the visualization of the global dynamics, since it is well known that the
stability region near the RTBP Lagrangian points is of the “banana shape” [32, 13, 8, 9]. Thus,
we believe that they are a good set of coordinates with which to investigate the neighborhood
of the RF3BP triangular points as well.

The spherical coordinates of the upper (y > 0) triangular point for the Kalliope-Linus
system are

ρt = 1.0012900026, ptr = 0.0000000000,

θt = 31.207021475◦, ptθ = 1.0025816692,

λt = 0.0000000000, ptλ = 0.0000000000.

The zone of interest is a sufficiently large neighborhood of this point in phase space, and
one can fix some coordinates to study some particular slices. We zoom into a window in the
(ρ, θ)-space enclosing this triangular point by fixing all the momenta equal to the momenta
of the fixed point, (pρ, pθ, pλ) = (ptρ, p

t
θ, p

t
λ), and by choosing different slices for the inclination

λ = Λ, where Λ is a constant. In the experiments, we choose Λ = 0◦, 1◦, 2◦, . . . , 8◦.
Inside the (ρ, θ)-window we pick a regular mesh of 57,600 initial conditions and integrate

them in the interval of time [0, T ], with T = 50,000 adimensional units (this corresponds
to about 2,000 terrestrial days in the Kalliope-Linus system). Then, we take 32,768 sample
points for every trajectory and use the refined Fourier analysis [16] of this sample to evaluate
the three basic frequencies (recall that the RF3BP is a three degrees of freedom system) of the

orbits that we call ω
(1)
1 , ω

(1)
2 , and ω

(1)
3 . Afterwards, we repeat the integration in the interval

of time [T, 2T ] and recompute the frequencies. In this case, we call them ω
(2)
1 , ω

(2)
2 , and ω

(2)
3 .
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Finally, we consider the values δj = |1−ω
(2)
j /ω

(1)
j |, j = 1, 2, 3, as an estimation of the diffusion

(see [37] and [36]) related to the orbit starting at the phase space point (ρ, θ, λ, pρ, pθ, pλ). We
call δj the diffusion index. The values of δj give an estimation of the chaoticity of the particular
orbit. That is, if the trajectory associated with an initial condition is quasi-periodic, then δj
should be zero.

In Figure 9, we show several contour plots of the function σj = log δj for j = 1 (we
obtain similar pictures for the σ2 and σ3 cases). Every picture is performed for a fixed initial
inclination λ = Λ, from Λ = 0◦ (top-left) to Λ = 8◦ (bottom-right). We plot a color depending
on the value of the diffusion index: blue zones (δ1 < 10−10) correspond to initial conditions
whose trajectories are close to quasi-periodic; yellow-to-red zones (δ1 > 10−2) are related to
strongly irregular and escaping motion.

As we already mentioned, the top-left picture in Figure 9 corresponds to zero initial
inclination, i.e., Λ = 0◦. In synodic coordinates, this is the xy plane of motion. As this plane
is invariant under the dynamics of (3.1), all orbits starting at this particular slice will remain
in this plane and thus will be coplanar to the motion of the binary. We note that the stability
zone for this particular plane is quite different from the well-known “banana” region of the
RTBP [32, 14, 8]. In particular, for a similar mass parameter ν � 10−3, the stability zones
near the RTBP L4 and L5 are extended to a much larger domain in the xy plane [9].

When one increases the inclination Λ from 0◦ to 8◦, we see that the stability zone shrinks
rapidly until it “breaks” at about Λ ∼ 6.5◦ and disappears at about Λ ∼ 10◦. This is also
very different from the RTBP case, since it is well known (see [14, 36]) that the stable zone for
the Sun-Jupiter RTBP (ν � 10−3) grows until Λ ∼ 17◦ and does not disappear until Λ > 45◦

(recall the existence of the Trojan asteroids, which can be observed at inclinations larger than
40◦; see [7, 10]).

4.2. Gallery of quasi-periodic spacecraft trajectories. We now use the global dynamical
pictures obtained in the last section to effectively compute (close-to) quasi-periodic orbits
near the upper triangular point of the RF3BP. These orbits will lie on near-invariant tori of
dimensions 2 and 3.

To construct these tori, we proceed as follows. First, we choose initial conditions from
the global dynamical pictures that have a small associated index (we will make precise later
how small). A trajectory corresponding to one of these initial conditions will remain very
close to an invariant torus with frequencies ω1,2,3 (computed as in section 4.1). Thus, we
can numerically integrate these initial conditions for a “long-enough” time and generate the
(almost-) invariant torus (it would be invariant if the diffusion index was exactly zero).

In Figures 10 through 15, we show some examples of these (almost)-invariant tori. All
of the images have been generated by looking for initial conditions in the global pictures of
Figure 9 with a diffusion index δ1 smaller than 10−12. In particular, we have integrated them
for a time span of T = 450,000 adimensional units, that is, about 50 terrestrial years. We
could thus send a spacecraft to one of these tori, and the satellite would orbit in this (almost)
quasi-periodic orbit, without any need of extra propulsion, for at least 50 years; this is a
period more than enough for a mission of this type.

More concretely, Figure 10 shows the xy-projections of nine planar tori. These tori lie on
the zero inclination (I = 0◦) plane and, as this is an invariant plane for the RF3BP, spacecraft
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Figure 9. Global dynamics around the upper triangular point of the Kalliope–Linus system. The axes
correspond to the (ρ, θ) coordinates, where the angle is in radians. The pictures show different slices of phase
space for different inclinations Λ. From left to right and top to bottom, the portraits correspond to Λ = 0◦,
Λ = 1◦, . . . , 8◦. Blue zones are related to motion close to quasi-periodic, and hence any trajectory starting on
them is likely to remain long enough in the neighborhood of the fixed point. Yellow to red zones correspond to
initial conditions that escape, go to collision, or have a chaotic behavior in the time-window considered. See
text for more details.

trajectories on these tori will be coplanar with the orbital motion of the binary. In Figures
11 and 12, we plot the xy-, xz-, and zż-projections of six three-dimensional tori with initial
inclination I = 2◦. In Figure 13, some examples of tori with initial inclination I = 5◦ are
shown. Three examples with initial inclination I = 6◦, I = 7◦, and I = 8◦ are displayed in
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Figure 10. xy-projections of tori in the plane I = 0◦.

Figure 14. Any particular orbit chosen on these tori with nonzero initial inclination can be
useful for a spacecraft devoted to performing observations of the asteroid pair from different
perspectives. Finally, in Figure 15, we plot the three-dimensional xyz-projections of some tori
that appear in Figures 13 and 14. As we mentioned before, for larger inclinations the stability
region vanishes, and therefore no quasi-periodic orbits are found near the Lagrangian points
for I ≥ 10◦.

5. Conclusions. In this paper, we have developed and studied a model for a satellite
orbiting an asteroid pair. First, geometric mechanics was used in the modelization process
of the F2BP and in studying the stability of its relative equilibria. Then, an RF3BP was
constructed to describe the motion of the satellite, and numerical methods were used to study
some of its global stability properties. The main tool for the numerical investigation was
the frequency map analysis, which provides a very nice global view of the dynamics of this
model. Moreover, this global dynamics can be used in practice to preselect initial conditions
for satellite trajectories. Due to the stability properties of these particular orbits, they are
very suitable for parking the spacecraft on them in such a way that there is no need to spend
extra energy in the station-keeping.

Another interesting result of this paper comes from the analysis of the stability region
near the Lagrangian points of the RF3BP and its comparison with the RTBP. We have seen
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Figure 11. Invariant tori with initial conditions in the plane I = 2◦. Left column: xy-projection. Center
column: xz-projection. Right column: zż-projection.

that the rigid-body effect of one of the primaries is to make this stability region smaller in
both the equatorial plane of motion and in inclination. As an example, for ν ∼ 10−3 (which
is very close to the Sun-Jupiter mass parameter), the stability region in the RF3BP vanishes
for inclinations I ≥ 10◦, while in the Sun-Jupiter RTBP (or even in the real solar system) we
know there are objects in stable orbits up to inclinations of I ∼ 40◦ [9].

Dissipative mechanisms, such as solar radiation pressure, solar wind drag [42, 22], or the
Poynting–Robertson effect, might destroy the stability regions as dissipation-induced insta-
bilities do (see, for instance, [6]). In our case, though, we ignore the effect of solar radiation
pressure on the orbiting spacecraft, an approximation that is excellent for a mission to a
main-belt binary system. For near-Earth asteroid binary systems, a future study will be done
to map out how this additional force modifies the dynamics.

Much work still needs to be done at a theoretical level before sending an actual probe
to a binary asteroid. This paper contributes to this problem by applying to it the frequency
analysis method and showing a way of finding stable satellite orbits. Future work following
this line of investigation could consider several different aspects of the problem: first, one could
compute and study similar stability regions for more complex rigid-body gravitational systems
(like that in [47], for instance) or for two-body problems that are not in relative equilibrium
(e.g., the rigid-body is rotating faster than the relative orbital velocity of the other primary
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Figure 12. Invariant tori with initial conditions in the plane I = 2◦. Left column: xy-projection. Center
column: xz-projection. Right column: zż-projection.

[41]); second, it seems interesting to apply the same method for finding orbits that are not
necessarily close to the equilibrium points (orbits that go around one of the primaries, encircle
both primaries, retrograde orbits, etc.).

Appendix. Abelian reduction. General setting. In this appendix, we review the reduction
process for a system that is invariant under the abelian Lie group SO(2). We perform the
reduction on both sides of the problem, Lagrangian and Hamiltonian, and show that they are
equivalent via the reduced Legendre transform.

Let us start by assuming that the configuration space Q can be written as a product of
the circle S1 and a manifold B called shape space, i.e., Q = S1 ×B and q = (q0, qα) = (θ, rα),
with q ∈ Q, θ ∈ S1 and rα ∈ B ⊆ R

n.

Let us assume that the symmetry group G = SO(2) = S1 acts trivially in the following
way:

Φ : G×Q −→ Q,

(ϕ, q) �−→ Φϕ(q) = Φϕ(θ, rα) = (θ + ϕ, rα),

where G is a Lie group with Lie algebra g = R and dual Lie algebra g∗ ∼= R.
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Figure 13. Invariant tori with initial conditions in the plane I = 5◦. Left column: xy-projection. Center
column: xz-projection. Right column: zż-projection.

We also assume that the Lagrangian is of the type kinetic minus potential energy. Then,
it can be written, in a local trivialization of the tangent bundle TQ, as follows:

L(q, q̇) = K(q, q̇) − V (q) =
1

2
gij q̇

iq̇j − V (q),

where gij is a Riemannian metric and summations over i, j = 0, 1, . . . , n are understood. The
corresponding Hamiltonian on the cotangent bundle T ∗Q is given by

H(q, p) = K(FL(q, q̇)) + V (q) =
1

2
gijpipj + V (q),

where gij is the inverse of the metric gij , (q, p) = FL(q, q̇) is the Legendre transform of (q, q̇)
((qi, pi) = (qi, gij q̇

j)), and the symplectic form is canonical, i.e., Ω = dqi ∧ dpi.

A.1. Lagrangian reduction. We start with the Lagrangian rewritten in the following form:

L(rα, θ̇, ṙα) =
1

2
g00θ̇

2 + g0αθ̇ṙ
α +

1

2
gαβ ṙ

αṙβ − V (rα),

where q0 = θ ∈ T; qj = rj , j = 1 ÷ n; and α, β = 1 ÷ n. Note that L �= L(θ). Thus, θ is
a cyclic variable, and the corresponding conjugate momentum pθ = g00θ̇ = ∂L

∂θ̇
is conserved.
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Figure 14. Invariant tori with initial conditions in the planes I = 6◦ (first row), I = 7◦ (second row), and
I = 8◦ (last row). Left column: xy-projection. Center column: xz-projection. Right column: zż-projection.

While the classical theory of Routh reduction is valid, we will use modern Routh reduction
[30], which applies in a much more general framework.

The ingredients needed in the reduction process (see [30] for details) are the following:
• Infinitesimal generator: Given ξ ∈ g∗, the infinitesimal generator corresponding to the

group action can be computed as follows:

ξQ(θ, rα) =
d

dt
(exp(tξ) · (θ, rα)) |t=0 = ((θ, rα), (ξ, 0)).

• Lagrangian momentum map: The associated momentum map JL : TQ → g∗ is given
by

JL((q, q̇)) · ξQ = 〈FL(q, q̇), ξQ(q)〉 =
〈
(g0j q̇

j , gαj q̇
j), (ξ, 0)

〉
= g0j q̇

jξ.

Thus, JL(q, q̇) = g00θ̇ + g0αṙ
α.

• Locked inertia tensor: The locked inertia tensor is the instantaneous tensor of inertia
when the relative motion of the two bodies is locked. If we denote by 〈〈·, ·〉〉 the scalar
product induced by the metric gij , the locked inertia tensor I(θ, rα) : g −→ g∗ is given
(locally) by

〈I(θ, rα)η, ξ〉 = 〈〈((θ, rα), (η, 0)), ((θ, rα), (ξ, 0))〉〉 = g00ηξ.
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Figure 15. Left column: xyz-projections of two different invariant tori with initial conditions in the plane
I = 5◦. Right column: Invariant tori with initial conditions in the planes I = 6◦ (top) and I = 8◦ (bottom).

Then, I(θ, rα) = g00(r
α).

• Mechanical connection: The connection A : TQ −→ g can be written (locally) as
A(θ, rα)(θ, rα, θ̇, ṙα) = I

−1J(FL(θ, rα, θ̇, ṙα)) = g−1
00 g0j q̇

j . Thus,

A(θ, rα)(θ, rα, θ̇, ṙα) = θ̇ + g−1
00 g0αṙ

α.

From A, we can obtain the related one-form: A(θ, rα) = dθ + Aαdr
α, where Aα =

g−1
00 g0α, and the curvature B = dA = Bαβdr

α ∧ drβ has components given (locally) by

Bαβ = (∂Aα

∂rβ
− ∂Aβ

∂rα ). For a given μ ∈ g∗ ∼= R, the mechanical connection on the fiber
Q → Q/G is

αμ(θ, rα) = μdθ + μAαdr
α.

• Amended potential: For μ ∈ g∗, the amended potential is defined as

Vμ(q) = V (q) +
1

2

〈
μ, I−1(q)μ

〉
= V (q) +

1

2
g−1
00 μ

2.

• Routhian: The Routhian is a function on TQ defined as

Rμ =
1

2
‖Hor(q, q̇)‖2 − Vμ,
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where Hor(q, q̇) = (−g−1
00 g0αṙ

α, ṙα) is the horizontal component of (q, q̇) and the norm
is given by the gij metric. Then, locally, we can write

Rμ =
1

2
(gαβ − g−1

00 g0αg0β)ṙαṙβ − 1

2
g−1
00 μ

2 − V (rα).(A.1)

The general reduction theory [28, 30] tells us that if a curve q(t) in Q satisfying
JL(q, q̇) = μ is a solution of the Euler–Lagrange equations for the Lagrangian L(q, q̇),
then the induced curve on Q/Gμ satisfies the reduced Lagrangian variational principle;
that is, the variational principle of Lagrange and d’Alembert on Q/Gμ with magnetic
term B and the Routhian dropped to T (Q/Gμ).
Let be R̂μ the reduced Routhian, that is, the Routhian (A.1) dropped to the reduced
space J−1

L (μ)/S1. Then (locally),

R̂μ =
1

2
hαβ ṙ

αṙβ − Vμ(rα),(A.2)

where hαβ = gαβ − g−1
00 g0αg0β is a metric in the reduced space and Vμ(rα) is the

amended potential.
• Equations of Lagrange–Routh: The equations of motion in the reduced space J−1

L (μ)/S1

are given by

d

dt

∂R̂μ

∂ṙα
− ∂R̂μ

∂rα
= −μBαβ ṙ

β,

where Bαβ = ∂Aα

∂rβ
− ∂Aβ

∂rα and Aα = g−1
00 g0α. More concretely,

hαβ r̈
β +

(
∂hαβ
∂rγ

− 1

2

∂hβγ
∂rα

)
ṙβ ṙγ = −∂Vμ(rα)

∂rα
− μBαβ ṙ

β.(A.3)

A.2. Cotangent bundle reduction. Now, we perform the corresponding reduction in the
Hamiltonian side [27]. Let us consider that the initial Hamiltonian can be written (locally) as

H(rα, pθ, p
α
r ) =

1

2
g00p2

θ + g0αpθpα +
1

2
gαβpαpβ + V (rα),

where the metric elements gij correspond to the inverse of the metric gij . That is, gijg
jk = δki ,

where i, j, k = 0, . . . , n, and δki denotes the Kronecker delta function.
Thus, we assume that the initial Hamiltonian is invariant under the action of the abelian

symmetry group G = SO(2) = S1.
Let us perform the computations of all the extra ingredients needed in the reduction in

the Hamiltonian side [27], as follows:
• Momentum map: The momentum map corresponds to the angular momentum of the

system: J : T ∗Q −→ g∗

〈J(θ, rα, pθ, prα), ξ〉 = 〈(pθ, pα), (ξ, 0)〉 = pθξ.

Thus, J(θ, rα, pθ, prα) = pθ.
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• Momentum shift: In this case, it is convenient to perform a shift of the momenta from
J−1(μ) to J−1(0), and also in the corresponding reduced spaces, in the following way:

J−1(μ) = {(θ, rα, μ, pα)} tμ−→ J−1(0) = {(θ, rα, 0, p̃α)},
↓ ↓

J−1(μ)/Gμ = J−1(μ)/S1 tμG−→ J−1(0)/S1 = J−1(0)/G,

where

tμ(θ, rα, μ, pα) = (θ, rα, μ, pα) − (θ, rα, μ, μAα)

= (θ, rα, 0, pα − μAα) = (θ, rα, p̃θ, p̃α).

Thus, the shifting map is given by p̃α = pα − μAα and p̃θ = 0.
• Reduced Hamiltonian: In J−1(0)/G we have Hαμ = 1

2‖p̃‖2 + Vμ, where ‖ · ‖ is the
norm related to the gij metric and Vμ = V + 1

2I
−1μ2 is the amended potential. Thus,

recalling that p̃θ = 0, the Hamiltonian in the reduced space J−1(0)/G is

Hμ(rα, pα) =
1

2
gαβ p̃αp̃β + V (rα) +

1

2
μ2g−1

00 for α, β = 1 ÷ n.

• Reduced symplectic form: In general, in the reduced space, the symplectic form is not
canonical. The projection is given by the map

((T ∗Q)μ,Ωμ)
Pμ−→ ((T ∗(Q/G), ω −Bμ),

where the “reduced” symplectic form is

ωμ = ω −Bμ = drα ∧ dp̃α − μ
∂Aα

∂rβ
drβ ∧ drα.

• Hamiltonian equations: The Hamiltonian equations are given by [28]

i(ṙα∂rα+˙̃pα∂p̃α )ωμ = dHμ,

where iXΩ denotes the interior product (or contraction) of the vector field X and the
1-form Ω. Computing both sides of this identity,

i(ṙα∂rα+˙̃pα∂p̃α )ωμ = ṙαdp̃α − μ
∂Aα

∂rβ
ṙβdrα + μ

∂Aα

∂rβ
ṙαdrβ − ˙̃pαdr

α,

dHμ =
∂Hμ

∂rα
drα +

∂Hμ

∂p̃α
dp̃α,

we obtain the equations of motion in the reduced J−1(0)/G space:

ṙα =
∂Hμ

∂p̃α
, ˙̃pα = −∂Hμ

∂rα
− μ

(
∂Aα

∂rβ
− ∂Aα

∂rβ

)
ṙβ.

Finally, we can write them more explicitly as

ṙα = gαβ p̃β, ˙̃pα = −1

2

∂gβγ

∂rα
p̃β p̃γ −

∂V (rα)

∂rα
− 1

2
μ2∂g

−1
00

∂rα
− μBαβg

βγ p̃γ .(A.4)
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A.3. Reduced Legendre transform. The correspondence between the reduced equations
of motion on the Hamiltonian and Lagrangian sides is given by the reduced Legendre trans-
form. We start with the reduced Routhian (A.2),

R̂μ =
1

2
(gαβ − g−1

00 g0αg0β)ṙαṙβ − 1

2
g−1
00 μ

2 − V (rα),

and the shifted momenta,

p̃α =
∂R̂μ

∂ṙα
= (gαβ − g−1

00 g0αg0β)ṙβ.

Using the identities

g0αg
0β + gαγg

γβ = δ β
α ,

gαβgβ0 + gα0g00 = 0,(A.5)

we obtain the first equation in (A.4): gαβ p̃β = ṙα.
Now, in order to recover the reduced Lagrange–Routh equations (A.3), we compute the

time-derivative of the shifted momenta

˙̃pα = (gαβ − g−1
00 g0αg0β)r̈β +

∂

∂rγ
(
gαβ − g−1

00 g0αg0β

)
ṙγ ṙβ,

and the derivative with respect to rα of the identities (A.5),

∂g0ε

∂rα
g0β + g0ε

∂g0β

∂rα
+

∂gεγ
∂rα

gγβ + gεγ
∂gγβ

∂rα
= 0,

∂gβγ

∂rα
gγ0 + gβγ

∂gγ0

∂rα
+

∂gβ0

∂rα
g00 + gβ0∂g00

∂rα
= 0.

If we substitute the last three identities together with (A.5) into the second equation of (A.4),
we obtain

(gαβ − g−1
00 g0αg0β)r̈β +

∂

∂rγ
(
gαβ − g−1

00 g0αg0β

)
ṙγ ṙβ

=
1

2

∂

∂rα
(
gβγ − g−1

00 g0βg0γ

)
ṙβ ṙγ − ∂V (rα)

∂rα
− 1

2
μ2∂g

−1
00

∂rα
− μBαβ ṙ

β,

which exactly corresponds to the Lagrange–Routh equations (A.3).
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Abstract. In this paper, we propose a rigorous computational method for detecting homoclinic tangencies and
structurally unstable connecting orbits. It is a combination of several tools and algorithms, including
the interval arithmetic, the subdivision algorithm, the Conley index theory, and the computational
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1. Introduction. In this paper, we present a method for proving the existence of homo-
clinic tangencies and structurally unstable connecting orbits. More precisely, we are interested
in proving the existence of generic tangencies in a one-parameter family of maps, that is, a
quadratic tangency that unfolds generically in the family. The importance of the generic
homoclinic tangency comes from the fact that it implies the occurrence of the Newhouse
phenomena [17] and strange attractors [14].

To explain how the method works, we apply it to the Hénon family

Ha,b : R
2 → R

2,(1.1)

(x, y) �→ (a− x2 + by, x).

Belief in the existence of homoclinic tangencies in the Hénon family is easily obtained by
numerical experiments. For example, the plots in Figure 1.1 suggest the existence of tangencies
for parameter values close to a = 1.4, b = 0.3 and a = 1.3, b = −0.3. Our motivation
for this work is to develop a general computationally inexpensive method that provides a
mathematically rigorous verification of this numerically induced speculation. In fact, using
this technique, we prove the following two results.

Theorem 1.1. Fix any b0 sufficiently close to 0.3. Then there exists

a ∈ [1.392419807915, 1.392419807931]

such that the one-parameter family Ha,b0 has a generic homoclinic tangency with respect to
the saddle fixed point on the first quadrant.
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Figure 1.1. Left: a = 1.4, b = 0.3; right: a = 1.3, b = −0.3. Red lines: the unstable manifolds; green lines:
the stable manifold.

Theorem 1.2. Fix any b0 sufficiently close to −0.3. Then there exists

a ∈ [1.314527109319, 1.314527109334]

such that the one-parameter family Ha,b0 has a generic homoclinic tangency with respect to
the saddle fixed point on the third quadrant.

Here we say that a tangency in a one-parameter family is generic if the intersection of
unstable and stable manifolds is quadratic, and the intersection is unfolded generically in the
family (see section 2 for the precise definition).

Similar results can also be attained by methods of Fornæss and Gavosto [5, 6]. Compared
to their technique, which depends on the analyticity of maps, our method is rather geometric
and topological, and is designed so that it can be applied to a wider class of maps. Essentially,
we require a continuous family of C2 diffeomorphisms for which we can compute the image
of the maps using interval arithmetic. We present a brief overview of our approach; a more
detailed description is provided in the following sections.

The essential difficulty of a computer assisted proof in dynamics is that the dynamical
system that the computer is capable of representing and evaluating is at best a small perturba-
tion of the system of interest. However, the small perturbations can induce bifurcations which
create or destroy the dynamical structure of interest. The Conley index [7, 11, 13] is a pow-
erful tool for this type of problem precisely because it remains constant under perturbations.
It is an algebraic topological quantity which can be used to prove the existence of particular
dynamical structures including connecting orbits. Using recently developed computational
topology tools [9], it is possible to compute the index from the numerically generated data
with the guarantee that the index is valid for the original system of interest.

To be more precise, consider f : X → X a continuous map on a locally compact metric
space X. We use the homological Conley index with integer coefficients defined for an isolated
invariant set S of f , and denote it by Con∗(S, f) or simply by Con∗(S). Recall that Con∗(S) is
the shift equivalence class of the pair of a graded module CH∗(S) and an endomorphism χ∗(S)
on CH∗(S). (See [7, 9] for the concept of shift equivalence and the definition of the Conley
index for maps.) By an abuse of notation we write the shift equivalent class [(CH∗(S), χ∗(S))]
simply as (CH∗(S), χ∗(S)).
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We say that an orbit σ : Z → X, f(σ(k)) = σ(k+1) for all k, is a connecting orbit from S1

to S2 if its α-limit set is contained in S1 and its ω-limit set is contained in S2. The maximal
invariant set of N ⊂ X will be denoted by Inv(N).

The following theorem (see also [12]), which is proven in section 3, lies at the heart of our
algebraic machinery for finding connecting orbits.

Theorem 1.3. Let N1, N2, and N be isolating neighborhoods, and assume that N is the
disjoint union of N1 and N2. If f(N2) ∩N1 = ∅ and

Con∗(Inv(N)) � Con∗(Inv(N1)) ⊕ Con∗(Inv(N2))

as shift equivalence classes, then there exists a connecting orbit from Inv(N1) to Inv(N2).

Consider a continuous one-parameter family of C2 diffeomorphisms fλ : X → X, where
the parameter λ ∈ R, and assume that f0 has a homoclinic tangency. Generically one expects
that for λ 	= 0, fλ will not posses a homoclinic tangency. Since the Conley index is robust
with respect to perturbations, there is no hope that an existence proof can be obtained by
a direct application of the index. Thus, we need to recast the problem in such a way that
generic homoclinic tangencies become robust isolated objects.

To obtain the isolation observe that at a homoclinic tangency the stable and unstable
manifolds share a tangent vector. Let Pfλ : PX → PX be the induced map on the projective
bundle of X. Then a homoclinic tangency of f0 corresponds to a connecting orbit of Pf0.

The robustness can be obtained by considering the entire family of maps simultaneously.
To do this define

F : X × R → X × R,(1.2)

(x, λ) �→ (fλ(x), λ).

One now expects that if F̄ : X ×R → X ×R of the form F̄ (x, λ) = (f̄λ(x), λ) is induced by a
perturbation of f , then there exists λ0 ≈ 0 such that f̄λ0 posses a homoclinic orbit.

With this in mind, one is tempted to apply Theorem 1.3 by restricting F to Λ, a compact
interval containing 0, and computing the index of PF . Unfortunately, for technical reasons
explained in section 3 this does not work. Instead we compute using PF ′, where F ′ : X×R →
X×R represents a perturbation of F with the property that F = F ′ |X×Λ. Thus a heteroclinic
tangency for F ′ is equivalent to a heteroclinic tangency for F and hence fλ for some λ ∈ Λ.

To check that the heteroclinic tangency is indeed quadratic it is sufficient to show that the
heteroclinic orbit does not define a connecting orbit for PPf : PPX → PPX, the induced
map on the projective bundle of PX.

The details concerning the induced dynamics on the projective bundles are described in
section 2. The Conley index tools are described in section 3. Finally, in section 4 we indicate
how these techniques are implemented in the context of the Hénon family. All the source files
used in the computation can be downloaded from http://www.math.kyoto-u.ac.jp/∼arai. To
run the computation, one needs software packages GAIO [3, 4] and Computational Homology
Programs (CHomP [2]).

2. Tangencies and connecting orbits. Let f be a diffeomorphism on a manifold X. We
denote the tangent bundle of X by TX and the differential of f by Tf .

http://www.math.kyoto-u.ac.jp/$sim $arai
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The dynamical system f : X → X induces a dynamical system Pf : PX → PX defined
as follows. The space PX is the projective bundle associated with the tangent bundle of X,
that is, the fiber bundle on X whose fiber over x ∈ X is the projective space of TxX,

PX =
∐
x∈X

PxX :=
∐
x∈X

{one-dimensional subspace of TxX}.

Define Pf to be the map induced from Tf on PX, namely, Pf([v]) := [Tf(v)], where 0 	= v ∈
TX and [v] is the subspace spanned by v. Identifying X with the image of the zero section of
TX, we have the following commutative diagram:

TX \X Tf−−−→ TX \X

π

⏐⏐� ⏐⏐�π

PX
Pf−−−→ PX

π′
⏐⏐� ⏐⏐�π′

X
f−−−→ X.

Let p ∈ X be a hyperbolic fixed point of f and TpX = Ẽs
p⊕Ẽu

p the corresponding splitting
of the tangent space. We denote the stable and unstable manifolds of p by W s(p) and W u(p),
respectively.

Define Es
p := π(Ẽs

p \ {0}) and Eu
p := π(Ẽu

p \ {0}). The spaces Es
p and Eu

p are isolated
invariant sets with respect to Pf : PX → PX.

Theorem 2.1 (see [1, Proposition 5.3]). Let p, q be hyperbolic fixed points of f , and assume
that dimW u

f (p) + dimW s
f (q) ≤ n. If there exists a connecting orbit from Eu

p to Es
q under Pf ,

then W u
f (p) and W s

f (q) have a nontransverse intersection.

Note that if p = q, the case of a homoclinic orbit, dimW u
f (p) + dimW s

f (p) = n always
holds. Therefore, the problem of finding homoclinic tangencies is translated to that of finding
connecting orbits from Eu(p) to Es(p) with respect to Pf : PX → PX.

Next, we discuss genericity of tangencies. The definition of genericity is taken from [10].
It is a generalization of the generic (or nondegenerate) tangencies for surface diffeomorphism
(see [5, 6, 14, 17]).

Let {fλ}λ∈Λ be a one-parameter family of C2 diffeomorphism depending smoothly on the
parameter λ ∈ Λ ⊂ R. For simplicity, we consider the homoclinic tangency of a family of
hyperbolic fixed points p(λ) of fλ. The case for a hyperbolic periodic point is quite similar.
Assume that p(λ0) has a homoclinic tangency at x ∈ M for λ0 ∈ int Λ. For simplicity, we
assume that λ0 = 0. We say that x is a 1-tangential quadratic homoclinic tangency if the
tangent spaces of W u

f0
(p(0)) and W s

f0
(p(0)) at x have a common subspace of dimension one

and the intersection of these manifolds at x is quadratic along this common one-dimensional
subspace. Let

Wu
Λ =

⋃
λ∈Λ

W u
fλ

(p(λ)), Ws
Λ =

⋃
λ∈Λ

W s
fλ

(p(λ)).
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These are smooth submanifolds of X×Λ (see [10]), and since we assume that x is a homoclinic
tangency for f0, they have intersect at (x, 0).

Definition 2.2.The one-parameter family of C2 diffeomorphisms {fλ} has a generic homo-
clinic tangency at x if x is a 1-tangential quadratic tangency and Wu

Λ and Ws
Λ are transversal

in X × Λ at (x, 0).

Consider the projection (π′, id) : PX ×Λ → X ×Λ and the lifting of a generic homoclinic
tangency. Let

PF : (x, λ) �→ (Pfλ(x), λ) : PX × Λ → PX × Λ.

It is easy to see that the sets Eu
Λ :=

⋃
λ∈Λ Eu

p(λ) and Es
Λ :=

⋃
λ∈Λ Es

p(λ) are normally hyperbolic
invariant manifolds with respect to PF and

W u
PF (Eu

Λ) =
⋃
λ∈Λ

W u
Pfλ

(Eu
p(λ)), W s

PF (Es
Λ) =

⋃
λ∈Λ

W s
Pfλ

(Es
p(λ)).

In this setting, the genericity of a tangency is expressed as follows.

Theorem 2.3. Let fλ be a one-parameter family of diffeomorphisms with hyperbolic fixed
point p(λ), and assume that f0 has a homoclinic tangency with respect to p(0). If the corre-
sponding intersection of W u

PF (Eu
Λ) and W s

PF (Es
Λ) is transversal in PX ×Λ, then the tangency

is generic.

Proof. Denote the unstable and stable dimensions of p(λ) by k and �, respectively. Then
Eu

p(λ) and Es
p(λ) are normally hyperbolic manifolds of dimension k − 1 and �− 1 with respect

to Pfλ. Since Eu
p(λ) is contracting under Pfλ|Pp(λ)X , its unstable dimension is k, and therefore

W u
Pfλ

(Eu
p(λ)) is a k− 1+ k = 2k− 1-dimensional manifold. It follows that dimW u

PF (Eu
Λ) = 2k,

and by the same argument that dimW s
PF (Es

Λ) = 2�. Since k+ � = dimX and dim(PX×Λ) =
2 · dimX, the transversal intersection of W u

PF (Eu
Λ) and W s

PF (Es
Λ) is 0-dimensional and hence

isolated.

Assume that the tangency is not 1-tangential; that is, the dimension of the intersection of
the tangent spaces of W u

f0
(p(0)) and W u

f0
(p(0)) at x is greater than or equal to 2. It follows that

the corresponding intersection of W u
Pf0

(Eu
p(0)) and W s

Pf0
(Es

p(0)) must contain a copy of RP k,

where k ≥ 1. Therefore, the intersection of W u
PF (Eu

Λ) and W s
PF (Es

Λ) cannot be an isolated
point. This is a contradiction.

Next, assume that the tangency is not quadratic. Then we can take smooth curves cu

on W u
f0

(p(0)) and cs on W s
f0

(p(0)) through x such that they have the same first and second
derivatives at x. These curves give rise to curves c̃u and c̃s on W u

Pf0
(Eu

p(0)) and W s
Pf0

(Es
p(0))

that intersect at (x, θ), where θ is the direction of the tangency. Since the second derivatives
of cu and cs are equal, c̃u and c̃s are tangent at (x, θ). This is a contradiction.

Finally, since the tangent spaces of W u
PF (Eu

Λ) and W s
PF (Es

Λ) span T(x,θ,0)(PX × Λ) by
assumption, it follows that the tangent spaces of Wu

Λ and Ws
Λ span T(x,0)(X × Λ).

3. Method for verifying structurally unstable connecting orbits. In this section, we de-
scribe an algebraic-topological method for proving the existence of connecting orbits, especially
structurally unstable ones. We begin by proving Theorem 1.3.
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Proof. Let S1 := Inv(N1), S2 := Inv(N2), and S := Inv(N). Suppose there exists no
connecting orbit from S1 to S2.

Choose an arbitrary x ∈ S. Then there is an orbit σ : Z → S such that σ(0) = x. Assume
x ∈ N2. Then its forward orbit is contained in N2 since f(N2)∩N1 = ∅. If its backward orbit
intersects N1, then the α-limit set of σ is contained in N1 because f(N2)∩N1 = ∅, and thus it
follows that σ must be a connecting orbit from S1 to S2, contradicting our assumption. Hence
σ(Z) is contained in N2, and therefore x ∈ Inv(N2). Similarly, we have x ∈ Inv(N1) if x ∈ N1.

This means that S is the disjoint union of invariant subsets S1 and S2, and it follows
from the additivity of the Conley index (see Theorem 3.22 of [13] or Theorem 1.11 of [15],
for example) that Con∗(S) is the direct sum of Con∗(S1) and Con∗(S2). This is a contradic-
tion.

Here we note that the Conley index is stable under small perturbations, and so are con-
necting orbits that can be found by Theorem 1.3. Because, if Con∗(S, f) � Con∗(S1, f) ⊕
Con∗(S2, f), then the same relationship holds for every g sufficiently close to f and the cor-
responding continuations of S1, S2, and S. It follows, therefore, that there also exists a
connecting orbit between S1 and S2 with respect to g.

This means that we cannot directly apply Theorem 1.3 to find structurally unstable con-
necting orbits, particularly homoclinic or heteroclinic tangencies. With this in mind, we make
the following simple observation: Having an unstable connection of codimension one is a sta-
ble property under small perturbation of one-parameter families. Thus, our goal is to apply
Theorem 1.3 to a set of maps instead of an individual map.

Consider a continuous family of maps fλ : X → X, where λ is a real parameter in a closed
interval Λ ⊂ R. Assume that there exist families of isolated invariant sets S1(λ), S2(λ), and
S(λ) continuing over Λ such that S1(λ) and S1(λ) are invariant subsets of S(λ) for each λ.

As in the Introduction, define

F : (x, λ) �→ (fλ(x), λ) : X × Λ → X × Λ.

Assume that we have isolating neighborhoods N1, N2, and N for S1 :=
⋃

λ∈Λ S1(λ), S2 :=⋃
λ∈Λ S2(λ), and S :=

⋃
λ∈Λ S(λ), respectively, such that N is the disjoint union of N1 and

N2.

It can now be expected that the map F has a connecting orbit from S1 to S2 that is stable
under small perturbation within the family F , and hence one can hope that Theorem 1.3 can
be applied. However, as is shown in the next example, it is often the case that the existence
of connecting orbits from S1 to S2 is still beyond the scope of Theorem 1.3.

Example 3.1. Consider a one-parameter family of diffeomorphisms fλ on R
3, as illustrated

in Figure 3.1. Let S1(λ) = x and S2(λ) = y be hyperbolic fixed points of fλ with one and
two unstable dimensions, respectively. Assume that W u

f0
(x) intersects W s

f0
(y) at λ = 0 and

therefore that there is a connecting orbit from x to y. Let

S(λ) = {x} ∪ {y} ∪ (W u
fλ

(x) ∩W s
fλ

(y))

and N be a sufficiently small compact neighborhood of S(0). Then N is an isolating neigh-
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λ=0

y x

λ>0λ<0
intersection

Figure 3.1. A heterodimensional cycle.

borhood of S(λ) for λ close to 0. It is clear that

Con∗(Si(λ)) ∼= Con∗(Si) ∼=
{

(Z, 1) if ∗ = i,

(0, 0) if ∗ 	= i.

The index for S is obtained by collapsing the exit set of N . Each component of N is collapsed
to a space homotopic to S1, except for the one that contains x, which is collapsed to a space
homotopic to the bouquet of two S1, and the one that contains y, which is collapsed to a
space homotopic to S2. By computing the shift equivalence class, we have

Con∗(S(λ)) ∼= Con∗(S) ∼=
{

(Z, 1) if ∗ = 1, 2,

(0, 0) other.

Observe that although the connecting orbit from S1(0) to S2(0) is structurally unstable, having
such a connecting orbit is a stable property with respect to a small perturbation of the family.
However, this is an example where the converse of Theorem 1.3 does not hold, and thus
we cannot detect the connecting orbit with this theorem. The problem is that the unstable
dimensions of S1 and S2 are different, and hence they have nontrivial Conley index only at
different degrees.

We note that this example illustrates a typical situation that occurs when we consider
the projectivization of a homoclinic tangency. Precisely, let p be a hyperbolic saddle fixed
point of a surface diffeomorphism fλ and x = Eu

p and y = Es
p. Then x and y are hyperbolic

fixed point of Pf with one- and two-dimensional unstable manifolds. There always exists a
connection from y = Es

p to x = Eu
p that is induced from the action of Ppf on PpX, and there

exists a connection from x to y if and only if there exists a homoclinic tangency with respect
to p.

To overcome this difficulty, we put an artificial perturbation on F that suspends Con∗(S1).
Let Λ′ be a closed subinterval of Λ such that Λ \ Λ′ has two components, and suppose that
F (N1)∩N2 is included in X×Λ′. This implies that there is no connecting orbit for λ ∈ Λ\Λ′.

Define

F ′(x, λ) =

{
(fλ(x), λ + g(λ)), x ∈ N1,

(fλ(x), λ− g(λ)), x ∈ N2,

where g : Λ → R is a continuous function that is negative on the left component of Λ \ Λ′,
vanishing on Λ′, and positive on the right component of Λ \ Λ′.
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After this perturbation, N1, N2, and N remain isolating neighborhoods. Define S′
1, S

′
2,

and S′ to be the maximal invariant sets of N1, N2, and N , respectively, with respect to F ′.
Then by the suspension isomorphism theorem and the homotopy continuation property of the
Conley index, we have

Con∗(S
′
1, F

′) = Con∗−1(S1, F ), Con∗(S
′
2, F

′) = Con∗(S2, F ).

Note that if we apply this construction to Example 3.1, S′
1 has the nontrivial Conley index

at degree 2, the same degree at which S′
2 has the nontrivial Conley index.

Theorem 3.2. In the above setting, if

Con∗(S
′, F ′) � Con∗(S

′
1, F

′) ⊕ Con∗(S
′
2, F

′),

then there exists λ0 ∈ Λ′ such that there is a connecting orbit from S1(λ0) to S2(λ0) under
fλ0.

Proof. By Theorem 1.3, there exists a connection from S′
1 to S′

2 under F ′. By our as-
sumption, this connecting orbit must be in X × Λ′. However, F ′ and F are identical on Λ′,
and hence the theorem follows.

4. Tangencies in the Hénon family. In this section, we verify the existence of generic
homoclinic tangencies in the Hénon family (1.1) by applying the ideas developed in sections
2 and 3. We explain the steps of the computation in the case of Theorem 1.1, a tangency
close to the classical parameter values a = 1.4 and b = 0.3. With b fixed at 0.3, Ha,0.3 is now
considered to be a one-parameter family with parameter a. For simplicity and to maintain
the notation introduced in the earlier sections we write fa := Ha,0.3.

We focus on the fixed point

p(a) =

(
−0.7 +

√
0.49 + 4a

2
,
−0.7 +

√
0.49 + 4a

2

)
,

which lies in the first quadrant. By Theorem 2.1, it is sufficient to show the existence of a
connecting orbit from Eu

p(a) to Es
p(a) for some a. We conclude that the tangency is generic by

checking the transversality of W u
PF (Eu

Λ) and W s
PF (Es

Λ) using Theorem 2.3.

First we construct isolating neighborhoods N1, N2, and N in PM×Λ = R
2×S1×R, with

respect to the dynamical system PF : (x, a) �→ (Pfa(x), a). This is done using cubes, i.e.,
products of closed intervals, in this case four-dimensional cubes, since TX is homeomorphic to
R

4. These isolating neighborhoods are designed so that S1 = Inv(N1) contains Eu
Λ =

⋃
Eu

p(a),

S2 := Inv(N2) contains Es
Λ =

⋃
Es

p(a), and N = N1 ∪N2 contains S1, S2, and the connecting

orbit of our interest. For simplicity, we write a slice S ∩ (PX × {a}) of S ⊂ PX ×Λ as S(a),
and so forth.

Next we apply the perturbation described in section 2 to the map PF so that the Conley
index of S1 will be suspended. After perturbation, we have three isolated invariant sets S′

1,
S′

2, and S′ with respect to PF ′.
Here we compute the Conley indexes of S′

1, S′
2, and S′ and apply Theorem 3.2. This

proves the existence of a connecting orbit from S1(a) to S2(a) for some a ∈ Λ. Then we show
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that S1(a) = Eu
p(a) and S2(a) = Es

p(a). It follows that the connecting orbit we found is from
Eu

p(a) to Es
p(a), which implies the existence of a tangency with respect to fa.

Finally, we check that W u
PF (Eu

Λ) and W s
PF (Es

Λ) are transversal, and conclude that the
tangency we found is generic.

The argument above is arranged into the following steps:

Step 1. Construct an initial guess for the location of the connecting orbit.

Step 2. Refine the initial guess up to the desired precision.

Step 3. Modify the refined set to get isolating neighborhoods N1, N2, and N .

Step 4. Compute the Conley index and apply Theorem 3.2.

Step 5. Check that S1(a) = Eu
p(a) and S2(a) = Es

p(a).

Step 6. Check that W u
PF (Eu

Λ) and W s
PF (Es

Λ) are transversal.

Before getting into the details of each step, we remark that it is numerically expensive to
apply interval arithmetic to trigonometric and inverse trigonometric functions. Therefore, in
the following computations, we choose a piecewise linear coordinate θ ∈ (−π, π] for PxM =
RP 1 ∼= S1. This coordinate is not differentiable; nevertheless the Conley index theory is still
applicable. To deal with P (PX × Λ), we also take the similar piecewise linear coordinate for
RP 3 in the last step.

Step 1. Basically, any method can be used for this step. In our example, we make use of
the software package GAIO in this and the next steps. Programs in GAIO are developed for
global analysis of invariant objects in dynamical systems by M. Dellnitz, O. Junge and their
collaborators; see [3] and the project web page [4]. To construct an initial guess, we simply
look at Figure 1.1 and choose cubes that seem to contain the connecting orbit from Eu

p(a) to

Es
p(a) (Figure 4.1).
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Figure 4.1. Our initial guess for the connecting orbit. Left: the projection to the x-y-θ space; right: the
projection to the x-y-a space.

Step 2. We refine the initial guess by applying “the subdivision algorithm” [3] of GAIO. In
an application of the subdivision algorithm, each cube is divided into two cubes. We make a
graph map from the multivalued map induced from PF using interval arithmetic and remove
the cubes which do not contain a connecting orbit or a fixed point of the graph map. Since our
computation is rigorous, cubes containing a fixed point or a connecting orbit of PF definitely
survive this reduction.
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After eight applications of the subdivision and reduction procedure, we get the cubes
illustrated in Figure 4.2. Cubes after an additional eight applications of the procedure are
illustrated in Figure 4.3.
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Figure 4.2. After 8 steps of subdivision and reduction procedure. Left: the projection to the x-y-θ space;
Right: the projection to the x-y-a space.
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Figure 4.3. After 16 steps of subdivision and reduction procedure. Left: the projection to the x-y-θ space;
Right: the projection to the x-y-a space.

Note that the range of the parameter value a is getting smaller and smaller during this
computation. In our example, we apply this procedure 140 times. The resulting set consists
of 9029 cubes, and its range of a is smaller than 10−10.

Step 3. Roughly speaking, the algorithm adds cubes to the given set of cubes until it
becomes an isolating neighborhood. This is a modification of the algorithm proposed by
Junge [8] (see also [9]).

Step 4. To construct index pairs from the isolating neighborhoods found in Step 3, we use
the combinatorial index pair algorithm (Algorithm 10.86 of [9]). This gives index pairs for S′

1,
S′

2, and S′.
The Conley index is computed using the Computational Homology Program (CHomP [2]).

Application of the program shows that

Con∗(S
′
1) = Con∗(S

′
2) =

{
(0, 0) if ∗ 	= 2,

(Z, 1) if ∗ = 2,
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and

Con∗(S
′) =

{
(0, 0) if ∗ 	= 2,

(Z59, P ) if ∗ = 2,

where P is a 59 × 59 integer matrix. It can be shown that

Con2(S
′) ∼=

(
Z

2,

(
1 1
0 1

))
	∼=

(
Z

2,

(
1 0
0 1

))
∼= Con2(S

′
1) ⊕ Con2(S

′
2),

and therefore, by Theorem 1.3, we conclude that there exists a connecting orbit from S1(a)
to S2(a) for some a ∈ Λ′. In this case, Λ′ = [1.392419807915, 1.392419807931].

Step 5. We have shown that there exists a parameter value a such that there exists a
connecting orbit from S1(a) to S2(a). Although Eu

p (a) ⊂ S1(a) and Es
p(a) ⊂ S2(a) follow

from our construction, it is unknown that whether these sets are equal or not. To show these
equalities, we make use of the Hartman–Grobman linearization theorem.

Proposition 4.1. Let the origin 0 ∈ R
n be a hyperbolic fixed point of a diffeomorphism f on

R
n, and B a ball of radius r and centered at 0. Choose 0 < μ < 1 and ε > 0 so that for each

eigenvalue λ of Tf(0) we have |λ| < μ or |λ−1| < μ, and ε + μ < 1 and ε < m(Tf(0)) hold.
Here m denotes the minimum norm. If the Lipschitz constant of f − Tf(0) restricted to B is
less than ε/2, then Inv(B, f) = {0}.

Proof. Let g := f − Tf(0). Define g′ by

g′(x) =

{
g(x) if x ∈ B,

g(r · x/‖x‖) if x 	∈ B.

Then the Lipschitz constant of g′ : R
n → R

n is less than ε. Apply the Hartman–Grobman
theorem, Theorem 5.7.1 of [16]. (Note that Theorem 5.7.1 of [16] gives the estimate on the
size of ε.)

We do not know the exact value of a at which the tangency occurs; therefore we need to
show that S1(a) = Eu

p(a) and S2(a) = Es
p(a) hold for all a ∈ Λ′. Note that since we are using

interval arithmetic, it suffices to check these equalities for a finite number of intervals that
cover Λ′.

Using this proposition, we show that π′(S1(a)) and π′(S2(a)) coincide with the fixed point
p(a). Then it is easy to check S1(a) = Eu

p(a) and S2(a) = Es
p(a) because the dynamics on the

fiber Pp(a)R
2 is induced from the linear map Tp(a)fa. In practice, we first compute ε of the

proposition using interval arithmetic and then check whether the condition of the proposition
is satisfied with a ball B containing π′(S1(a)) or π′(S2(a)). In our example of the Hénon map,
we have (fa − Tfa(0))(u, v) = (−u2, 0) by the coordinate change (x, y) = (u+ p(a), v + p(a)).
We then can easily check the condition of the proposition. In general, this check may fail. In
that case we apply the subdivision algorithm to S1(a) and S2(a) to make these sets smaller,
and again check whether the condition of the proposition holds.

Step 6. Recall that W u
PF (Eu

Λ) and W s
PF (Es

Λ) are two-dimensional manifolds, and we need
to check that these manifolds are transversal in R

2 × S1 × R.
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For this purpose, we apply the procedure of taking projective bundle once again. That is,
we construct PPF : P (PX × Λ) → P (PX × Λ) from PF : PX × Λ → PX × Λ. Recall that
Eu

Λ and Eu
Λ are normally hyperbolic invariant manifolds with respect to PF . Let

EuEu
Λ := {v ∈ P (PX × Λ) | v ∈ Px(PX × Λ) where x ∈ Eu

Λ, v ∈ Eu
x},

EsEs
Λ := {v ∈ P (PX × Λ) | v ∈ Px(PX × Λ) where x ∈ Es

Λ, v ∈ Es
x}.

These are the set of all unstable and stable vectors based on a point in Eu
Λ and Es

Λ, respectively.
Then it follows that if W u

PF (Eu
Λ) and W s

PF (Es
Λ) are not transversal and hence share a common

subspace at the intersection, there must be a connecting orbit from EuEu
Λ to EsEs

Λ with respect
to PPF .

Therefore, it suffices to show the nonexistence of such a connecting orbit. This also can be
done with interval arithmetics. We subdivide P (PX ×Λ) into small cubes and make rigorous
coverings (neighborhoods) of EuEu

Λ and EsEs
Λ that consists of cubes. In the case of Hénon map,

we can exactly compute EuEu
Λ and EsEs

Λ by hand. In general, we need the help of rigorous
interval arithmetics to compute them. Denote these sets of cubes by U and S, respectively.

By using interval arithmetic, we apply PPF to U and add the image cubes to U . Then we
apply PPF to U again and repeat this procedure while the number of cubes in U is increasing.
Since the number of the cubes in total space is finite, this procedure stops at some point.

Assume that the number of cubes in U is the same after one application of PPF . Then
it follows that the union of cubes in U is a rigorous covering of the unstable set of EuEu

Λ.
Then we check whether U ∩ S = ∅. If this holds, then there cannot be a connecting orbit
from EuEu

Λ to EsEs
Λ, and this is what we wanted to show. If this is not the case, we refine the

decomposition of P (PX × Λ) by subdividing all cubes in it and repeat the whole procedure
again.

Note that all the discussion in this section is valid for any b sufficiently close to 0.3. This
completes the algorithm to prove Theorem 1.1.

The algorithm for Theorem 1.2 is the same, but the computational cost is different as
follows:

a = 1.4, b = 0.3 a = 1.3, b = −0.3

Step 2 22.2 min 1.9 min
Step 3 153.9 min 22.5 min
Step 4 26.0 min 50.8 min
Step 6 60.8 min 24.1 min

All the computations are done on a PowerMac G5 (2GHz). Since the orbit of tangency is
simpler and hence the number of cubes in the isolating neighborhoods is smaller, the compu-
tation for the case a = 1.3, b = −0.3 is faster. The only exception is Step 4, the computation
of homology. The reason for this is the strong expansion rate of the map, which makes the
number of the cubes in the image of the isolating neighborhoods significantly large.
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Random Perturbations of Dynamical Systems with Absorbing States∗

Frans Jacobs† and Sebastian J. Schreiber‡

Abstract. Let F : M → M be a continuous dissipative map of a separable metric space M . Consider a finite
collection A of closed F -forward invariant sets that is closed under intersection and that contains M .
For all ε > 0, let Xε be a Markov chain for which the elements of A are absorbing (e.g., extinction
boundaries for a population, genotype, or strategy) and such that d(Xε

t+1, F (Xε
t )) ≤ ε for all t.

Under an additional nondegeneracy condition (i.e., the noise extends locally in all nonabsorbing
directions) and a continuity-like condition on the supports of the random perturbations, we show
that for sufficiently small values of ε, Xε asymptotically spends all of its time near certain invariant
sets of F , so-called absorption preserving chain attractors. Moreover, the weak* limit points of Xε’s
stationary distributions as ε → 0 are F -invariant probability measures whose supports lie in the
absorption preserving chain attractors. Applications to the dynamics of structured and unstructured
populations, multispecies interactions, and evolutionary games are given.

Key words. random perturbations of dynamical systems, chain recurrence, absorbing sets, ecological and evo-
lutionary dynamics
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1. Introduction. The evolution of many physical and biological processes is governed by
a mixture of stochastic forces and nonlinear determinism. For example, ecological and evo-
lutionary systems involve nonlinear interactions that are constantly subject to environmental
and demographic fluctuations [1, 17]. When nonlinear determinism dominates, the evolution
of these processes is often described by nonlinear dynamical systems in which the current state
of the system determines all future states [5]. For these deterministic approximations, it is
natural to ask about the correspondence between the behavior of the unperturbed dynamical
system and the same system subject to small random perturbations [13]. This correspondence
was studied initially in 1933 by Pontryagin, Andronov, and Vitt [15], and more recently by
Wentzell and Freidlin [6, 18], Ruelle [16], and Kifer [12]. Each of these studies was primarily
motivated by physical processes in which the random perturbations could act locally in all
directions of the state space. In many biological systems, however, stochastic forces are lim-
ited by biological constraints. These constraints create “absorbing sets” in the state space,
which the system cannot leave after entering. For instance, in a closed ecological community
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a species that goes extinct remains extinct. It cannot be resurrected by stochastic forces.
Alternatively, in structured community models random perturbations may affect the number
of individuals in each of the classes or stages, but may not change the structural state or
parameters of each of the individuals. Depending on the structure of the model, the collection
of absorbing sets may be large or small. For a semelparous population model with age struc-
ture, a population missing one or more classes always has one or more age classes missing,
a fact that should be respected by random perturbations. For example, the absence of the
reproducing age class in the current generation results in the absence of the youngest age class
in the next generation. On the other hand, for most iteroparous population models the only
absorbing set is extinction [3, 14, 19].

The goal of this article is to investigate random perturbations of dynamical systems with
these types of absorbing sets. To achieve this goal, we introduce in section 2 the notion of
an absorbing π-system, i.e., a collection of closed forward invariant subsets closed under in-
tersection, and random ε-perturbations of deterministic maps that preserve a given absorbing
π-system. These random ε-perturbations act after the deterministic map, preserve the ele-
ments of the absorbing π-system (i.e., once the process enters an absorbing set, it remains in
that absorbing set), and are no larger than ε > 0 in size with respect to a given metric on
the community state space. We illustrate these definitions with ecological models accounting
for demographic, environmental, and immigrational stochasticity, with replicator equations
accounting for demographic, environmental, and mutational stochasticity, and with an age-
structured model. To describe the asymptotic behavior of the randomly perturbed system,
we prove in section 3 the existence of invariant probability measures με whenever the unper-
turbed system has at least one attractor. These invariant probability measures describe the
long-term statistical behavior of trajectories of the randomly perturbed system. As ε ↓ 0, the
work of Khasminskii [11] (see also Kifer [12]) implies that the limit points of these invariant
probability measures are invariant probability measures for the unperturbed system. These
limit points are natural invariant measures for the unperturbed system, as when ε > 0 is suf-
ficiently small the long-term statistical behavior of the perturbed system is well approximated
by these natural invariant measures.

Since the unperturbed system may have several invariant measures, including ones sup-
ported by repellers, sections 4 and 5 determine which invariant sets of the unperturbed system
can actually support the natural invariant measures. In section 4 we introduce the notion of
an absorption preserving chain attractor. This generalizes the notion of extinction preserving
chain attractor as presented in Jacobs and Metz [10], which in turn is a generalization of
the concept of chain attractor as derived by Ruelle [16]. Ruelle introduced chain attractors
to describe the asymptotic behavior of physical systems, in which the dynamics inherently
is influenced by small disturbances. In his construction of chain attractors Ruelle used so-
called pseudo-orbits to model the effect of limited noise on the orbits of an unperturbed system.
In [10] his approach is adapted to unstructured, and in [7] to structured, community-dynamical
models as they are studied in ecology, leading to the notion of extinction preserving chain at-
tractors. The present paper extends these ideas to absorbing π-systems that can account for
a greater variety of stochastic influences as outlined above. In section 5 we prove that under
appropriate assumptions the natural invariant measures are supported by the absorption pre-
serving chain attractors. Moreover, under additional assumptions and ε > 0 sufficiently small,
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the randomly ε-perturbed system eventually remains near one of the absorption preserving
chain attractors of the unperturbed system.

To illustrate the utility of the theory, we apply our results in section 6 to models of
competing species and replicator dynamics. The addition of noise in these models is proven
to have significant effects. In section 7 we make some concluding remarks about our results
and pose some open questions.

2. Definitions and examples. Let M be a separable metric space with metric d, and
F : M → M a continuous map. Given A ⊂ M and x ∈ M , let dist(x,A) = inf{d(x, y) :
y ∈ A}, and for δ ≥ 0 let N(A, δ) = {y ∈ M : dist(y,A) ≤ δ}. For notational convenience,
when A = {x} we write N(x, δ) instead of N({x}, δ). We recall a few definitions from
dynamical systems theory. Given a subset S ⊂ M , define Fn(S) = {Fn(x) : x ∈ S} and
ω(S) =

⋂
n>0

⋃
m≥n F

m(S), with the notational adaptation to ω(x) in the case S = {x}. A
set A ⊂ M is F -forward invariant if F (A) ⊂ A, and F -invariant if F (A) = A. A compact
set A ⊂ M is an attractor for F if there exists a compact neighborhood U of A such that
ω(U) = A. The basin of attraction of a compact F -invariant set A ⊂ M is the set of points
x ∈ M such that ω(x) ⊂ A. A point x ∈ M is recurrent for F if x ∈ ω(x).

For the map F , specific forward invariant sets may be viewed as absorbing under stochastic
perturbations of F . In population models, for example, these forward invariant sets may corre-
spond to the extinction of one or more species, subpopulations, phenotypes, or genotypes. To
allow for a mathematical framework flexible enough for structured and unstructured ecological
models, replicator equations, and hybrids of these models, we make the following definitions.

Definition 1. An absorbing π-system for F is a finite collection A of closed F -forward
invariant subsets of M which includes the set M and which is closed under intersection (i.e.,
A,B ∈ A implies that A ∩B ∈ A). An element of A is called an absorbing set.

Definition 2. For x ∈ M define the minimal absorbing set for x, denoted A∗(x), to be the
smallest element in A containing x.

Definition 3. For any set A ⊂ M and δ ≥ 0 define the ap δ-neighborhood of A as

Nap(A, δ) =
⋃
x∈A

N(x, δ) ∩ A∗(x).

The index ap refers to absorption preservation. For notational convenience we write Nap(x, δ)
instead of Nap({x}, δ).

For a given map F : M → M there are many potential choices of an absorbing π-
system, corresponding to different choices about how random perturbations affect the system.
Assuming that a π-system A has been chosen, we make the following definition.

Definition 4. For ε ≥ 0, a random ε-perturbation of F respecting the absorbing π-system A
is a (discrete time) Markov chain Xε, taking values in M and with transition kernel P ε

. ,

P ε
x(Γ) = P (Xε

t+1 ∈ Γ|Xε
t = x) for all x ∈ M and for all Borel subsets Γ ⊆ M,

which satisfies

H1. P ε
x(Nap(F (x), ε)) = 1.
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H1 ensures that the forward invariant sets in A are absorbing for Xε and that random
ε-perturbations are ε small. When A = {M}, we recover random perturbations considered by
Kifer [12] and Ruelle [16].

To illustrate choices of random ε-perturbations that satisfy H1, we introduce several ex-
amples. In these examples, if Xε

t is a vector, then Xε
t,i denotes the ith component of Xε

t .

2.1. Ecological equations. Consider M given by Rk
+ = {x = (x1, . . . , xk) ∈ Rk : xi ≥ 0},

where x = (x1, . . . , xk) is the vector of population densities. Let d(x, y) = maxi |xi − yi|. If
fi(x) denotes the per capita growth rate of the ith population, then F (x) = (x1f1(x), . . . ,
xkfk(x)) defines an ecological difference equation. For the sake of simplicity, we assume that
there exists ξ ≥ 1 such that F (Rk

+) ⊂ [0, ξ]k (i.e., F is a compact map). For this map we illus-
trate three choices of noise, corresponding to environmental, demographic, and immigration
stochasticity. Combinations of these noises result in different choices of absorbing π-systems.

Environmental stochasticity. Environmental stochasticity occurs when random fluctua-
tions in the environment result in random fluctuations in reproductive or mortality rates. Let
{Zt}t≥0 be a sequence of independent random vectors taking values in [−1/ξ, 1/ξ]k. Let Zt,i

denote the ith component of Zt. Define a random ε-perturbation Xε of F by

Xε
t+1,i = (1 + εZt,i)Fi(X

ε
t ).

Since |(1 + εZt,i)Fi(X
ε
t ) − Fi(X

ε
t )| = ε|Zt,iFi(X

ε
t )| ≤ ε, this choice of Xε satisfies H1 with

respect to the absorbing π-system generated by M and all finite intersections of the sets
{x ∈ Rk

+ : xi = 0}.

Demographic stochasticity. Demographic stochasticity is the effect that the randomness
of birth and death processes has on finite populations. Let γ 
 1 denote the habitat size,
Ni = xiγ the abundance of population i, di = di(ε) ∈ (0, 1) the probability that an individual
of population i dies, and fi(x)/(1 − di) the number of progeny produced per individual of
population i. If reproduction is deterministic and followed by independent stochastic deaths,
the number of surviving individuals of population i is given by a binomial random variable
with mean (1 − di)Nifi(x)/(1 − di) = Nifi(x) and standard deviation

√
diNifi(x). If we

approximate these binomials by appropriately truncated normal random variables Zt,i(x),
then Xε

t+1,i = Fi(X
ε
t ) + Zt,i(X

ε
t ), i = 1, . . . , k, satisfies H1 with respect to the absorbing

π-system generated by M and all finite intersections of the sets {x ∈ Rk
+ : xi = 0}.

Immigration stochasticity. Suppose that a subset of populations I ⊂ {1, . . . , k} receives
a random influx of immigrants. To model this, let {Zt}t≥0 be a sequence of random vectors
with support in [0, 1]k. For populations i /∈ I we assume that Zt,i = 0, i.e., no immigrants.
The random ε-perturbation of F given by Xε

t+1 = F (Xε
t )+ εZt satisfies H1 with respect to the

absorbing π-system generated by M and all finite intersections of the sets {x ∈ Rk
+ : xi = 0}

for i /∈ I.

Combined random perturbations. In addition to the random perturbations mentioned
above, combinations of these random perturbations (e.g., demographic and environmental
stochasticity) will also satisfy H1 with respect to the appropriate absorbing π-system.
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2.2. Replicator difference equations. Consider M = {x ∈ Rk
+ :

∑k
i=1 xi = 1}, where

x = (x1, . . . , xk) is the vector of strategy frequencies. Let d(x, y) = maxi |xi − yi|. If fi(x) is
the relative fitness of the ith strategy, then

F (x) =

(
x1f1(x)∑
j xjfj(x)

, . . . ,
xkfk(x)∑
j xjfj(x)

)

defines the distribution of strategies in the next generation, and is called a replicator equation
(see, e.g., [9]).

Environmental and demographic stochasticity. These forms of random perturbations
can be developed for replicator equations in a manner similar to the ecological equations.

Random mutations. Imagine that for every strategy i ∈ {1, . . . , k} there is a collection
of strategies Ii ⊂ {1, . . . , k} that randomly mutate to strategy i. We assume that Ii always
includes i. Let {Zt(i, j)}t≥0 be a sequence of independent random variables that represent
the fraction of strategy i individuals that mutate to strategy j at time t. For each t ≥ 0 we
require Zt(i, j) ≥ 0,

∑k
j=1 Zt(i, j) = 1, and Zt(j, i) > 0 if and only if j ∈ Ii. Define Xε by

Xε
t+1,i =

∑
j∈Ii Zt(j, i)X

ε
t,j fj(X

ε
t )∑k

j=1 X
ε
t,j fj(X

ε
t )

.

Under the assumption that Zt(i, j) ≤ ε
k−1 for all i, j ∈ {1, . . . , k} and i �= j, Xε satisfies H1

with respect to the absorbing π-system generated by M and the sets {x ∈ M : xj = 0 for all
j ∈ Ii} with i = 1, . . . , k.

2.3. Age-structured populations. Consider a population with k age classes. Let x =
(x1, . . . , xk) be the population vector, where xi is the density of age class i. A standard model
(see, e.g., [2]) for this population is a nonlinear Leslie matrix model

F (x) =

⎛
⎜⎜⎜⎜⎜⎝

f1(x) f2(x) f3(x) . . . fk−2(x) fk−1(x) fk(x)
s1(x) 0 0 . . . 0 0 0

0 s2(x) 0 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . 0 sk−1(x) 0

⎞
⎟⎟⎟⎟⎟⎠x,

where fi is the mean number of progeny produced per generation by an individual in age
class i, and si is the probability that an individual survives from age class i to age class i+ 1.
For an age-structured model one can add demographic, environmental, and immigrational
stochasticity to each of the age classes. For instance, demographic stochasticity via truncated
normal approximations can be used to represent variability in survivorship between age classes
and variability in fecundities within each reproductive age class. Depending on the number of
reproductive age classes, demographic stochasticity can result in different forms of absorbing
π-systems. For example, if the population is semelparous with f1 = f2 = · · · = fk−1 = 0
and fk �= 0, then the natural absorbing π-system is given by M , ∪i{x ∈ Rk

+ : xi = 0},
∪i1>i2{x ∈ Rk

+ : xi1 = xi2 = 0}, . . . , {0}. Alternatively, if the population is significantly
iteroparous, e.g., fi > 0 for all i, then the natural absorbing π-system consists of M and {0}.
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3. Empirical and natural invariant measures. Given Xε, define for t ≥ 1 the empirical
measures νεt by

νεt =
1

t

t∑
i=1

δXε
i
,

where δx is a Dirac measure based at the point x ∈ M . One can think of empirical measures as
corresponding to plotting a single pixel at each of the points Xε

1, . . . , X
ε
t , for increasing values

of t. As one continues to plot these pixels, certain regions of the phase space M get darkened
more than other regions of the phase space. To describe the limiting picture, we consider
weak* limit points of the sequence νε1, ν

ε
2, ν

ε
3, . . . . To define a weak* limit point, consider any

continuous function h : M → R. The average of this function with respect to νεt is the average
observed value of h up to time t:

∫
M

h(x) dνεt (x) =
1

t

t∑
i=1

h(Xε
i ).

A weak* limit point of the sequence νε1, ν
ε
2, . . . is a Borel probability measure με such that

there exists an increasing sequence of times {tn}∞n=1 satisfying

lim
n→∞

1

tn

tn∑
i=1

h(Xε
i ) =

∫
M

h(x) dμε(x)

for all bounded continuous functions h : M → R.
As we show below, these limit points με are often invariant measures for Xε, i.e., for every

Borel set Γ ⊂ M , ∫
M

P ε
x(Γ) dμε(x) = με(Γ).(1)

In the special case of ε = 0, (1) simplifies to

μ0(F−1(Γ)) = μ0(Γ),

and μ0 is an invariant measure of F . Another means of defining an invariant measure for Xε

is to introduce the operator P∗
ε on the space of probability measures:

P∗
ε (μ)(Γ) =

∫
M

P ε
x(Γ) dμ(x),

where μ is a Borel probability measure and Γ is a Borel subset of M . An invariant measure
μ for Xε is just a fixed point of P∗

ε , i.e., P∗
ε (μ) = μ. The importance of this invariance lies

in the fact that when ε > 0 is sufficiently small, the invariant measures με for Xε obtained as
weak* limit points of the sequence {νεt}t≥1 will be well approximated by invariant measures
of F . In particular, this will mean that if ε > 0 is sufficiently small, Xε will spend most of
its time near the supports of specific invariant measures of F . Recall that the support of a
probability measure μ, denoted supp(μ), is the intersection of all closed sets K with μ(K) = 1.
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Theorem 1. Let F : M → M be a continuous map, A an absorbing π-system for F , and Xε

a random ε-perturbation of F respecting A. Assume that A ∈ A and that B is an attractor for
F |A. If Xε

0 lies in the basin of attraction of B, then for ε ≥ 0 sufficiently small the sequence
νε1, ν

ε
2, ν

ε
3, . . . has (with probability one) weak* limit points. These limit points are invariant

measures for Xε, with support in B’s basin of attraction.

Remark. Recall that F : M → M is dissipative if it admits a compact global attractor.
Theorem 1 ensures the existence of invariant measures for random perturbations Xε of a
dissipative F whenever ε ≥ 0 is sufficiently small.

Proof. By H1 it suffices to prove the theorem when A = {M}. Consequently, suppose
that B ⊂ M is an attractor for F and that x ∈ M is in the basin of attraction of B. Assume
that Xε

0 = x. Let V be a compact neighborhood of B such that V is contained in B’s basin of
attraction, and such that F (V ) is contained in the interior of V . Since B is an attractor, there
exists a natural number T such that F T (x) is contained in the interior of V . By continuity
of F there exists an ε1 > 0 such that if x0 = x, x1, . . . , xT ∈ M satisfy d(xi, F (xi−1)) ≤ ε1
for i = 1, . . . , T , then xT is contained in the interior of V . In particular, if ε ≤ ε1, then
Xε

T is contained in the interior of V with probability one. Choose ε2 ∈ (0, ε1) such that
N(F (V ), ε2) ⊂ V . Define

U =
⋃

{x0 = x, . . . , xT : d(xi, F (xi−1)) ≤ ε2 for i = 1, . . . , T}.

Our choice of ε2 implies that, with probability one, Xε
t ∈ U ∪ V for all t ≥ 0 and ε ∈ [0, ε2).

Hence, for ε ∈ [0, ε2) the empirical measures νεt , t ≥ 1, with probability one are supported by
the compact set U ∪ V . By weak* compactness of the Borel probability measures supported
in U ∪ V , there exists a weak* limit point με of the sequence {νεt}t≥1 as t → ∞.

To see the invariance of this weak* limit point, let h : M → R be any continuous and
bounded function. Let Ft denote the σ-algebra generated by Xε

1, . . . , X
ε
t . Define sequences

{Yt}t≥1 and {Zt}t≥1 by

Yt =
1

t

(
h(Xε

t ) − E[h(Xε
t )|Xε

t−1]
)

and

Zt =

t∑
i=1

Yi.

{Zt}t≥1 is a martingale with respect to {Ft}t≥1, as

E[Zt+1 − Zt|Ft] = E[Yt+1|Ft]

=
1

t + 1

(
E[h(Xε

t+1)|Ft] − E[h(Xε
t+1)|Ft]

)
= 0.

Let ‖h‖ = supx∈M |h(x)|. Since E[Yt+1|Ft] = 0, we get that
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∣∣∣E[Z2
t+1]

∣∣∣ =

∣∣∣∣∣∣E
⎡
⎣( t+1∑

i=1

Yi

)2
⎤
⎦
∣∣∣∣∣∣

=

∣∣∣∣∣E
[∑

i

Y 2
i + 2

∑
i>j

YiYj

]∣∣∣∣∣
=

∣∣∣∣∣
∑
i

E[Y 2
i ] + 2

∑
i>j

E[E[YiYj |Fi−1]

∣∣∣∣∣
=

∣∣∣∣∣
∑
i

E[Y 2
i ] + 2

∑
i>j

E[YjE[Yi|Fi−1]]

∣∣∣∣∣
=

∣∣∣∣∣
∑
i

E[Y 2
i ]

∣∣∣∣∣ =

∣∣∣∣∣
∑
i

E

[
1

i2
(h(Xε

i ) − E[h(Xε
i )|Fi−1])

2

]∣∣∣∣∣
≤

t+1∑
i=1

1

i2
4‖h‖2.

Hence, {Zt}t≥1 is an L2 martingale, and Doob’s convergence theorem implies that limt→∞ Zt

converges with probability one. By Kronecker’s lemma,

lim
t→∞

1

t

t∑
i=1

(h(Xε
i ) − E[h(Xε

i )|Fi−1]) = 0

with probability one. Now suppose that limi→∞ νεti converges weakly to με. The previous
estimate implies that∫

h(x) dμε(x) −
∫

h(x) dP∗
ε (με)(x) = lim

i→∞

∫
h(x) dνεti(x) −

∫ ∫
h(y) dP ε

x(y) dνεti(x)

= lim
i→∞

1

ti

ti∑
t=1

(
h(Xε

t ) −
∫

h(y) dP ε
Xε

t
(y)

)

= lim
i→∞

1

ti

ti∑
t=1

(h(Xε
t ) − E[h(Xε

t )|Ft−1])

+
1

ti

(
E[h(Xε

1)|F0] − E[h(Xε
ti+1)|Fti ]

)
= 0

with probability one. Since h is an arbitrary continuous bounded function and M is separable,
the weak* limit point με is with probability one an invariant Borel probability measure for
Xε.

In particular this theorem with ε = 0 implies that if F has an attractor, then F has an
invariant measure. The invariant measures for F may be quite numerous. For instance, any
equilibrium or periodic orbit of F , whether stable or unstable, supports an invariant measure.
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However, it is natural to assume that some of the invariant measures are more physically or
biologically relevant than other invariant measures. For instance, intuition dictates that an
invariant measure supported on an unstable fixed point is unlikely to be observed in nature,
while an invariant measure supported on a stable fixed point is more likely to be observed.
To pick out physically or biologically relevant invariant measures suppose that, for all ε > 0
sufficiently small, Xε has an invariant measure με as obtained in Theorem 1. A standard
argument (see, e.g., Kifer [12]) implies that the weak* limit points of these με as ε ↓ 0 are
F -invariant measures.

Theorem 2. Let, for each ε > 0 sufficiently small, με be an invariant Borel probability
measure for Xε. If μ is a weak* limit point of με as ε ↓ 0, then μ is F -invariant.

We define these weak* limit points as natural F -invariant measures. An immediate corol-
lary of Theorems 1 and 2 is the following.

Corollary 1. If F admits an attractor, then F has a natural F -invariant measure.

In the next two sections we investigate, under an additional set of assumptions, the sup-
ports of these natural invariant measures.

4. Absorption preserving chain attractors. To understand where the dynamics of Xε

eventually settles when ε > 0 is small, we define in this section absorption preserving chain
attractors. These attractors generalize the notion of attractor as introduced by Ruelle in [16],
which are obtained for dynamical systems under arbitrarily small perturbations in case the
absorbing π-system consists solely of a compact state space. Absorption preserving chain at-
tractors also are a generalization of the extinction preserving chain attractors, defined in [10]
for unstructured populations and extended in [7] to the case of structured populations. Ex-
tinction preserving chain attractors for a community-dynamical system under arbitrarily small
perturbations are equal to absorption preserving chain attractors in case the absorbing π-
system is taken to be the community state space together with the collection of all extinction
sets for the populations. The derivation below is an adaptation of the derivation of extinction
preserving chain attractors as presented in section 3 of [10] to discrete-time dynamical sys-
tems and absorbing π-systems. We take the state space M to be compact, e.g., by restricting
ourselves to a compact global attractor.

Definition 5. Let ε ≥ 0. A sequence x0, . . . , xn of elements in M such that d(xt+1, F (xt)) ≤
ε and xt+1 ∈ A∗(F (xt)) for all t ∈ {0, . . . , n− 1} is called an absorption preserving ε-pseudo-
orbit (or ap ε-pseudo-orbit) of F .

An ap ε-pseudo-orbit x0, . . . , xn is said to have length n and to go from x0 to xn. Two
ap ε-pseudo-orbits x0, . . . , xn and y0, . . . , ym of lengths n and m, respectively, and with
d(y0, F (xn)) ≤ ε and y0 ∈ A∗(F (xn)) by concatenation can be combined into the ap ε-
pseudo-orbit x0, . . . , xn, y0, . . . , ym of length n + m + 1 going from x0 to ym. The notion of
an absorption preserving ε-pseudo-orbit reflects the character of irreversibility attached to
absorption. In addition, we define ap-chain recurrency as follows.

Definition 6. A point x is ap-chain recurrent if for every ε > 0 and every n > 0 there is
an ap ε-pseudo-orbit of length ≥ n going from x to x. The set of ap-chain recurrent points is
called the ap-chain recurrent set.

Using ap-pseudo-orbits, we introduce a partial ordering on M and a corresponding equiv-
alence relation on M .
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Definition 7. For x, y ∈ M we define x �ap y (“x ap-chains to y”) if for every ε > 0 there
exists an ap ε-pseudo-orbit going from x to y.

The relation �ap (to be called ap-chaining) is a preorder on M . Ap-chaining is not
necessarily a closed relation: if (xi)i≥0 and (yi)i≥0 are two sequences in M that converge to
x and y, respectively, and are such that xi �ap yi for all i, then not necessarily x �ap y; e.g.,
take x and y such that A∗(x)

⋂
A∗(y) = ∅.

Definition 8. For elements x, y ∈ M , define x ∼ap y if x �ap y and y �ap x.

Since �ap is a preorder, ∼ap is an equivalence relation on M , to be called mutual ap-
chaining. The equivalence class of x under ∼ap is denoted as [x]ap, and Map denotes the set
of equivalence classes in M under ∼ap. The expression x ∼ap y (“x and y ap-chain to each
other”) implies that both x and y belong to A∗(x)∩A∗(y), and consequently A∗(x) = A∗(y).
In the sense indicated above, the relation ∼ap may not be closed.

Definition 9. [x]ap is called an ap-basic class if x is ap-chain recurrent.

Three equivalent statements can be made for ap-basic classes, as follows.

Proposition 1. The following three statements are equivalent:

1. [x]ap is an ap-basic class;
2. x is a fixed point, or [x]ap contains more than one point;
3. for all t ≥ 0, F t([x]ap) = [x]ap.

Definition 10. For elements [x]ap, [y]ap ∈ Map the relation �ap is defined by [x]ap �ap [y]ap
if x �ap y.

The relation �ap (to be called ap-connecting) is a partial ordering on the set of equivalence
classes of ∼ap. By means of �ap we define ap-chain attractors for dynamical systems with
absorbing π-systems.

Definition 11. [x]ap is an ap-chain attractor for (F,A) if it is a minimal element of the
ordering �ap.

An ap-chain attractor is an ap-basic class, and, by Proposition 1, contains the ω-limit sets
of all its elements. Existence of ap-chain attractors follows the same line of reasoning that
guarantees the existence of attractors as presented by Ruelle in [16], which uses Zorn’s lemma
and the fact that M is compact. In particular an ap-chain attractor will be closed.

Definition 12. For an ap-chain attractor [x]ap, the collection of points {y ∈ M : y �ap x}
is called the basin of ap-chain attraction of [x]ap.

The basin of ap-chain attraction for an ap-chain attractor [x]ap is not empty, since x ∈
[x]ap. Furthermore, each element in M belongs to the basin of ap-chain attraction of at least
one ap-chain attractor.

5. Random perturbations and ap-chain attractors. In this section we assume that F :
M → M is dissipative. We show that when ε > 0 is sufficiently small, Xε spends most of
its time near the ap-chain attractors of F . To accomplish this goal, we need to place the
following two additional hypotheses on Xε:

H2. For each ε > 0 there exists a δ = δ(ε) ∈ (0, ε) such that P ε
x(Nap(y, γ)) > 0 for all

x, y ∈ M and γ > 0 satisfying Nap(y, γ) ⊂ Nap(F (x), δ).
H3. For each ε > 0, if P ε

x(K) > 0 for a closed set K ⊂ M , then there exists a neighborhood
U (depending on x and ε) of x such that infy∈U P ε

y(K) > 0.
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H2 ensures that “the noise extends locally in all directions that respect the absorbing π-
system.” H3 is a crude continuity-like condition on the supports of the random perturbations.
Even in the case A = {M}, these additional assumptions are weaker than those used by
Ruelle [16] and Kifer [12]. The additional assumptions are immediately satisfied, for instance,
for ecological or replicator equations with demographic stochasticity as described in sections
2.1 and 2.2. In the case of models Xε with k age classes and demographic stochasticity as
described in section 2.3, these additional assumptions are satisfied by replacing the map F
with F k, and the states Xε

t with Xε
kt.

Theorem 3. Let F : M → M be dissipative, A be an absorbing π-system for F , and Xε be
a Markov chain which satisfies H1–H3. If x ∈ M does not lie in an ap-chain attractor for
(F,A), then there exists a neighborhood U of x such that

P (Xε enters U infinitely often) = 0(2)

whenever ε > 0 is sufficiently small.

In principle, the proof of the theorem adapts the proof of Kifer [12, Thm. 4.5] to the
absorption preserving case. However, due to our formulation of H2 (i.e., the support of P ε

x

includes Nap(F (x), δ) instead of including F (Nap(x, δ))), our proof is shorter and more direct.

Proof. Assume that x ∈ M does not lie in an ap-chain attractor. We will show that there
exist points y ∈ M and ε > 0 such that x ap-chains to y but there exists no ap ε-pseudo-orbit
from any element in Nap(y, ε) to any element in Nap(x, ε). Since x does not lie in an ap-chain
attractor, there exists a point y ∈ M such that x ap-chains to y but y does not ap-chain to
x. Choose ε > 0 sufficiently small such that there exists no ap 2ε-pseudo-orbit from y to x.
We proceed in two cases. First, suppose that A∗(F (y)) = A∗(y). Then continuity implies
that there exists η > 0 such that F (Nap(y, η)) ⊂ Nap(F (y), ε). Since there are no ap 2ε-
pseudo-orbits from F (y) to x, there are no ap ε-pseudo-orbits from any element in Nap(y, η)
to any element in Nap(x, ε). Replacing ε with min{η, ε} completes this case. For the second
case, suppose that A∗(F (y)) � A∗(y). Since x ap-chains to y, we have A∗(y) ⊆ A∗(x) and
x /∈ A∗(F (y)). By H1, there is no ap ε-pseudoorbit from F (y) to x. Since x ap-chains to
F (y), replacing y with F (y) completes this case.

Let δ = δ(ε) > 0 be as given by H2. Let x0 = x, x1, . . . , xn = y be an ap δ-pseudo-orbit
from x to y. H2 and H3 allow us to find a neighborhood U of x, an α > 0, and a γ ∈ (0, δ)
such that

P ε
z (Nap(x1, γ)) ≥ α

for all z ∈ U and such that

P ε
z (Nap(xi+1, γ)) ≥ α

for all z ∈ Nap(xi, γ) and i = 1, . . . , n − 1. Define U(0) = U and U(i) = Nap(xi, γ) for
i = 1, . . . , n. We claim that

P (Xε
n ∈ U(n)|Xε

0 = z) ≥ αn for all z ∈ U(0).(3)
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To prove (3) notice that

P (Xε
n ∈ U(n)|Xε

0 = z) =

∫
· · ·

∫
P ε
zn−1

(U(n)) dP ε
zn−2

(zn−1) . . . dP
ε
z (z1).

Since P ε
z (U(n)) ≥ α1U(n−1)(z) for all z ∈ M , we get that

P (Xε
n ∈ U(n)|Xε

0 = z) ≥ α

∫
· · ·

∫
1U(n−1)(zn−1) dP ε

zn−2
(zn−1) . . . dP

ε
z (z1)

= α

∫
· · ·

∫
P ε
zn−2

(U(n− 1)) dP ε
zn−3

(zn−2) . . . dP
ε
z (z1).

Similarly, applying the estimates P ε
z (U(n− i)) ≥ α1U(n−i−1)(z) for i = 1, . . . , n− 1 yields (3).

The following standard result in Markov chain theory (see, e.g., [4, Chap. 5, Thm. 2.3]) applied
to X = Xε, B = U(n), and C = U(0) yields that

P (Xε enters U(0) infinitely often) = 0.

Theorem 4. Let X be a Markov chain, and suppose that

P

( ∞⋃
m=t+1

{Xm ∈ B}
∣∣∣Xt

)
≥ β > 0 on {Xt ∈ C}.

Then

P ({X enters C infinitely often} \ {X enters B infinitely often}) = 0.

In the words of Chung [4, p. 256]: “The intuitive meaning of the preceding theorem has
been given by Doeblin as follows: if the chance of a pedestrian’s getting run over is greater
than β > 0 each time he crosses a certain street, then he will not be crossing it indefinitely
(since he will be killed first).” In our case “the certain street” is the set U(0) and “getting run
over” is Xε following an ap ε-pseudoorbit from U(0) to U(n). Any time that Xε enters U(n)
it will never return to U(0), as there are no ap ε-pseudo-orbits back from U(n) to U(0).

Recall from Theorem 1 that limit points με of the empirical measures νεt = 1
t

∑t
i=1 δXε

i
as

t → ∞ are invariant measures for Xε. Moreover, by Theorem 2, limit points of these με as
ε ↓ 0 are natural invariant measures of F . Theorem 3 yields the following corollary, which
implies that the natural F -invariant measures are concentrated on F ’s ap-chain attractors.
Consequently, Xε spends most of its time near F ’s ap-chain attractors when ε > 0 is sufficiently
small.

Corollary 2. Let F : M → M be dissipative, and let A be an absorbing π-system for F .
Let {Xε, ε > 0} be a collection of Markov chains that satisfy H1–H3, and let με denote an
invariant Borel probability measure for Xε. All weak* limit points of με as ε ↓ 0 are supported
by the ap-chain attractors for (F,A).

Proof. For all ε > 0, let με be an invariant Borel probability measure for Xε. Let x ∈ M
not lie in any ap-chain attractor. Then there exists an open neighborhood U of x such that

με(U) = 0
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for ε > 0 sufficiently small. Since U is an open set, μ(U) = 0 for any weak* limit point μ of
με as ε ↓ 0. Since x was an arbitrary point in the complement of the ap-chain attractors, it
follows that μ is supported by the ap-chain attractors.

Often, attractors for F break up into a finite number of ap-chain attractors for (F,A).
When this occurs, the following result shows that for sufficiently small ε > 0, Xε eventually
remains in an ap ε-neighborhood of one of these ap-chain attractors. Moreover, for ε > 0
sufficiently small, Xε reaches an ap-chain attractor with positive probability only if Xε

0 ap-
chains to an ap-chain attractor.

Theorem 5. Let F : M → M be dissipative, A be an absorbing π-system for F , {Xε, ε > 0}
be a collection of Markov chains that satisfy H1–H3, and Xε

0 = x0 ∈ M for all ε > 0. Assume
that there exist k compact subsets K1, . . . ,Kk of M such that

• for each Ki there exists an A ∈ A such that Ki ⊂ A and Ki is an attractor for F |A;
• ∪iKi contains all the ap-chain attractors for (F,A).

Then for any γ > 0 and ε > 0 sufficiently small

P (there exist s and i such that for all t ≥ s : Xε
t ∈ Nap(Ki, γ)) = 1.(4)

Moreover, if x0 ap-chains to a point in Ki, then for any γ > 0 and ε > 0 sufficiently small

P (there exists an s such that for all t ≥ s : Xε
t ∈ Nap(Ki, γ)) > 0.(5)

If x0 does not ap-chain to any point in Ki, then there is a γ > 0 such that

P (there exists an s such that for all t ≥ s : Xε
t ∈ Nap(Ki, γ)) = 0(6)

whenever ε > 0 is sufficiently small.
Proof. The proof of the theorem relies on the following two lemmas.
Lemma 1. Let F : M → M be a dissipative map and A be an absorbing π-system for F .

For A ∈ A, let B be an attractor for F |A. Then for every γ > 0 there exist ε0 > 0 and
β ∈ (0, γ) such that there is no ap ε0-pseudo-orbit from x to y for all x ∈ Nap(B, β) and
y ∈ M \Nap(B, γ).

Proof. Suppose that the conclusion of the proposition does not hold. Then there is a γ > 0
for which there do not exist an ε0 > 0 and β ∈ (0, γ) such that there is no ap ε0-pseudo-orbit
from x to y for all x ∈ Nap(B, β) and y ∈ M \Nap(B, γ). I.e., in that case, for every ε0 > 0 and
every β ∈ (0, γ) there is an ap ε0-pseudo-orbit from an x ∈ Nap(B, β) to a y ∈ M \Nap(B, γ).
Consequently, by letting ε0 and β become infinitesimally small (but positive), it follows that
there exists an x ∈ B that ap-chains to an element y ∈ M \Nap(B, γ). Necessarily, any
compact neighborhood U of B in A contains part of the set {z ∈ M : x �ap z} by which x
ap-chains to y, and therefore ω(U) � B. This contradicts that B is an attractor for F |A.

Lemma 2. Let F : M → M be dissipative with global attractor B, A be an absorbing π-
system for F , {Xε, ε > 0} be a collection of Markov chains that satisfy H1, and S ⊂ M be
a compact set such that supp({Xε

0}) = S for all ε > 0. Then for every γ > 0 there exist an
ε1 > 0 and n ≥ 0 such that for all ε ∈ (0, ε1]

P (for all t ≥ n : Xε
t ∈ N(B, γ)) = 1.
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Proof. It suffices to prove the lemma for the case in which A = {M}. Since F is dissipative,
there exists a compact attractor B whose basin of attraction is M . Let S be as in the lemma.
Let γ > 0 be given, and for this γ choose ε0 > 0, β ∈ (0, γ) as given by Lemma 1. Lemma 1
implies that there does not exist an ap ε0-pseudo-orbit from Nap(B, β) to M \ Nap(B, γ).
Since S is compact and lies in the basin of attraction of B, there exists an n such that
Fn(S) ⊂ N(B, β/2). Compactness of S and continuity of F imply that there exists an
ε1 ∈ (0,min{ε0, β2 }) such that every ap ε1-pseudo-orbit x0, . . . , xn with x0 ∈ S satisfies xn ∈
N(B, β). For any Markov chain Xε that satisfies H1 it follows that if ε ≤ ε1, then for any
t ≥ 0 the sequence Xε

0, . . . , X
ε
t is an ap ε1-pseudo-orbit. Since Xε

0 ∈ S, we get with probability
one that Xε

n ∈ N(B, β) and Xε
t ∈ N(B, γ) for t ≥ n whenever ε ∈ (0, ε1].

Let B be the global attractor of F , and let γ > 0 be given. Lemma 2 implies that there
exist an ε0 > 0 and n ≥ 0 such that P (for all t ≥ n : Xε

t ∈ K) = 1 whenever ε ∈ (0, ε0].
Applying Lemma 1 to each of the Ki implies that there exist ε1 ∈ (0, ε0) and β1 ∈ (0, γ) such
that for all 1 ≤ i ≤ k there is no ap ε1-pseudo-orbit from any point in Nap(Ki, β1) to any
point in M \Nap(Ki, γ). Next, we wish to extend the “absorption preserving” neighborhoods
Nap(Ki, β1) of each of the Ki’s to full neighborhoods of the Ki’s such that Xε cannot enter
them too often without getting stuck. Let δ(ε) be as given by H2. Since Ki is F -invariant,
for every ε > 0 there exists η = η(ε) ∈ (0, β1) such that F (x) ∈ N(Ki, δ(ε)/2) whenever
x ∈ N(Ki, η). H1–H3 imply that infx∈N(Ki,η) P

ε
x(Ai) > 0. Applying Theorem 4 with C =

N(Ki, η) \Ai and B = Ai implies that for all ε > 0 and each 1 ≤ i ≤ k

P (Xε
t ∈ N(Ki, η) \Ai infinitely often) = 0.(7)

Let int(N(Ki, η)) denote the interior of N(Ki, η). Since η is strictly positive, every x ∈
K \

⋃k
i=1 int(N(Ki, η)) does not lie in an ap-chain attractor. Theorem 3 implies that for every

x ∈ K \
⋃k

i=1 int(N(Ki, η)) there exists a neighborhood Ux of x and εx > 0 such that for all

ε ∈ (0, εx): P (Xε
t ∈ Ux infinitely often) = 0. Compactness of K \

⋃k
i=1 int(N(Ki, η)) implies

that K \
⋃k

i=1 int(N(Ki, η)) is covered by a finite number of these open neighborhoods, say
Ux1 , . . . , Uxn . Let ε2 = min{εx1 , . . . , εxn , ε1}. Since Xε can enter each element of this finite
collection of neighborhoods only finitely often,

P

(
Xε

t ∈ K \
k⋃

i=1

int(N(Ki, η)) infinitely often

)
= 0(8)

for all ε ∈ (0, ε2).
Equations (7) and (8) imply that

P

(
Xε

t ∈ K \
k⋃

i=1

Nap(Ki, η) infinitely often

)
= 0

for all ε ∈ (0, ε2). Our choice of K implies that

P

(
Xε

t ∈ M \
k⋃

i=1

Nap(Ki, η) infinitely often

)
= 0
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for all ε ∈ (0, ε2). It follows that

P

(
Xε

t ∈
k⋃

i=1

Nap(Ki, η) for some t ≥ 0

)
= 1

for all ε ∈ (0, ε2). Since there are no ap ε2-pseudo-orbits from Nap(Ki, η) to M \ Nap(Ki, γ)
for i = 1, . . . , k, expression (4) follows.

To prove (5), assume that x0 does ap-chain to y ∈ Ki. Then the arguments leading to (3)
imply that P (Xε

t enters Nap(Ki, η) for some t) > 0. Since there are no ap ε2-pseudo-orbits
from Nap(Ki, η) to M \Nap(Ki, γ), expression (5) follows.

To prove (6), assume that x0 does not ap-chain to any point in Ki. For every point y ∈ Ki,
there exists an εy > 0 such that there are no ap 2εy-pseudo-orbits from x0 to y. Hence, there
are no ap εy-pseudo-orbits from x0 to any point in Nap(y, εy). Since Ki is compact, there
are y1, . . . , yn such that Ki ⊂ ∪jNap(yj , εyj ). Let ε3 = minj{εyj}. Then there are no ap
ε3
2 -pseudo-orbits from x0 to any point in Nap(Ki,

ε3
2 ). Hence (6) holds for 0 < ε < ε3

2 and
γ > 0 sufficiently small.

6. Applications. In this section, we apply the results from the previous sections to models
of competing species and replicator dynamics.

6.1. Ecological drift for competing species. When the ecological outcome of compet-
ing species is determined by stochastic forces, ecological drift is said to occur. Here we
illustrate two scenarios, ecologically equivalent competing species and intermingled basins of
competitive exclusion, for which ecological drift occurs. Let x1 and x2 be the densities of two
competing species. The competing species are ecologically equivalent if the per capita growth
of each species is of the form f(x1 + x2), in which case the competitive dynamics are given
by F (x1, x2) = (x1f(x1 + x2), x2f(x1 + x2)). The following proposition proves that, under
suitable assumptions on f and the noise, ecological drift occurs in the sense that competitive
exclusion of either species occurs with positive probability for all positive initial conditions.
Figure 1 illustrates how the probability of exclusion can depend on initial conditions for the
map F (x1, x2) = (3.9x1(1− x1 − x2), 3.9x2(1− x1 − x2)) with additive uniformly distributed
noise on [−0.01, 0.01].

Proposition 2. Let m > 0 (i.e., the maximum density supported by the population) and
M = {(x1, x2) ∈ R2

+ : x1 + x2 ≤ m}. Let f : [0,m] → R+ be a continuous decreasing
function with f(0) > 1, f(m) < 1, f > 0 on [0,m), and xf(x) ≤ m for all x ∈ [0,m]. Let
F (x1, x2) = (x1f(x1 + x2), x2f(x1 + x2)), A = {M, {0} × [0,m], [0,m] × {0}, (0, 0)}, and
{Xε, ε > 0} be a collection of Markov chains satisfying H1–H3. Then there exists a > 0 such
that for all x1x2 > 0 and ε > 0 sufficiently small

P ε
x(X

ε
t ∈ {0} × [a,m] ∪ [a,m] × {0} for t sufficiently large) = 1,

P ε
x(X

ε
t ∈ {0} × [a,m] for t sufficiently large) > 0,

and

P ε
x(X

ε
t ∈ [a,m] × {0} for t sufficiently large) > 0.
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Figure 1. The probability of extinction of species 1 as a function of the initial conditions. These probabilities
were computed for the map F (x1, x2) = (3.9x1(1−x1−x2), 3.9x2(1−x1−x2)) with additive uniformly distributed
noise on [−0.01, 0.01].

Proof. Consider the change of variables u = x1 + x2 and v = x2
x1+x2

. In this coordinate
system, F is given by G(u, v) = (uf(u), v), provided that u > 0, and M is given by [0,m] ×
[0, 1]. Our assumptions of f imply that there is an attractor A1 ⊂ (0,m) for u �→ uf(u)
whose basin of attraction is (0,m). Hence, A = A1 × [0, 1] is an attractor for G with a basin
of attraction including (0,m) × [0, 1]. The basin of attraction does not include {m} × [0, 1]
whenever f(m) = 0. Since G2(u, v) = v, all points in (0,m) × [0, 1] ap-chain to points
in A1 × {0} and to points in A1 × {1}. Applying Theorem 5 completes the proof of the
proposition.

Another way that ecological drift can occur is when the competing species exhibit inter-
mingled basins of competitive exclusion. In the words of [8], this occurs when for “almost
all initial conditions one of the two species dies out. But the survivor is unpredictable: The
basins of the two chaotic one species attractors are everywhere dense.” Hofbauer et al. [8]
have proven the existence of an intermingled basin for a class of maps. For systems of this
type, Theorem 5 implies the following proposition about ecological drift. Figure 2 illustrates
a potential intermingled basin of competitive exclusion for F (x1, x2) = (3.9x1(1−x1−x2)(1+
0.1x2 sin(2π(x1 + x2))/(x1 + x2)), 3.9x2(1 − x1 − x2)(1 − 0.1x1 sin(2π(x1 + x2))/(x1 + x2)))
and the effect of additive uniformly distributed noise.

Proposition 3. Let m > 0 (i.e., the maximum density supported by the population) and
M = {(x1, x2) ∈ R2

+ : x1 + x2 ≤ m}, F : M → M be a continuous map of the form
F (x1, x2) = (x1f1(x1, x2), x2f(x1, x2)), A = {M, {0} × [0,m], [0,m] × {0}, (0, 0)}, and {Xε,
ε > 0} be a collection of Markov chains satisfying H1–H3. Assume that F has ap-chain
attractors A1 ⊂ (0,m) × {0} and A2 ⊂ {0} × (0,m) such that each basin of attraction of Ai

is dense in M , A1’s basin includes (0,m) × {0}, and A2’s basin includes {0} × (0,m). Then



RANDOMLY PERTURBED DYNAMICS WITH ABSORBING STATES 309

Figure 2. Intermingled basins of competitive exclusion and the probability of extinction of species 2 as a
function of the initial conditions. In the left panel, each initial condition for F (x1, x2) = (3.9x1(1−x1−x2)(1+
0.1x2 sin(2π(x1 + x2))/(x1 + x2)), 3.9x2(1− x1 − x2)(1− 0.1x1 sin(2π(x1 + x2))/(x1 + x2))) was iterated 1,000
time steps, and the final density of species 2 is plotted. Warmer colors correspond to higher densities, and
cooler colors correspond to lower densities. In the right panel, the map was perturbed by additive uniformly
distributed noise on [−0.01, 0.01], and the probability of extinction of species 1 was computed for a grid of initial
conditions.

there exists a > 0 such that for all x1x2 > 0 and ε > 0 sufficiently small

P ε
x(X

ε
t ∈ {0} × [a,m] ∪ [a,m] × {0} for t sufficiently large) = 1,

P ε
x(X

ε
t ∈ {0} × [a,m] for t sufficiently large) > 0,

and

P ε
x(X

ε
t ∈ [a,m] × {0} for t sufficiently large) > 0.

6.2. Asymmetric games. In evolution, players in different positions may engage in asym-
metric conflicts. For the case of two types of players and two strategies, one can assume
without loss of generality that the payoff matrix for one type of player, say females, is of the
form [

0 a12

a21 0

]
,

while the payoff matrix for the other type of player, say males, is of the form[
0 b12
b21 0

]
.

For this payoff structure, the game dynamics is given by

dx

dt
= x(1 − x)(a12 − (a12 + a21)y),(9)

dy

dt
= y(1 − y)(b12 − (b12 + b21)x),
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where x and y are frequencies of strategy 1 for males and females, respectively. Let M =
[0, 1]× [0, 1], let (φt)t≥0 denote the flow of the game dynamics, and let F = φh for some h > 0.
The dynamics of this game is well studied (see Hofbauer and Sigmund [9]) and fall generically
into the following four cases:

I. a12a21 < 0: One of the two strategies of the females dominates the other: x converges
monotonically to 0 or 1.

II. b12b21 < 0: One of the two strategies of the males dominates the other: y monotonically
converges to 0 or 1.

III. a12a21 > 0, b12b21 > 0, and a12b12 > 0: There is a unique interior equilibrium

(x∗, y∗) =

(
b12

b12 + b21
,

a12

a12 + a21

)
,

which is a saddle, and almost every initial condition converges to opposite corners
of M .

IV. a12a21 > 0, b12b21 > 0, and a12b12 < 0: The unique equilibrium (x∗, y∗) is neutrally
stable, and all orbits in M are periodic orbits surrounding (x∗, y∗).

Consider random perturbations Xε of F corresponding to demographic stochasticity with
or without environmental stochasticity. Xε satisfies H1–H3 with respect to the absorbing
π-system generated by M , {(0, y) : y ∈ [0, 1]}, {(1, y) : y ∈ [0, 1]}, {(x, 0) : x ∈ [0, 1]}, and
{(x, 1) : x ∈ [0, 1]}. For cases I–IV, the only ap-chain attractors are the boundary equilibria
(0, 1), (1, 0), (0, 0), and (1, 1). Hence, Theorem 5 implies that, with probability 1, Xε converges
to one of these boundary equilibria in finite time. Moreover, if Xε

0 ∈ (0, 1)×(0, 1), then for cases
I–III, Xε converges with positive probability only to a subset of the boundary equilibria, while
for case IV, Xε converges to any boundary equilibrium with positive probability (Figure 3).

7. Discussion. Our analysis studies the effect of localized noise on discrete-time dynamical
systems with absorbing sets. Noise is represented by a discrete time Markov chain that in
each time step acts on the deterministic image of a state. Certain regions of the state space
are assumed to be absorbing, in that the system cannot leave (either deterministically or
by a random perturbation) these regions once it has entered such a region, e.g., extinction
boundaries in the absence of immigration or mutations. Thus, we assume that noise respects
the absorbing sets (H1). We prove that if an unperturbed system has an attractor, then for
sufficiently small perturbations the perturbed system has invariant probability measures that
describe the asymptotic behavior of the system. Letting the size of the random perturbations
go to zero, natural invariant measures for the unperturbed system are obtained as limit points
of the invariant measures for the perturbed system. Provided that the random perturbations
are sufficiently small, the asymptotic dynamics of the perturbed system is well described by
these natural invariant measures.

Adding two more assumptions to our formalism—namely, within each absorbing set noise
may locally perturb the dynamics into all admissible directions (H2), and nonzero noise is
locally sustained (H3)—allows us to derive that the natural invariant measures of an unper-
turbed system are supported by the ap-chain attractors. First we show that if a state does
not belong to an ap-chain attractor, then under sufficiently small perturbations, this state
has a neighborhood which the system cannot enter infinitely often. Next we prove that, given
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Figure 3. Four realizations of (9) are shown with a12 = a21 = 2 and b12 = b21 = −2 with demographic
stochasticity of size ε = 0.01.

that the ap-chain attractors are contained in the attractors of the unperturbed system, there
exists an attractor such that for any neighborhood of that attractor and sufficiently small
perturbations, the perturbed system will be restricted to that neighborhood within a finite
amount of time. In addition, if small noise is capable of bringing a system into an attractor,
then there is a positive probability that the randomly perturbed system will be restricted to
an arbitrary neighborhood of that attractor within a finite amount of time.

Although our statements may sound intuitively clear, to our knowledge so far no mathe-
matical proofs have been presented in the literature that support them, given our assumptions
H1–H3 on the random perturbations. The papers [10] and [7] introduce the notion of extinc-
tion preserving chain attractors, but their relation to the effect of small random perturbations
on the dynamics is dealt with only on the intuitive level and does not provide an analysis for
the case of random perturbations. Ruelle in his paper [16] derives a result similar to ours if the
full state space is the only absorbing set; namely, the randomly perturbed system statistically
spends most of its time in a neighborhood of the chain attractors. However, even when the
full state space is the only absorbing set, his work differs from ours in that our assumptions
on the random perturbations are weaker [16, p. 145]. Moreover, our assumptions H2 and H3
on supports make the proof of our Theorem 3 and its Corollary 2 more straightforward than
the proof of the similar statements in Ruelle’s setting, as follows from comparison of our proof
with, e.g., a proof given by Kifer (the proof of Theorem 4.5 in [12]).

Since small random perturbations are omnipresent in reality, our work explains their ef-
fects on community dynamics. A combination of small random perturbations with larger
perturbations might lead to a better understanding of fluctuations of population densities due
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to the presence of multiple ap-chain attractors. Although sufficiently small perturbations,
e.g., those due to environmental stochasticity, are likely to bring the system close to a spe-
cific ap-chain attractor, irregular appearances of sufficiently large perturbations might cause
the system to change its basin of ap-chain attraction. Large random perturbations are not,
however, covered by our framework, and their inclusion in the theory is a possible direction
for further research.
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[13] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise. Stochastic Aspects of Dynamics, 2nd ed.,

Appl. Math. Sci. 97, Springer-Verlag, New York, 1994.
[14] M. G. Neubert and H. Caswell, Density-dependent vital rates and their population dynamic conse-

quences, J. Math. Biol., 41 (2000), pp. 103–121.
[15] L. S. Pontryagin, A. A. Andronov, and A. A. Vitt, On statistical considerations of dynamical

systems, J. Exper. Theoret. Phys., 3 (1933), pp. 165–180.
[16] D. Ruelle, Small random perturbations of dynamical systems and the definition of attractors, Comm.

Math. Phys., 82 (1981), pp. 137–151.
[17] W. M. Schaffer, S. Ellner, and M. Kot, Effects of noise on some dynamical models in ecology, J.

Math. Biol., 24 (1986), pp. 479–523.
[18] A. D. Wentzell and M. I. Freidlin, Small random perturbations of dynamical systems, Uspehi Mat.

Nauk, 25 (1970), pp. 3–55.
[19] A. Wikan and M. Einar, Overcompensatory recruitment and generation delay in discrete age-structured

population models, J. Math. Biol., 35 (1996), pp. 195–239.



SIAM J. APPLIED DYNAMICAL SYSTEMS c© 2006 Society for Industrial and Applied Mathematics
Vol. 5, No. 2, pp. 313–363

The Stability of a Stripe for the Gierer–Meinhardt Model and the Effect of
Saturation∗

Theodore Kolokolnikov†, Wentao Sun‡, Michael Ward§, and Juncheng Wei¶

Abstract. The stability of two different types of stripe solutions that occur for two different forms of the
Gierer–Meinhardt (GM) activator-inhibitor model is analyzed in a rectangular domain. For the
basic GM model with exponent set (p, q, r, s), representing the powers of certain nonlinear terms
in the reaction kinetics, a homoclinic stripe is constructed whereby the activator concentration
localizes along the midline of the rectangular domain. In the semistrong regime, characterized by
a global variation of the inhibitor concentration across the domain, instability bands with respect
to transverse zigzag instabilities and spot-generating breakup instabilities of the homoclinic stripe
are determined analytically. In the weak interaction regime, where both the inhibitor and activator
concentrations are localized, the spectrum of the linearization of the homoclinic stripe is studied
numerically with respect to both breakup and zigzag instabilities. For certain exponent sets near the
existence threshold of this homoclinic stripe, where stripe self-replicating behavior is observed, it is
shown numerically that a stripe can be stable with respect to a breakup instability but is unstable
with respect to a transverse zigzag instability. The zigzag instability is found numerically to be
the precursor to a space-filling curve. For a GM model in the semistrong regime that is modified
to include a small level of saturation of the activator production, it is shown that a homoclinic
stripe solution still exists but, in contrast to the unsaturated GM model, can be stable with respect
to breakup instabilities. For larger levels of the saturation, the homoclinic stripe ceases to exist
and is replaced by a mesa-stripe, which is composed of two front-back heteroclinic transition layers
joined together by an asymptotically flat plateau. In the near-shadow limit of an asymptotically
large inhibitor diffusivity, and in a rectangular domain, it is shown analytically that a mesa-stripe is
stable to spot-generating breakup instabilities, but can be unstable to either slow zigzag or breather-
type instabilities. Finally, the asymptotic and numerical stability results for both homoclinic and
mesa-stripes are favorably compared with results obtained from full numerical simulations of the
GM model.

Key words. homoclinic stripe, mesa-stripe, zigzag instability, nonlocal eigenvalue problem
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1. Introduction. In a two-dimensional domain, intricate spatially localized patterns con-
sisting of either spots, stripes, mixed spot-stripe patterns, or space-filling curves have been
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observed in numerical simulations of certain classes of singularly perturbed reaction-diffusion
systems. For activator-inhibitor systems, such as the well-known Gierer–Meinhardt (GM)
model of biological morphogenesis, spot and stripe patterns are ubiquitous (cf. [6], [13], [21],
[22], [46], [11, Chapter 5]). For the Gray–Scott (GS) model of theoretical chemistry, an even
greater diversity of spatio-temporal patterns occurs including temporally oscillating spots,
spot-replication behavior, spatio-temporal chaos of spot patterns, and labyrinthine patterns
of stripes (cf. [32], [26], [27], [44]). In other settings, localized stripe and spot patterns occur
for certain hybrid chemotaxis reaction-diffusion models of bacterial pattern formation (cf. [36],
[45], [24, Chapter 5]) and of fish skin patterns on growing domains (cf. [18], [30], [31]). Lo-
calized patterns also arise in the reaction-diffusion modeling of vegetation patterns in arid
environments (cf. [9], [12], [19]).

Most of the previous analyzes of the stability of stripe patterns have been based on a
weakly nonlinear theory, where the solution is assumed to be close to some spatially uniform
state across the cross section of the stripe. However, for singularly perturbed two-component
reaction-diffusion systems, this assumption of near-uniform spatial dependence in the stripe
cross section is generally not valid. For such systems in a two-dimensional domain, there are
two main types of spatially heterogeneous stripes: homoclinic stripes and mesa-stripes.

A homoclinic stripe results when either one or both of the two solution components be-
comes localized, or concentrates, on a planar curve in the domain. There are two distinct
parameter regimes for homoclinic stripes. The semistrong interaction regime occurs when
the ratio of the two diffusivities is asymptotically large, so that only one of the two solution
components (the fast component) is localized to form a stripe. In this case, the cross section
of the stripe is closely approximated by a homoclinic orbit of a certain scalar ODE problem
for the fast subsystem. Although the fast solution component has a negligible interaction
with the boundaries of the domain, the slow (global) solution component has a significant
interaction with the domain boundary and, possibly, with adjacent stripes. In contrast, in
the weak interaction regime, where both diffusivities are asymptotically small and of the same
order, both solution components are localized to form a stripe. In this case, the cross section
of the stripe is closely approximated by a homoclinic orbit of a coupled ODE system for the
two fast components. The term “weak” interaction here refers to the negligible interaction of
these two fast components with the boundaries of the domain and with any adjacent stripes.
Homoclinic stripes in both the weak and semi strong regimes arise in the basic GM model
(cf. [4]) and in certain parameter ranges of the GS model (cf. [15], [16], [23]).

A different type of stripe can occur for bistable singularly perturbed reaction-diffusion
systems such as the Fitzhugh–Nagumo model. For such systems, the stripe cross section typ-
ically consists of two transition layers, each closely approximated by a heteroclinic solution of
the equilibrium problem, which are joined together by an asymptotically flat plateau region.
We refer to such a stripe solution as a mesa-stripe.1 The stability of such stripe solutions was
analyzed rigorously in [34] and [35] for certain classes of bistable reaction-diffusion systems.
The analyses of [34] and [35] were based on the SLEP (singular limit eigenvalue problem)
method developed in [28] and [29] to analyze the stability of mesa-pulses in one spatial dimen-
sion. For a generalized Fitzhugh–Nagumo model, the stability and dynamics of mesa-stripes

1Mesa means table in Spanish. This term was suggested by P. Fife as referenced in [17].
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were analyzed in [7] by a contour dynamics approach. The existence and stability of mesa-
stripes for a Brusselator model was studied in [17]. Mesa-stripe solutions can also occur for a
modification of the GM model where activator saturation effects are included.

There are two main types of linearized instabilities associated with a homoclinic stripe;
varicose (breakup) instabilities and transverse (zigzag) instabilities. For a varicose instability
of a homoclinic stripe, the eigenfunction for the perturbation of any fast component is an even
function across the stripe cross section and has a normal-mode modulation tangential to the
stripe. This has the effect of inducing a ripple on the amplitude of any fast component along
the length of the stripe. Since an instability of this type typically leads to the disintegration of
the stripe into a sequence of spots, we refer to it here as a breakup instability. Alternatively,
for a zigzag instability of a homoclinic stripe, the eigenfunction for the perturbation of any
fast component is an odd function across the stripe cross section and has a normal-mode
modulation in the direction tangent to the stripe. This has the effect of inducing a ripple on
the location of the centerline of the stripe.

For the GM and GS models in the semistrong regime, a homoclinic stripe is typically
unstable to a spot-generating breakup instability (cf. [4], [15], [16], [23]). For the GS model
in the weak interaction regime, a homoclinic stripe can be destabilized solely by a transverse
zigzag instability, which seems to be the precursor to a complicated space-filling curve (cf. [16]).
Zigzag and breakup instabilities have also been studied in [8] for a reaction-diffusion system
on an unbounded domain with piecewise linear kinetics. Breakup instabilities of localized
rings of bacteria, leading to spot formation, have been observed in numerical simulations of
certain hybrid chemotaxis reaction-diffusion systems (cf. [36], [45], [24, Chapter 5]).

Based on numerical experiments and a Turing-type linearized stability analysis, the in-
clusion of saturation effects into the basic GM model is, qualitatively, a well-known way to
obtain stable stripe patterns (cf. [13], [21], [22]). Breakup instabilities do not, in general,
occur for a mesa-stripe solution, and the instability of this solution typically occurs by two
types of transverse instabilities that develop over long time-scales; zigzag instabilities where
the edges of the mesa-stripe are in phase, and breather instabilities where these edges are 90◦

out of phase.
The primary goal of this paper is to give detailed analytical and numerical results for

breakup and transverse instability bands of homoclinic and mesa-stripes for the basic GM
model, and for the modified GM model where saturation effects are included. Our analysis
addresses several key qualitative features observed in numerical simulations of stripe behavior.
It determines explicit parameter ranges in these GM models where a homoclinic stripe exists
and is stable with respect to spot-generating breakup instabilities. It suggests a common qual-
itative mechanism responsible for the disappearance of a breakup instability band. It identifies
parameter ranges where a transverse instability is the dominant instability mechanism and
where labyrinthine patterns are likely to occur.

The basic GM model, where saturation effects are neglected, can be written in the dimen-
sionless form (cf. [10])

at = ε2
0Δa− a +

ap

hq
, τht = DΔh− h +

ar

ε0hs
, X = (X1, X2) ∈ Ω , t > 0 ,

∂na = ∂nh = 0 , x ∈ ∂Ω ,(1.1)
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where the exponent set (p, q, r, s) is assumed to satisfy

p > 1 , q > 0 , r > 1 , s ≥ 0 , with ζ ≡ qr

(p− 1)
− (s + 1) > 0.(1.2)

The classical GM model corresponds to the exponent set (2, 1, 2, 0). We consider (1.1) in the
rectangular domain

Ω : −1 < X1 < 1 , 0 < X2 < d0 .(1.3)

By rescaling a and h and introducing X = x/l, where l = 1/
√
D, (1.1) can be recast into the

equivalent form

at = ε2Δa− a +
ap

hq
, τht = Δh− h +

ar

εhs
, x = (x1, x2) ∈ Ωl , t > 0 ,

∂na = ∂nh = 0 , x ∈ ∂Ωl ,(1.4)

where

Ωl : −l < x1 < l , 0 < x2 < d , d ≡ d0l , ε ≡ ε0l , l ≡ 1/
√
D .(1.5)

In (1.1), the semistrong regime is characterized by ε0 � 1 and D = O(1), while the weak
interaction regime corresponds to ε0 � 1 and D = O(ε2

0) � 1. In terms of (1.4), the weak
interaction regime corresponds to the limit l → ∞ with ε = ε0l = O(1). For the basic GM
model (1.4), we will study the stability of a homoclinic stripe of zero curvature that is obtained
when a concentrates along the midline x1 = 0 of Ωl.

Alternatively, the classical GM model (1.1), which is modified to include the effect of
saturation of the activator production, can be written in the dimensionless form (cf. [13], [21],
[22])

at = ε2
0Δa− a + g(a, h) , g(a, h) ≡ a2

h (1 + κa2)
, τht = DΔh− h + a2 .(1.6)

Here κ > 0 is the saturation parameter. For the weak saturation case κ = O(ε2
0), (1.6) has

a homoclinic stripe solution as for the basic GM model (1.1). However, for κ = O(1), the
numerical simulations of (1.6) in [13], [21], [22], and [46] have suggested the existence of a
mesa-stripe solution for (1.6) that is stable to the formation of spots.

The stability of a homoclinic stripe for the basic GM model (1.4) was studied in [4]. In
the semistrong interaction regime, the existence of a homoclinic stripe solution for (1.4) on
the infinite strip domain R

1 × (0, d) was analyzed in [4] using geometric singular perturbation
techniques. In addition, by reducing the study of a certain nonlocal eigenvalue problem
(NLEP) to computations involving hypergeometric functions, the stability of this stripe with
respect to breakup instabilities was analyzed in [4]. In [4], explicit results for the breakup
instability bands were obtained for certain exponent sets (p, q, r, s), and it was shown that
a homoclinic stripe for (1.4) is stable to breakup instabilities only for asymptotically thin
domains of order d = O(ε0).
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For the semistrong regime of (1.4), we extend this previous work of [4] on breakup in-
stabilities to the finite rectangular domain [−l, l] × [0, d], and to more general exponent sets
(p, q, r, s). Our analysis, which is related to the rigorous analysis of the NLEP in [38] and [39],
gives explicit upper and lower bounds for the breakup instability bands for various ranges of
the exponents (p, q, r, s) in (1.4). For various exponent sets and domain lengths l = 1/

√
D, the

most unstable mode from the NLEP is calculated numerically. Our main result, that breakup
instabilities always occur unless the domain is O(ε0) thin, is given in Proposition 2.3 below.
It is an extension of Theorem 4.5 of [4]. Full numerical computations of (1.4) are performed
to validate the asymptotic theory.

In the semistrong regime of (1.4), we also analyze the transverse zigzag instabilities of a
homoclinic stripe by calculating an explicit formula for the small eigenvalue of order λ = O(ε2

0)
in the spectrum of the linearization. In Principal Result 2.4, we show that there are no unstable
zigzag modes in the semistrong regime for exponent sets that satisfy γ ≡ q/(p− 1) ≤ 1. This
range includes the classical GM model, where (p, q, r, s) = (2, 1, 2, 0). For γ > 1, we show that
an unstable band of zigzag modes with wave number m = O(1) as ε0 → 0 exists only when
l = 1/

√
D exceeds some critical threshold lz, which depends on γ. This threshold is calculated

numerically. However, since the time-scale for the development of zigzag instabilities in the
semistrong regime is O(ε−2

0 ), they are dominated in this regime by spot-generating breakup
instabilities that occur on the more rapid O(1) time-scale.

In the weak interaction regime of (1.1), where D = ε2
0D0 with D0 = O(1), it was proved in

[4] that there is a minimum value of D0, labeled by D0c, for which a homoclinic stripe solution
exists. As shown in [14] (see also [4] and Remark 6.2 of [25]), this critical value D0c is a saddle-
node value of a bifurcation diagram of the norm |a|2 versus D0. In the one-dimensional case
and for values of D0 slightly below D0c, a self-replication behavior is observed, whereby a
localized initial pulse undergoes a repeated edge-splitting process due to ghost effects of the
saddle-node bifurcation point (cf. [4], [14], [25], [26]). A similar stripe self-replication behavior
was observed in [4] in the two-dimensional case. For the classical GM model with exponent
set (2, 1, 2, 0), and for D0 slightly above D0c, the full numerical computations in [4] suggested
that a stripe can be stable with respect to breakup instabilities for any domain width.

We extend this previous work by giving a detailed numerical study of the spectrum of
the homoclinic pulse in the weak interaction regime of (1.1). In terms of this eigenvalue
problem, we numerically calculate the breakup and zigzag instability bands associated with a
homoclinic stripe as a function of D0 for various exponent sets (p, q, r, s). For certain exponent
sets, which include the classical GM set (2, 1, 2, 0), we show numerically that there exists a
value D0b of D0, with D0b > D0c, for which the instability thresholds of the breakup instability
band coalesce. Therefore, there is no spot-generating breakup instability band on the range
D0c < D0 < D0b. For the classical GM set this range is 7.17 < D0 < 8.06. However, for each
of these exponent sets where the breakup band disappears, we show numerically that there is
a nontrivial zigzag instability band on this range of D0. Therefore, for these exponent sets, a
homoclinic stripe is destabilized solely by a zigzag instability when D0 is sufficiently close to
D0c. This zigzag instability is found to be the precursor to a space-filling curve. Full numerical
simulations of (1.1) are done to confirm the spectral results. Secondary instabilities, such as
self-replicating spots, which arise after a spot-generating breakup instability of the stripe, are
also illustrated.
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For the modified classical GM model (1.6) with saturation parameter κ = O(1) and for
ε → 0, we construct a mesa-stripe equilibrium solution for (1.6) in the near-shadow limit
D 
 1, where D = D/ε0 with D = O(1). The stability of the mesa-stripe is then studied
analytically. In contrast to the spectrum for homoclinic stripe solutions of the basic GM
model (1.1), the spectrum of the linearization of an equilibrium mesa-stripe solution for (1.6)
contains only the small eigenvalues of order O(ε2

0) that correspond to transverse instabilities.
For D above some threshold, we show that the mesa-stripe is stable for all domain widths
and for all transverse wave numbers m. However, as D is decreased below some critical value,
it is shown analytically that an unstable zigzag instability band emerges at some critical
wave number m = O(1). Upon further decreasing D below some additional threshold, an
additional breather instability is triggered. The critical values of D and the transverse wave
number m at the onset of the zigzag and breather instability are determined explicitly as a
function of κ. The asymptotic theory is confirmed with full numerical simulations of (1.6).
Our case-study analysis of mesa-stripe stability for (1.6) with κ > 0 and κ = O(1) extends
the previous studies of [34] and [35] for generalized Fitzhugh–Nagumo models by providing
explicit instability thresholds for zigzag and breather instabilities.

Finally, we consider the modified classical GM model (1.6) with an asymptotically small
saturation κ = O(ε2

0) in the semistrong regime. The study of stripe stability for this problem
provides a bridge between the analysis of breakup instabilities of a homoclinic stripe for (1.4)
and the analysis of transverse instabilities of a mesa-stripe for (1.6) with κ = O(1). We show
that for any k > 0, where κ = ε2

0k, (1.6) admits a homoclinic stripe solution for any D > 0
with D = O(1). An NLEP governing breakup instabilities of this homoclinic stripe is then
derived analytically. From a numerical computation of the spectrum of this NLEP it is shown
that the boundaries of the breakup instability band coalesce at some k = kd, so that this
instability band disappears for all k > kd. The reason for the disappearance of this breakup
instability band for k sufficiently large is related to the ghost effect of a nearby heteroclinic
solution, which has the effect of “fattening” the cross section of the homoclinic stripe. This
suggests that such “fat” homoclinic stripes can share some of the same qualitative stability
properties as mesa-stripe solutions. We remark that a qualitatively similar “fattening” of the
homoclinic stripe is also likely responsible for the disappearance of breakup instability bands
for certain exponent sets of the basic GM model (1.1) in the weak interaction regime sufficiently
close to the existence threshold D0c of the homoclinic stripe. The “fattening” of this other
homoclinic stripe is related to the existence of nearby multibump homoclinic solutions that
must necessarily exist close to the existence threshold D0c governing self-replication (cf. [14]).

The outline of this paper is as follows. In sections 2.1 and 2.2 we analyze breakup and
zigzag instabilities, respectively, for homoclinic stripe solutions of (1.4) in the semistrong
interaction regime. In section 2.3 we show that “fat” homoclinic solutions to (1.6) with κ =
O(ε2

0) can be stable to breakup instabilities. In section 3 we numerically study breakup and
zigzag instabilities for (1.4) in the weak interaction regime, where both solution components
are localized. Finally, in sections 4 and 5 we analyze the existence and linearized stability,
respectively, of a mesa-stripe equilibrium solution to the GM model (1.6) when κ > 0 and
κ = O(1).

2. The GM model without saturation: Semistrong regime. In the limit ε → 0 we now
construct an equilibrium stripe solution to (1.4), where the stripe is centered on the midline
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x1 = 0 of the rectangular domain Ω := [−l, l] × [0, d], where d = ld0. Since the cross section
of the stripe is a one-dimensional pulse, this solution, with a minor change in notation, was
constructed asymptotically in [10] using the method of matched asymptotic expansions. The
result is as follows.

Principal Result 2.1 (from [10]). For ε → 0, an equilibrium stripe solution to (1.4), labeled
by ae(x1) and he(x1), is given asymptotically by

ae(x1) ∼ Hγw
(
ε−1x1

)
, he(x1) ∼ HGl(x1)

Gl(0)
.(2.1)

Here w(y) is the unique positive solution to

w
′′ − w + wp = 0 , −∞ < y < ∞ , w → 0 as |y| → ∞ ,

w
′
(0) = 0 , w(0) > 0 .(2.2)

The constants H, γ, and Gl(0) in (2.1), for which he(0) = H, are defined by

Hζ ≡ 1

brGl(0)
, br ≡

∫ ∞

−∞
[w(y)]r dy , γ ≡ q

p− 1
, Gl(0) =

1

2
coth l ,(2.3)

where ζ is defined in (1.2). The Green function Gl(x1) in (2.1) satisfies

Glx1x1 −Gl = −δ(x1) , −l < x1 < l , Glx1(±l) = 0 , Gl(x1) =
cosh (l − |x1|)

2 sinh (l)
.

(2.4)

To determine the stability of the stripe solution, we introduce the perturbation

a = ae + eλt+imx2φ , h = he + eλt+imx2η , m =
kπ

d
,(2.5)

where φ = φ(x1) � 1 and η = η(x1) � 1. The relationship above between m and k results
from the Neumann conditions on x2 = 0, d of ∂Ω. In the analysis below we treat m as a
continuous variable. The band of instability with respect to m that is determined below can
be mapped to a k-band of instability using (2.5). Substituting (2.5) into (1.4), we obtain the
eigenvalue problem

ε2φx1x1 − φ +
pap−1

e

hqe
φ− qape

hq+1
e

η =
(
λ + ε2m2

)
φ , −l < x < l , φx(±l) = 0,(2.6a)

ηx1x1 −
(
1 + τλ + m2

)
η = −rar−1

e

εhse
φ +

sare
εhs+1

e
η , −l < x < l , ηx(±l) = 0.

(2.6b)

There are two classes of eigenvalues and eigenfunctions of (2.6); the large eigenvalues,
where λ = O(1) as ε → 0, and the small eigenvalues with λ = O(ε2) as ε → 0. For the large
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eigenvalues, which determine the stability of the stripe on an O(1) time-scale, the correspond-
ing eigenfunction has the form

φ(x1) ∼ Φ
(
ε−1x1

)
,(2.7)

where
∫∞
−∞ Φ(y)wr−1(y) dy �= 0. This stability problem, treated in section 2.1, involves the

analysis of an NLEP. Since unstable eigenfunctions of this type lead to a disintegration of
the stripe into spots, we refer to this instability as a breakup instability. Alternatively, the
eigenfunction for the small eigenvalues has the form

φ(x1) ∼ w
′ (
ε−1x1

)
+ εφ1

(
ε−1x1

)
+ · · · .(2.8)

Since the leading term in (2.8) corresponds to a translation of the spike profile w, unstable
modes for this class of eigenvalues lead to zigzag instabilities. This problem is studied below
in section 2.2.

2.1. Breakup instabilities: Semistrong regime. We now analyze the spectrum of (2.6)
corresponding to breakup instabilities, where φ(x1) ∼ Φ(y) with y = x1/ε and

∫∞
−∞ Φwr−1 dy �=

0. Since the asymptotic derivation of the NLEP for Φ(y) is similar to that given in section 2
of [38], we give only an outline of this analysis in Appendix A. The result is as follows.

Principal Result 2.2. Let ε → 0, and suppose that
∫∞
−∞ Φwr−1 dy �= 0. Then Φ(y) satisfies

the NLEP

L0Φ − χmwp

∫∞
−∞wr−1Φ dy∫∞

−∞wr dy
= (λ + ε2m2)Φ −∞ < y < ∞ ; Φ → 0 as |y| → ∞ ,

(2.9a)

L0Φ ≡ Φ
′′ − Φ + pwp−1Φ , Cm(λ) ≡ 1

χm(λ)
≡ s

qr
+

θλ tanh(θλl)

qr tanh l
, θλ ≡

√
1 + m2 + τλ .

(2.9b)

The unique positive eigenvalue ν0 with eigenfunction Φl0 of the local operator L0 is (cf. [20],
[3, Proposition 5.6])

ν0 =
1

4
(p− 1)(p + 3) , Φl0 = [w(y)](p+1)/2 .(2.10)

Equivalently, the eigenvalues of (2.9), with
∫∞
−∞wr−1Φ dy �= 0, are the roots of g(λ) = 0

defined by

g(λ) ≡ Cm(λ) − f(λ + ε2m2) , f(μ) ≡
∫∞
−∞wr−1ψ dy∫∞

−∞wr dy
, ψ ≡ (L0 − μ)−1 wp .(2.11)

To analyze the spectrum of the NLEP (2.9) for the stripe, we modify the rigorous ap-
proach developed in [38] for a related NLEP governing the stability of a pulse solution on
a finite interval. This analysis, as outlined in Appendix A, leads to the following rigorous
characterization of the instability band for (2.9).
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Proposition 2.3. Let (p, q, r, s) satisfy (1.2), let l = 1/
√
D > 0 be fixed, and assume that

ε � 1. Let mb− be the root of the transcendental equation

G(m) ≡
√

1 + m2

⎛
⎝tanh

[√
1 + m2l

]
tanh l

⎞
⎠ = ζ + 1 , ζ ≡ qr

p− 1
− (s + 1) > 0 .(2.12)

For the near-shadow limit l → 0 we get mb− ∼
√
ζ, and for l → ∞ we obtain mb− ∼

√
ζ2 + 2ζ.

In addition, let mb+ be given by

mb+ =

√
ν0

ε
+ O(1) , ν0 =

1

4
(p− 1)(p + 3) .(2.13)

Then, when either r = p = 2 or r = p + 1 with 1 < p ≤ 5, there is exactly one real positive
eigenvalue of (2.9) in 0 < λ < ν0 − ε2m2 for any τ ≥ 0 when m is inside the instability band
mb− < m < mb+. For r = 2, this is the only eigenvalue in Re(λ) > 0. For m > mb+, then
Re(λ) < 0 for any τ ≥ 0. For m = mb−, and if either r = p = 2, or r = p + 1 and 1 < p ≤ 5,
then there is a unique real positive eigenvalue λ > 0 when τ > τm−, and Re(λ) ≤ 0 when
0 ≤ τ ≤ τm−. Here τm− is defined by

τm− =
2qr

p− 1

(
1

p− 1
− 1

2r

)
tanh l

[
tanh(θ−l)

θ−
+ lsech2(θ−l)

]−1

, θ− ≡
√

1 + m2
b− .

(2.14)

Finally, suppose that 0 ≤ m < mb−. Then, for either r = p = 2 or r = p + 1 and 1 < p ≤ 5,
there are exactly two real unstable eigenvalues of (2.9) when τ is sufficiently large. In addition,
as τ is increased from zero there is a Hopf bifurcation at some point τH = τH(m) (possibly
nonunique).

Proof. The proof of this result is given in Appendix A.
To calculate an improved approximation for the upper bound mb+ of the instability band

we write m = m0/ε, for m0 = O(1), and we expand

Φ = Φl0 + εΦ1 + · · · , m2
0 = ν0 + εm1 + · · · .(2.15)

Substituting (2.15) into (2.9a) and using χ ∼
( qr
m

)
tanh l for m 
 1, we obtain that Φ1 satisfies

L0Φ1 − ν0Φ1 =
qr
√
ν0

wp tanh l

(∫∞
−∞wr−1Φl0 dy∫∞

−∞wr dy

)
+ m1Φl0 .(2.16)

Since L0 is self-adjoint, m1 is determined from the solvability condition that the right-hand
side of (2.16) be orthogonal to Φl0. Then, using m0 ∼ √

ν0+ εm1
(2
√
ν0) , the upper stability bound

mb+ is given in terms of Φl0 by

mb+ ∼
√
ν0

ε
−
(
qr tanh l

2ν0

)
β , β ≡

(∫∞
−∞wr−1Φl0 dy

)(∫∞
−∞wpΦl0 dy

)
(∫∞

−∞wr dy
)(∫∞

−∞ Φ2
l0 dy

) .(2.17)
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Table 1
The lower bound mb− and the upper bound mb+ for the breakup instability band for different exponent sets

and parameters. Here mb±(n) are the full numerical results from the NLEP (2.9), mb−(a) is the asymptotic
result from (2.12), and mb+(a1) and mb+(a2) are the one- and two-term asymptotic results from (2.17).

(p, q, r, s) ε l mb−(n) mb−(a) mb+(n) mb+(a1) mb+(a2)

(2,1,2,0) 0.100 1.0 1.3241 1.3022 10.351 11.180 10.437
(2,1,2,0) 0.050 1.0 1.3073 1.3022 21.580 22.361 21.618
(2,1,2,0) 0.025 1.0 1.3033 1.3022 43.964 44.721 43.978
(2,1,2,0) 0.010 1.0 1.3022 1.3022 111.07 111.80 111.06

(2,1,2,0) 0.025 1/
√

10 1.0336 1.0332 44.425 44.721 44.423

(2,1,2,0) 0.025
√

10 1.7267 1.7238 43.721 44.721 43.749
(2,1,3,0) 0.025 1.0 2.1087 2.1029 43.517 44.721 43.560
(2,2,3,3) 0.025 1.0 2.1146 2.1029 42.337 44.721 42.399
(3,2,2,0) 0.025 1.0 1.3024 1.3022 68.589 69.282 68.578
(3,2,3,1) 0.025 1.0 1.3040 1.3022 68.146 69.282 68.139
(4,2,2,0) 0.025 1.0 0.6852 0.6858 91.265 91.652 91.208

For the classical GM model with exponent set (p, q, r, s) = (2, 1, 2, 0), we use Φl0 = sech3(y/2)
from (2.10) to calculate β in (2.17) as β = 3I5I7/[2I4I6], where In ≡

∫∞
0 sechny dy. By

using the recursion relation In = (n− 2)In−2/(n− 1), together with I2 = 1 and I1 = π/2,

we readily calculate that β = π2

64 (45/16)2. Therefore, for the classical GM model where
(p, q, r, s) = (2, 1, 2, 0) and ν0 = 5/4, we have for ε → 0 that

mb+ ∼
√

5

2ε
− π2 tanh l

80

(
45

16

)2

+ · · · .(2.18)

For various exponent sets (p, q, r, s) and values of l and ε, in Table 1 we compare the
asymptotic results for the stability thresholds from (2.12) and (2.17) with corresponding results
computed numerically from the NLEP (2.9) using finite-difference methods and a discrete
eigenvalue solver from LAPACK (cf. [1]). The asymptotic values are found to be very close
to the corresponding full numerical results even when ε = 0.1. For l = 1, in Figure 1(a)
we compare the full numerical result for the upper threshold mb+ with the corresponding
asymptotic result (2.17) for a range of values of ε. For ε = 0.025, in Figure 1(b) we compare
the full numerical result for the lower threshold mb− with the corresponding asymptotic result
computed from (2.12) for a range of l values.

For l = 1, τ = 0, and for the classical GM exponent set (p, q, r, s) = (2, 1, 2, 0), in
Figure 2(a) we plot the unique unstable eigenvalue λ in the instability band mb− < m < mb+

computed numerically from the NLEP (2.9) for three values of ε. From Proposition 2.3, this
eigenvalue is necessarily real. In Figure 2(b) we show a similar plot of the unique unstable
eigenvalue λ for ε = 0.025 for several values of l. Finally, in Figure 3, we plot the numerically
computed unique real positive eigenvalue for τ = 0 within the instability band mb− < m <
mb+ for various exponent sets (p, q, r, s). Notice that some of these sets do not satisfy the
conditions on the exponents in Proposition 2.3. Therefore, we expect that the conclusions in
Proposition 2.3 will hold for a wider range of exponent sets than are listed there.

We now make a few remarks. In [4] breakup instabilities of a stripe for the GM model
(1.1) were analyzed using geometric singular perturbation theory for the infinite strip domain
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Figure 1. Instability thresholds for (p, q, r, s) = (2, 1, 2, 0). (a) plot of the upper threshold mb+ versus ε for
l = 1. The heavy solid curve is the full numerical result, and the dashed curve is the asymptotic result (2.17).
They are essentially indistinguishable in this plot. (b) plot of the lower threshold mb− versus l for ε = 0.025.
The heavy solid curve is the full numerical result, and the dashed curve is the asymptotic result from (2.12).
They are again indistinguishable.
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(a) λ versus m for l = 1
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(b) λ versus m for ε = 0.025

Figure 2. Unstable eigenvalue λ in the instability band when (p, q, r, s) = (2, 1, 2, 0) and τ = 0. (a) plot of
λ versus m when l = 1 for ε = 0.05 (heavy solid curve), ε = 0.025 (solid curve), and ε = 0.01 (dashed curve).
(b) λ versus m when ε = 0.025 for l =

√
10 (heavy solid curve), l = 1 (solid curve), and l = 1/

√
10 (dashed

curve).

R
1 × [0, d0]. This problem is equivalent to studying (1.4) in the limit l = 1/

√
D → ∞, but

with ε � 1. For the classical GM model with exponent set (p, q, r, s) = (2, 1, 2, 0), a detailed
stability result for a stripe in such a domain is given in Theorem 4.5 of [4]. Proposition
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Figure 3. The unique unstable eigenvalue in the instability band for different exponent sets (p, q, r, s) when
ε = 0.025, l = 1, and τ = 0. From top to bottom the curves are for (4, 2, 2, 0), (3, 2, 2, 0), (3, 2, 3, 1), (3, 1, 2, 0),
(2, 1, 3, 0), and (2, 2, 3, 3).

2.3, given above, generalizes this previous result to allow for a finite rectangular domain and
for other exponent sets (p, q, r, s). For l → ∞ and for (p, q, r, s) = (2, 1, 2, 0), the resulting
instability band

√
3 < m <

√
5/(2ε) is equivalent to that given in Theorem 4.5 of [4]. For

other exponent sets (p, q, r, s) some partial stability results for the infinite strip domain were
given in [4]. Specifically, the lower threshold mb− =

√
ζ2 + 2ζ of the breakup band for the

limit l 
 1, where ζ is defined in (1.2), is equivalent to that given in (4.17) of Corollary
4.4 of [4]. In addition, the limiting result obtained from (2.14) for τm− in the limit l → ∞
is readily seen to be equivalent to that given in the unlabeled formula above Remark 4.7 of
[4]. For the exponent set (2, 1, 2, 0), we calculate that τm− → 6 as l → ∞. An important
remark is that a stripe is stable with respect to breakup instabilities only when the inequality
m = kπ/d <

√
ν0/ε holds for all positive integers k. By using ε = ε0l and d = ld0, this

shows that a stripe for (1.1) is stable only when the domain width d0 for (1.1) is O(ε0) thin
and satisfies d0 < d0b ≡ πε0/

√
ν0. The same critical domain width was found in Corollary

5.1 of [4] for a stripe solution in the infinite strip R
1 × [0, d]. Therefore, the effect of lateral

boundaries does not influence the critical domain width. However, both the lower threshold
mb− for the breakup instability band and the unstable eigenvalue within the band do depend
on l = 1/

√
D.

We now test the theoretical predictions for breakup instabilities with full numerical sim-
ulations of (1.1) in the square domain [−1, 1] × [0, 2]. The numerical computations are done
using a finite-element method with sufficient resolution to accurately compute thin stripes or
localized spots.

Experiment 1. We take (p, q, r, s) = (2, 1, 2, 0), ε0 = 0.025, D = 1, and τ = 0.1. For τ = 0.1
there are no Hopf bifurcations for modes with m < mb−. From the solid curve in Figure 2(a)
with l = 1/

√
D = 1 the most unstable mode is m ≈ 12, where λ ≈ 1.0. In addition, λ ≥ 0.9

for 5.5 < m < 21.0. The predicted number N of spots, which corresponds to the number of
maxima of the eigenfunction cos(my) on 0 < y < d0 = 2, is N = md0/(2π) = m/π. The
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initial condition for (1.1) is taken to be a perturbation of (2.1) of the form

a =
3H
2

sech2

(
x1

2ε0

)
(1 + δv) , v =

20∑
k=1

cos

(
kπx2

2

)
, h =

H cosh[l(1 − |x1|)]
cosh l

,(2.19)

where H = 1
3l tanh 1, l = 1, and δ = 0.001. The initial perturbation v covers the entire

unstable band in Figure 2(a). In the numerical results shown in the first row of Figure 4 the
initial stripe is seen to break up into seven spots on an O(1) time-scale. This corresponds to
m ≈ 21.5, which is near the most unstable mode.

Experiment 2. We choose the same parameter values except that D is now decreased to
D = 0.1, so that l =

√
10. From the heavy solid curve in Figure 2(b), where l =

√
10, the

most unstable mode is m ≈ 12.3 with λ = 0.96, and λ ≥ 0.9 for 8.1 < m < 18.7. The
predicted number N of spots is N = m/π ≈ 4. With the initial condition as given in (2.19)
with l =

√
10, the resulting numerical solution of (1.1) is shown in the second row of Figure 4.

The initial stripe is seen to break up into five spots (a boundary spot is counted as half of a
spot).

Experiment 3. Next, we take (p, q, r, s) = (3, 2, 2, 0), ε0 = 0.025, D = 1, and τ = 0.1. The
initial condition is

a =
√

2Hsech

(
x1

ε0

)
(1 + δv) , v =

20∑
k=1

cos

(
kπx2

2

)
, h =

H cosh(1 − |x1|)
cosh 1

,(2.20)

with H = 1
2 tanh 1 and δ = 0.001. The most unstable mode from Figure 3 is m ≈ 14.9 with

λ ≈ 2.6. Near this maximum, λ ≥ 2.3 when 6.74 < m < 29.85. We predict N = m/π spots.
In the bottom row of Figure 4 we show that the stripe breaks into nine spots at t = 1.0, which
corresponds to m ≈ 28. Since the unstable eigenvalue for the exponent set (3, 2, 2, 0) is larger
than for (2, 1, 2, 0) (see Figure 4), the time-scale for breakup is quicker than in Experiments
1 and 2.

Although the stability theory is able to predict the initial number of spots that are gener-
ated from the break-up of a stripe, it does not account for secondary instabilities relating to a
spot competition process that leads to the ultimate annihilation of some of these spots. This
secondary instability, which we do not study here, is seen in Figure 4(f) for the exponent set
(3, 2, 2, 0) with D = 1. A spot competition process (not shown) also occurs in Experiment 1
on the range t > 5, where only two spots ultimately remain. However, for the smaller value
D = 0.1, the five spots that are initially generated from the stripe in Experiment 2 are found
to persist for t 
 1. In [10] and [38] a related competition instability was studied analytically
for a k-spike solution to the one-dimensional GM model. This analysis showed that for τ � 1
there is a threshold value Dk of D for which k-spikes will be stable only when D < Dk. Similar
thresholds occur for spots, as was shown rigorously in [42].

2.2. Zigzag instabilities: Semistrong regime. Next, we analyze zigzag instabilities of a
stripe that are associated with unstable eigenfunctions of the form (2.8). Since this analysis
is similar to that for a spike given in section 4 of [10], we only outline the key steps of the
derivation in Appendix B. In this way, we obtain the following result for the critical eigenvalue
λ = O(ε2).
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(a) Experiment 1: t = 0 (b) Experiment 1: t = 9

(c) Experiment 2: t = 12 (d) Experiment 2: t = 20

(e) Experiment 3: t = 1.0 (f) Experiment 3: t = 2.4

Figure 4. Breakup instability of a stripe for (1.1) with ε0 = 0.025, τ = 0.1, and Ω = [−1, 1] × [0, 2]. Top
row: Experiment 1. (p, q, r, s) = (2, 1, 2, 0) and D = 1.0. The stripe initially breaks into seven spots, which cor-
responds to a growth rate that is near that of the most unstable mode. However, there is a secondary instability,
and eventually only two spots remain (not shown). Middle row: Experiment 2. (p, q, r, s) = (2, 1, 2, 0) and
D = 0.1. The stripe breaks up into a five-spot pattern, which corresponds closely to the most unstable mode.
There is no secondary instability. Bottom row: Experiment 3. (p, q, r, s) = (3, 2, 2, 0) and D = 1.0. The stripe
initially breaks up into a nine-spot pattern. There is a secondary instability, and only two spots remain. The
time-scale for spot formation is faster than in Experiment 1.
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Principal Result 2.4. For ε → 0 and τ � O(ε−2), the small eigenvalue governing transla-
tional instabilities satisfies

λ ∼ ε2
[
2γθλ tanh l tanh(θλl) − 2γ −m2

]
, θλ ≡

√
1 + m2 + τλ , γ ≡ q

p− 1
.(2.21)

Suppose that τ � O(ε−2). Then, there are no unstable zigzag modes when γ ≤ 1, which
includes the classical GM exponents (p, q, r, s) = (2, 1, 2, 0). Alternatively, when γ > 1 there is
a band mz− < m < mz+ of unstable zigzag modes only when the domain half-length l exceeds
some critical value lz or, equivalently, when D < Dz = l−2

z . For l → ∞, mz+ ∼ 2
√

γ(γ − 1)

and mz− ∼
√

8γ
γ−1e

−l � 1.

We now derive this result. In Appendix B, (2.21) for λ is obtained by modifying the
analysis in section 4 of [10]. To derive the stability result in Principal Result 2.4, we assume
τ � O(ε−2), so that θλ ∼

√
1 + m2. Then, the stability threshold λ = 0 in (2.21) corresponds

to intersection of the two functions h(θ) and g(θ) for θ ≥ 1, defined by

g(θ) = h(θ), g(θ) = tanh(θl) tanh l, h(θ) =
θ2 + (2γ − 1)

2γθ
, θ ≡

√
1 + m2 .(2.22)

Notice that λ > 0 whenever g(θ) > h(θ). Since h(1) = 1 and g(1) < 1, the stripe is
translationally stable for m ≥ 0 sufficiently small. Next, we calculate that h(θ) has a unique
minimum at θ = θz ≡

√
2γ − 1 when γ > 1/2, where h(θz) = γ−1

√
2γ − 1. First, suppose

that 0 < γ ≤ 1. Then, since θz ≤ 1 when 1
2 < γ ≤ 1, and θz is undefined when 0 < γ < 1

2 ,

we conclude that h
′
(θ) > 0 for all θ ≥ 1. Since h(1) = 1 and g(θ) < 1, it follows that there

are no roots to (2.22) in θ > 1 when 0 < γ ≤ 1. Therefore, there are no zigzag instabilities
when 0 < γ ≤ 1. Alternatively, for γ > 1, we obtain that θz > 1 and h(θz) < 1. Since
for each θ > 1, g(θ) is an increasing function of l, we conclude that there exists a band of
unstable zigzag modes only when l > lz, where lz is the critical value where g(θ) and h(θ)
intersect tangentially. Since l = 1/

√
D, this implies that there is an unstable band of zigzag

modes only when D < Dz = l−2
z . We illustrate this result graphically in Figure 5(a), where

we plot h(θ) for γ = 2 together with g(θ) for different values of l. For γ = 2, in Figure 5(b)
we plot the upper and lower zigzag thresholds mz+ and mz−, respectively, versus l for l > lz.
The dashed lines in this figure are the asymptotic approximations mz+ ∼ 2

√
γ(γ − 1) and

mz− ∼
√

8γ
γ−1e

−l for l 
 1, which are readily derived from (2.22). In Figure 6 we plot the

critical domain half-length lz versus γ.
Since m = kπ/d and d = ld0 with l = 1/

√
D, we conclude from the upper bound m = mz+

that a stripe for (1.1) with γ = q/(p− 1) > 1 is stable to zigzag instabilities only when the
domain width d0 for (1.1) satisfies d0 < d0z ≡ π

√
D/mz+ = O(1). For 0 < γ < 1, there are

no zigzag instabilities for any domain width.
From the results here and in section 2.1, we conclude that a stripe for (1.1) in the semi-

strong regime is stable with respect to both breakup and zigzag instabilities only for thin
domains satisfying d0 < πε0/

√
ν0, where ν0, given in (2.10), is the positive eigenvalue of L0.

Since zigzag instabilities develop on a long time O(ε−2) time-scale, they are dominated by
any breakup instability that occurs. Finally, we remark that although we have presented
only a formal derivation of (2.21), it can be derived rigorously by using a Lyapunov–Schmidt
reduction analysis similar to that in [43].



328 T. KOLOKOLNIKOV, W. SUN, M. WARD, AND J. WEI

����

����

����

����

����

��� ��� ��� ���

�� �

�

(a) graphical determination of unstable zigzag band

���

���

���

���

��� ��� ��� ��� ���

���

�

(b) zigzag stability thresholds for γ = 2

Figure 5. (a) plot of h(θ) for γ = 2 (heavy solid curve) together with g(θ) for l = 1 (widely spaced dots),
l = lz ≈ 1.37 (dashed curve), and l = 2 (solid curve). Here g(θ) and h(θ) are defined in (2.22). The unstable
zigzag modes correspond to where g(θ) > h(θ). (b) the upper and lower zigzag stability thresholds mz− (solid
curve) and mz+ (heavy solid curve) for γ = 2 as a function of l when l > lz ≈ 1.37. The band disappears when
m ≈ 1.55.
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Figure 6. Plots of the critical domain half-length lz (heavy solid curve) and the mode m where the zigzag
band disappears (solid curve) versus γ = q

p−1
for γ > 1. For l > lz, there is a band of unstable zigzag modes.

2.3. GM model with small saturation: Fat homoclinics. In the semistrong regime, where
D = O(1), we now show that the inclusion of a small amount of saturation in the activator
production for the classical GM model can lead to the disappearance of the breakup instability
band. The resulting modified classical GM model in a rectangular domain is

at = ε2
0Δa− a +

a2

h(1 + ka2)
, τht = DΔh− h +

a2

ε0
,(2.23)

X = (X1, X2) ∈ Ω = {−1 < X1 < 1 , 0 < X2 < d0} ,
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with ∂na = ∂nh = 0 on ∂Ω. We refer to (2.23) as the small saturation limit of (1.6), since if
we replace a and h in (2.23) with ε0a and ε0h, we obtain (1.6) with κ = ε2

0k. Thus, k = O(1)
in (2.23) corresponds to κ = O(ε2

0) in (1.6).
For ε → 0 we now asymptotically construct an equilibrium homoclinic stripe solution. In

the inner region, we let y = X1/ε to obtain that h ∼ H and a ∼ Hw(y), where w(y) satisfies

w
′′

+ f(w) = 0 , f(w) ≡ −w +
w2

1 + bw2
, −∞ < y < ∞ , b = kH2.(2.24)

For 0 ≤ b < 1
4 it follows that w = 0 and w = w±, with 0 < w− < w+, are the rest points of

(2.24), where

w± =
1

2

[
1 ±

√
1 − 4b

]
.(2.25)

Both w = 0 and w = w+ are saddle points, while w− is a center. It is readily shown that
(2.24) has a homoclinic pulse solution with w(0) > 0 and w(±∞) = 0, provided that there
exists a value wm ∈ (w−, w+) for which F(wm) = 0, where F(w) ≡ −

∫ w
0 f(s) ds. Such a value

of wm exists for 0 < b < b0 < 1
4 . However, when b = b0, then (2.24) has a heteroclinic solution

with asymptotic end-states w = 0 and w = w+. To determine this critical value b0 of b we set
F(w+) = 0. Upon integrating f(w), we find that w+ and b0 are determined uniquely by

b0 =
w+ − 1

w2
+

, 2w+ tan−1
(√

w+ − 1
)

= (w+ + 1)
√

w+ − 1 .(2.26)

By solving (2.26) numerically, we obtain

b0 ≈ 0.211376 , w+ ≈ 3.295209 .(2.27)

In summary, (2.24) has a unique homoclinic solution with w(0) > 0 and w(±∞) = 0, provided
that 0 < b < b0.

In the outer region, we calculate a2/ε0 in (2.23) in terms of a Dirac mass. In this way, we
obtain

hX1X1 − θ2
0h = −βH2

D
δ(X1) , −1 < X1 < 1 , hX1(±1) = 0 ,(2.28)

where β ≡
∫∞
−∞w2 dy and θ0 ≡ D−1/2. We solve (2.28) in terms of a Green function, and

we impose the matching condition h(0) = H, which determines H. Finally, we recall that
b = kH2. This leads to the following formal result.

Principal Result 2.5. For ε → 0 and for any k > 0, there is a unique homoclinic stripe
solution to (2.23) given by

ae(X1) ∼ Hw
(
ε−1X1

)
, he(X1) ∼ HG(X1)

G(0)
, G(X1) ≡

cosh [θ0(1 − |X1|)]
2θ0 sinh θ0

.(2.29)

Here, for a fixed value of b in 0 ≤ b < b0 ≈ 0.2114, w(y) is the unique positive homoclinic
solution to (2.24). The saturation constant k and h(0) ≡ H are related to b and D by

G(b) ≡ bβ2 = 4kD tanh2
(
1/

√
D
)
, H =

2
√
D

β
tanh

(
1/

√
D
)
, β ≡

∫ ∞

−∞
w2 dy .(2.30)
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Figure 7. (a) plots of the homoclinic solution w(y) to (2.24). From top to bottom the curves are for
b = 0.211, b = 0.2034, b = 0.195, b = 0.145, and b = 0.0. (b) b versus k for D = 10 (heavy solid curve), D = 1
(solid curve), and D = 0.1 (dotted curve).

In (2.30), the integral β, which is readily computed numerically, depends only on b and
satisfies β(b) → +∞ as b → b−0 . Since β > 0 and dβ/db > 0 (see Appendix B of [41]), it
follows that G(b) is a monotone increasing in b with G(0) = 0 and G(b) → +∞ as b → b−0 .
Therefore, from (2.30), there is a unique value of k for each fixed D and b in 0 ≤ b < b0, and
that k → ∞ as b → b−0 . Therefore, as k → ∞, we have b → b−0 , and the fattened homoclinic w
approaches a mesa pattern that is comprised of a front-back heteroclinic structure connected
by an asymptotically flat plateau. In Figure 7(b) we use (2.30) to plot b versus k for several
values of D, showing that k → ∞ as b → b−0 . In Figure 7(a) we plot the solution w(y) to
(2.24) for several values of b. Notice that for b slightly below b0, w(y) becomes rather fat as
a result of the ghost effect of the heteroclinic connection that exists when b = b0.

Next, we study breakup instabilities of the homoclinic stripe by deriving an NLEP. Since
this derivation is similar to that given in Appendix A, we only highlight its key steps. We
introduce a perturbation of the form (2.5). Then, in place of (A.1) and (A.2), we obtain that
Φ(y), with y = X1/ε, satisfies

Φ
′′ − Φ +

2w

(1 + bw2)2
Φ − η(0)w2

1 + bw2
=
(
λ + ε2m2

)
Φ , −∞ < y < ∞ , Φ → 0 as |y| → ∞ .

(2.31)

Assuming that
∫∞
−∞ Φw dy �= 0, then η(0) in (2.31) is to be calculated from

ηX1X1 − θ2
λη = 0 , −1 < X1 < 1 , ηX1(±1) = 0 , θλ ≡

√
m2 +

(1 + τλ)

D
,(2.32a)

[η] = 0 , [ηX1 ] = −2H
D

∫ ∞

−∞
wΦ dy .(2.32b)
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We solve (2.32) in terms of a Green function, which yields η(0) in (2.31). This leads to the
following NLEP.

Principal Result 2.6. Let ε → 0, and suppose
∫∞
−∞ Φw dy �= 0. Then, for 0 ≤ b < b0, the

stability of the homoclinic stripe for the modified GM model (2.23) on an O(1) time-scale is
determined by the spectrum of the NLEP

L0bΦ − χmw2

(1 + bw2)

∫∞
−∞wΦ dy∫∞
−∞w2 dy

= (λ + ε2m2)Φ , −∞ < y < ∞ , Φ → 0 as |y| → ∞ ,

(2.33a)

L0bΦ ≡ Φ
′′ − Φ +

2w

(1 + bw2)2
Φ , χm ≡ 2θ0 tanh θ0

θλ tanh θλ
, θ0 ≡ D−1/2 , θλ ≡

√
m2 +

(1 + τλ)

D
.

(2.33b)

For ε � 1, and in the absence of saturation effects (i.e., b = 0), it was shown in section
2.1 that there is always a breakup instability band for any D > 0. We now study numerically
whether this instability band can disappear for some range of b on the homoclinic existence
interval 0 ≤ b < b0. For simplicity we will consider only the case where τ = 0. Although
we are unable to give a rigorous analysis of the spectrum of (2.33) as a function of b, we can
readily identify the mechanism for the possible coalescence of the upper and lower breakup
instability thresholds. Since χm → 0 as m → ∞ in (2.33), it follows by the same reasoning as in
section 2.1 that the upper stability boundary, mb+, satisfies mb+ ∼ √

ν0/ε0 for ε0 � 1, where
ν0 = ν0(b) > 0 is the unique positive eigenvalue of the local operator L0bΨ = νΨ. However,
ν0 must tend to zero as b → b−0 ≈ 0.2114, or equivalently as k → ∞, since we necessarily
must have ν0 = 0 for the heteroclinic orbit where b = b0. This behavior of ν0 is confirmed
in Figure 8(b), where we plot the numerically computed curve ν0 = ν0(b). Therefore, for any
fixed ε small, it follows that mb+ → 0 as b → b−0 . In addition, since a homoclinic pulse with
m = 0 for (2.33) is always stable when τ = 0 (cf. [41]), it follows that if the lower instability
boundary exists, it will satisfy mb− > 0. Hence, the instability band mb− < m <

√
ν0/ε0

must become narrower as b increases towards b0, or equivalently as k → ∞.
To numerically calculate breakup instability bands, we first solve (2.24) numerically and

then discretize (2.33) using centered differences and the trapezoidal rule. The eigenvalues of
the resulting matrix eigenvalue problem are found using LAPACK [1], and a quasi-Newton
method is used to locate the edges of any instability band. Continuation in b is then used
starting from b = 0, where the instability band is known from Proposition 2.3. Finally, the
relation (2.30) between b and k determines the instability band with respect to the saturation
parameter k in (2.23).

For D = 10 and ε0 = 0.025, in Figure 8(a) we plot the unique positive eigenvalue within
the instability band for four values of k. As k increases, the band becomes narrower, until it
finally pinches off at the critical value k ≈ 19.4. This coalescence of the edges of the breakup
instability band for k sufficiently large occurs for other values of D and ε0. In particular,
when D = 10, in Figure 9(a) we show the merging of the upper and lower thresholds mb±
at some value of k for three values of ε0. In Figure 9(b) we show a similar merging behavior
when ε0 = 0.025 for four values of D.
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Figure 8. (a) the unstable eigenvalue λ versus m within an instability band when D = 10 and ε0 = 0.025.
From top to bottom the curves are for k = 0, k = 3.663, k = 6.802, and k = 12.519. (b) the principal eigenvalue
ν0 of the local operator L0b versus b, with ν0 → 0 as b → 0.2114.

120

100

80

60

40

20

0
302520150 50

mb±

k

(a) mb± versus k for D = 10

50

40

30

20

10

0
4035302520150 50

mb±

k
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Figure 9. (a) plots of mb± versus k when D = 10 for ε0 = 0.05 (heavy solid curve), ε0 = 0.025 (solid
curve), and ε0 = 0.01 (dotted curve). (b) plots of mb± versus k when ε0 = 0.025 for D = 100 (heavy solid
curve), D = 10 (solid curve), D = 1 (dotted curve), and D = 0.1 (widely spaced dots).

Qualitatively, these numerical results show that the breakup instability disappears on
some range k > k0d (or, equivalently, b0d < b < b0 ≈ 0.2114) when the homoclinic solution w
to (2.24) is sufficiently broad (see Figure 7(a)). This widening of the homoclinic is a result of
the ghost effect of the heteroclinic connection that exists when b = b0. Therefore, we suggest
that the stability properties of “fat” homoclinic stripes can be similar to those of mesa-stripe
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solutions, such as those that occur for the Fitzhugh–Nagumo model (cf. [34], [35]) and the
modified GM model of sections 4–5 with large saturation, where spot-generating breakup
instabilities do not occur.

3. The GM model without saturation: Weak interaction regime. In the weak inter-
action regime we now show numerically that, depending on the exponent set (p, q, r, s), a
stripe for (1.1) can be stable with respect to breakup instabilities for any domain width d0

but is unstable to zigzag instabilities unless d0 = O(ε0) thin. As in section 2.3, this disap-
pearance of the breakup instability band is again related to the “fattening” of a homoclinic
solution as a parameter is varied. In (1.4) the weak interaction regime corresponds to the
limit l = 1/

√
D 
 1 with ε = ε0l = O(1). Equivalently, in (1.1) we write D = D0ε

2
0 for some

D0 = O(1), and we let ε0 → 0. In terms of y = x1/ε0, and upon rescaling a and h in (1.1), the
resulting equilibrium problem for (1.1) is to look for even homoclinic solutions to the coupled
system

ayy − a +
ap

hq
= 0 , D0hyy − h +

ar

hs
= 0 , ∞ < y < ∞ , a → 0 , hy → 0 , |y| → ∞ .

(3.1)

In [14] numerical solutions to (3.1) are computed by using the boundary-value solver
COLSYS [2] together with path-following in D0. As D0 is decreased from some initially large
value it was shown for various exponent sets in [14] that the bifurcation diagram of a(0) versus
D0 for (3.1) has a saddle-node bifurcation at some critical value D0c and that there are no
homoclinic solutions to (3.1) when 0 < D0 < D0c. The existence of such a fold-point value
D0c was proved in [4] using geometric singular perturbation theory. For the classical GM
model, where (p, q, r, s) = (2, 1, 2, 0), a plot of a(0) versus D0 is shown in Figure 10(a). When
viewed as a pulse solution in one dimension, the upper branch of this bifurcation diagram is
stable when τ is below some O(1) Hopf bifurcation threshold τH = τH(D0), and the lower
branch is unstable for any τ ≥ 0 (cf. [14]). The dashed portion along the lower solution branch
of Figure 10(a) is where a(y) has two distinct local maxima, with one on either side of the
symmetry point y = 0. This two-bump structure begins at the point where ay(0) = 0, which
we label by D0 = D0m.

A stripe solution ae, he for the two-dimensional GM model (1.1) is obtained by taking
the homoclinic solution of (3.1) as the cross-sectional profile of the stripe. The stripe, with a
width O(ε0), is then localized along the midline x1 = 0 of the rectangular domain. For various
exponent sets we then determine the stability of this stripe solution along each point on the
upper branch of the a(0) versus D0 bifurcation diagram by writing

a = ae
(
ε−1
0 x1

)
+ Φ

(
ε−1
0 x1

)
eλt cos(mx2) , h = he

(
ε−1
0 x1

)
+ N

(
ε−1
0 x1

)
eλt cos(mx2) .

(3.2)

By substituting (3.2) into (1.1), we obtain the following eigenvalue problem for Φ(y) and N(y)
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(a) a(0) versus D0 for (2, 1, 2, 0)
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(b) Breakup instability band for (2, 1, 2, 0)

Figure 10. (a) bifurcation diagram of a(0) versus D0 for (3.1) for (p, q, r, s) = (2, 1, 2, 0). On the dashed
portion of the lower branch a(y) has a multibump structure. (b) the breakup instability band versus D0 for
(p, q, r, s) = (2, 1, 2, 0). For modes ε0m within the band the stripe is unstable. The band terminates before the
saddle-node value D0c = 7.17.

on 0 ≤ y < ∞:

Φyy − (1 + μ)Φ +
pap−1

e

hqe
Φ − qape

hq+1
e

N = λΦ ,(3.3)

D0Nyy − (1 + D0μ)N +
rar−1

e

hse
Φ − sare

hs+1
e

N = τλN .

Here μ ≡ ε2
0m

2, where m is either the breakup mode or the zigzag mode transverse to the
stripe.

To study breakup instabilities we compute the spectrum of (3.3) for even eigenfunctions
Φ and N so that Φy(0) = Ny(0) = 0. We first compute the homoclinic solution of (3.1)
on a long interval 0 < y < L, where L 
 1. We then discretize (3.3) on the same interval
[0, L] by using centered differences, and we label Φ0 = (Φ0(y1), . . . ,Φ0(yn))t and N0 =
(N0(y1), . . . , N0(yn))t, where yj = jh for j = 0, . . . , n with h = L/n. We also impose that
Φy(L) = Ny(L) = 0. In this way, we obtain the block matrix eigenvalue problem

(
M− (1 + μ)I + Λ1 −Λ2

Λ3 D0M− (1 + D0μ)I − Λ4

)(
Φ0

N0

)
= λ

(
I 0
0 τI

)(
Φ0

N0

)
.

(3.4)

Here Λj for j = 1, . . . , 4 are n× n diagonal matrices, and M is a tridiagonal matrix defined
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Table 2
The second and third columns are the saddle-node bifurcation values D0c and αc ≡ a(0) for the existence

of a stripe. The fourth column gives the values D0b of D0 for the lower bound of the breakup instability band.
A stripe is stable to breakup instabilities when D0c < D0 < D0b. For (3, 2, 2, 0) and (2, 2, 3, 3) the band does not
terminate before D0c, and so D0b is undefined. The fifth column gives the values D0z of D0 for the upper bound
of the zigzag instability band in the weak-interaction regime. For (2, 2, 3, 3), where γ = q/(p− 1) = 2, the band
continues into the semistrong regime. The sixth column has the smallest values D0m of D0, where a(y) has a
multibump structure on the lower branch of the a(0) versus D0 bifurcation diagram. The seventh column gives
the saddle-node values D0s, computed in [33], representing the smallest value of D0 where a radially symmetric
spot solution exists in R

2.

(p, q,m, s) D0c αc D0b D0z D0m D0s

(2, 1, 2, 0) 7.17 1.58 8.06 24.0 8.92 9.82
(2, 1, 3, 0) 10.35 1.42 19.14 30.0 12.36 16.31
(3, 2, 2, 0) 3.91 1.62 −− 32.3 5.08 5.23
(3, 2, 3, 1) 4.41 1.53 5.13 28.0 5.36 5.97
(2, 2, 3, 3) 33.7 2.28 −− −− 41.80 85.52
(4, 2, 2, 0) 0.89 1.36 1.00 27.9 1.06 0.89

by

Λ1jj =
pape(yj)

hq
e(yj)

, Λ2jj =
qape(yj)

hq+1
e (yj)

,

Λ3jj =
rar−1

e (yj)
hs
e(yj)

, Λ4jj =
sare(yj)

hs+1
e (yj)

,

M ≡ 1

h2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 2 0 · · · 0 0 0

1 −2 1
. . .

. . . 0 0

0
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
. . . 0

0 0
. . .

. . . 1 −2 1
0 0 0 · · · 0 2 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.5)

For τ = 0.01, we numerically determine the range of values of μ for which (3.4) has
unstable eigenvalues. For D0 sufficiently large, and for all of the exponent sets in Table 2,
our computational results from LAPACK [1] with n = 250 meshpoints and L = 15 show that
there are threshold values μ1 and μ2 for which there is a unique real positive eigenvalue λ0 in
the breakup instability band

√
μ1 < ε0m <

√
μ2, and that Re(λ) < 0 for 0 ≤ ε0m <

√
μ1 and

ε0m >
√
μ2. However, as D0 is decreased towards the existence threshold D0c, our results

show that the instability band disappears for some of these exponent sets at some critical value
D0b > D0c on the upper branch. Numerical values for D0b are given in Table 2. Increasing n
and L did not change the results in Table 2 significantly.

In Figure 10(b) we plot the upper and lower thresholds for the breakup instability band
for the exponent set (p, q, r, s) = (2, 1, 2, 0), showing the coalescence of the thresholds when
D0 = D0b = 8.06. This critical value compares reasonably well with the corresponding critical
value D0 ≈ 1/(.12) = 8.33 estimated in [4, see p. 99] based on full numerical computations and
on an extrapolation of stability results from the semistrong regime into the weak interaction
regime (see Figure 5.2 of [4]). Therefore, for the classical GM model, a stripe solution for
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(a) breakup bands: (4, 2, 2, 0), (3, 2, 3, 1), (2, 1, 3, 0)
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(b) breakup bands: (3, 2, 2, 0), (2, 2, 3, 3)

Figure 11. (a) breakup instability bands that terminate before the saddle-node value D0c. The heavy solid
curve is for (p, q, r, s) = (2, 1, 3, 0), the solid curve is for (3, 2, 3, 1), and the dashed curve is for (4, 2, 2, 0).
(b) breakup bands that do not terminate before D0c. The heavy solid and solid curves are for (3, 2, 2, 0) and
(2, 2, 3, 3), respectively.

(1.1) exists and is stable with respect to breakup instabilities when 7.17 < D0 < 8.06. In
Figure 11(a) we plot similar upper and lower stability thresholds of the breakup instability
band for the exponent sets (4, 2, 2, 0), (3, 2, 3, 1), and (2, 1, 3, 0). For these exponent sets the
breakup instability band disappears below some threshold value D0b larger than D0c, so that
a stripe solution for (1.1) is stable with respect to breakup on the range D0c < D0 < D0b.
For three parameter sets, in Figure 12(a) we plot the unique unstable real eigenvalue within
an instability band. As seen from this figure, the most unstable mode occurs roughly in the
middle of this band.

However, as shown in Figure 11(b), the breakup instability band does not disappear at
some D0 value greater than the existence threshold D0c for the exponent sets (3, 2, 2, 0) and
(2, 2, 3, 3). Consequently, for these exponent sets, a stripe solution to (1.1) will always be
unstable to breakup instabilities when the domain width d0 is O(1).

Next, we study zigzag instabilities by calculating the spectrum of (3.3) for odd eigenfunc-
tions Φ and N so that Φ(0) = N(0) = 0. The discrete eigenvalue problem has the same form
as in (3.4) and (3.5) except that now yj = jh for j = 1, . . . , n with h = L/n, and where
M12 = 1 replaces the corresponding entry in the matrix M in (3.5). The spectrum of the
resulting discrete eigenvalue problem is then computed numerically for τ = 0.01, L = 15, and
with n = 250. In Figure 13(a) we show the unstable zigzag band for three exponent sets for
which γ = q

p−1 = 1. Recall that for γ = 1 the theory of section 2.2 showed that there is no
unstable zigzag band in the semistrong interaction regime. Our computational results show
that as D0 is decreased towards the existence threshold D0c, an unstable zigzag band first
emerges at some critical value D0z with D0z > D0c. Numerical values for D0z are given in
Table 2. Within the zigzag band there is a unique unstable real eigenvalue when τ = 0.01.
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(a) unstable breakup eigenvalue
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(b) unstable zigzag eigenvalue

Figure 12. (a) the unstable breakup eigenvalue λ0 within an instability band. The heavy solid curve is for
(2, 1, 2, 0) with D0 = 15.0, the solid curve is for (2, 1, 2, 0) with D0 = 9.01, and the dashed curve is for (3, 2, 2, 0)
with D0 = 4.5. (b) the unstable zigzag eigenvalue λ0 within an instability band. The heavy solid curve is for
(2, 1, 2, 0) with D0 = 7.60, the solid curve is for (3, 2, 2, 0) with D0 = 4.5, and the dashed curve is for (2, 1, 3, 0)
with D0 = 14.0.
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(a) zigzag bands: (2, 1, 2, 0), (2, 1, 3, 0), (3, 2, 2, 0)
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(b) zigzag band: (2, 2, 3, 3)

Figure 13. (a) the zigzag instability band for (2, 1, 2, 0) (heavy solid curve), for (2, 1, 3, 0) (solid curve),
and for (3, 2, 2, 0) (dashed curve), plotted for D0 > D0c. For these exponent sets there is a value D0z of D0

for which there is an unstable band for D0c < D0 < D0z. Within the band there is a unique and real unstable
eigenvalue. (b) the unstable zigzag band for (2, 2, 3, 3). Since γ = q/(p− 1) = 2 > 1, this band continues into
the semistrong interaction regime and terminates there (see section 2.2).

For three parameter sets, this eigenvalue is plotted in Figure 12(b) within an instability band.
From section 2.2 we recall that there is an unstable zigzag band in the semistrong regime
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Figure 14. Plots of a(y) for various D0 computed from (3.1) for the exponent set (2, 1, 2, 0). The heavy
solid, solid, dotted, and widely spaced dotted curves are for D0 = 19.6, D0 = 11.9, D0 = 7.9, and D0 = 7.2,
respectively. Notice that the homoclinic becomes broader as D0 is decreased.

D = O(1) when γ = q
p−1 > 1. For the exponent set (2, 2, 3, 3), where γ = 2, in Figure 13(b)

we show the continuation of this band into the weak interaction regime. For a domain length
L = 15, or equivalently ε0 = 1/15, we obtain from Figure 13(b) that the zigzag band ex-
ists for D0 < D0z ≈ 107. This value corresponds to D = D0ε

2
0 ≈ 0.4755, or equivalently

l = 1/
√
D = 1.45. This critical value of l for γ = 2 agrees well with the critical value lz ≈ 1.4

obtained from Figure 6 for when the zigzag band first forms in the semistrong interaction
regime.

We now qualitatively summarize our conclusions regarding the stability of the stripe. An
important conclusion is that for the exponent sets (p, q,m, s), where the breakup instability
disappears at some value above the existence threshold as D0 is decreased, the stripe will
always be unstable with respect to zigzag instabilities for domain widths d0 that are O(1) as
ε0 → 0. Since the upper zigzag threshold mz+ satisfies mz+ = O(ε−1

0 ), the zigzag instability
can only be suppressed near the existence threshold D0c by taking the domain width d0 to
be O(ε0) thin. We also observe from Figure 12 that the time-scale for breakup instabilities
is generally faster than for zigzag instabilities. However, both time-scales are independent of
ε0. By comparing Figures 10(b) and 11 with Figure 13, we observe that whenever a breakup
instability band exists the breakup and zigzag bands overlap in such a way that there are no
domain widths d0 where a zigzag instability is not accompanied by a breakup instability.

Remark 3.1. It appears to be difficult to provide a rigorous study of the eigenvalue problem
(3.3) to theoretically confirm the possible coalescence of the breakup instability band and the
emergence of the zigzag band near the existence threshold D0c. However, the shape of the
homoclinic a(y) near the existence threshold gives some indication of the reason for the change
in the dominant instability mechanism. For D near D0c, the region near the maximum of a(y)
is generally wider than it is for larger values of D0. This is shown numerically in Figure 14 for
the exponent set (2, 1, 2, 0). In fact, on the unstable branch, but near D0c, the cross section
of the “fattened” homoclinic stripe develops a multibump structure at some value D0m (see
Table 2). In addition to the general pulse-splitting criteria of [5], this multibump structure
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also appears to be an essential factor for self-replication behavior (cf. [14]). Therefore, near
the existence threshold, the cross section of the homoclinic stripe becomes fatter in a similar
way as was studied in section 2.3 for the small-saturation GM model (2.23) in the semistrong
regime. This suggests that the stability problem near the existence threshold D0c can be
similar to that of a bistable system where zigzag instabilities are the dominant instability
mechanism (cf. [34]) and where breakup instabilities do not occur.

We now perform a few numerical experiments on (1.1) to illustrate and validate the spectral
results for breakup and zigzag instabilities. For each of the experiments below, we solve (1.1)
for τ = 0.01 in the square domain Ω = [−1, 1] × [0, 2], with an initial condition of the form

a(x1, x2, 0) = Asech2

(
x1

ε0

)
, h(x1, x2, 0) = Hsech2

(
x1

2ε0

)
.(3.6)

Whenever the equilibrium stripe exists, in the experiments below we have taken A = a(0) and
H = h(0), where a and h are the numerical solution of (3.1) for the specified value of D0.

Experiment 4. In Experiment 4 we take (p, q, r, s) = (2, 1, 2, 0), ε0 = 0.025, and D0 = 7.6.
The initial condition for (1.1) is (3.6) with A = 1.69 and H = 1.45. Since D0c < D0 < D0b

there is no breakup instability band, and we predict that the initially straight stripe will not
break up into spots. From the heavy solid curve in Figure 12(b) the most unstable zigzag
mode is ε0m ≈ 0.315 with a corresponding growth rate λ0 ≈ 0.035. Therefore, the number of
zigzag crests is theoretically predicted to be N = m

π = 0.315
πε0

≈ 4. The full numerical results
from (1.1) are shown in Figure 15. We observe that, initially, there is indeed no breakup
instability and that when t = 300 the stripe develops a noticeable zigzag instability with four
crests. However, the wriggled stripe then undergoes a breakup instability near the points of
its maximum curvature, leading to spot formation. Since D0 = 7.6 is below the existence
threshold D0s = 9.82 for a locally radially symmetric spot solution (see Table 2), these spots
then undergo a repeated self-replication process which fills the entire domain. The solution at
time t = 1000, shown in Figure 15(d), is near an equilibrium state and more closely resembles
a Turing-type pattern than a pattern with isolated spots.

Experiment 5. We take (p, q, r, s) = (2, 1, 2, 0), ε0 = 0.025, and we increase D0 to D0 =
15.0. The initial condition for (1.1) is (3.6) with A = 2.3 and H = 1.8. Since D0 > D0b = 8.06
and D0 < D0z = 24.0 the initially straight stripe is unstable to a breakup and a zigzag
instability. From the heavy solid curve in Figure 12(a) the most unstable breakup mode is
ε0m ≈ 0.623 with a growth rate of λ0 ≈ 0.186. Therefore, the theoretically predicted number
of spots is N = m

π = 0.623
πε0

≈ 8. From the full numerical results shown in Figure 16(a) it is
observed that the stripe initially breaks up into eight spots. The eight spots in Figure 16(a) are
not in perfect vertical alignment, owing to the zigzag instability of the initial stripe. Then, as
shown in Figure 16(b), the repulsive spot interactions accentuate the broken vertical symmetry.
Since D0 = 15 is well above the spot-existence threshold of D0s = 9.82 given in Table 2, there
is no spot self-replication behavior. Instead there is an exponentially slow, or metastable,
drift of the spots towards a stable hexagonal equilibrium configuration (cf. Figure 16(c) and
Figure 16(d)).

Experiment 6. Next, we take (p, q, r, s) = (2, 1, 2, 0), ε0 = 0.025, and D0 = 6.8. The initial
condition for (1.1) is (3.6) with A = 1.6 and H = 1.4. Since D0 < D0c, there is no equilibrium
stripe solution. For the related problem of a pulse on a one-dimensional interval with D0 <
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(a) Experiment 4: t = 200 (b) Experiment 4: t = 300

(c) Experiment 4: t = 400 (d) Experiment 4: t = 1000

Figure 15. Experiment 4. The numerical solution to (1.1) for (p, q, r, s) = (2, 1, 2, 0) with ε0 = 0.025,
D0 = 7.6, τ = 0.01, and in a square domain Ω = [−1, 1] × [0, 2]. The initially straight stripe develops a
zigzag instability. Spots are formed near the region of maximum curvature of the wriggled stripe. These spots
then undergo a repeated self-replication process leading to a Turing-type pattern. See also the accompanying
animation (63508 01.gif [650KB]).

D0c, an initial one-pulse profile undergoes an edge-splitting pulse-replication process leading
to a Turing-type pattern (cf. [4], [14], [25, Remark 6.2]). The numerical results for the two-
dimensional GM model are shown in Figure 17. We observe that the stripe first splits into
two and then develops a zigzag instability. The wriggled stripes undergo a breakup instability
near their points of maximal curvature. Since D0 < D0s the emerging spots then undergo a
spot-splitting process. For short times, stripe-replication behavior was computed in Figure 5.3
of [4] for D0 = 1/(.14) ≈ 7.14 before any zigzag instabilities occur.

Experiment 7. We now take (p, q, r, s) = (3, 2, 2, 0), ε0 = 0.025, and D0 = 4.5. The
initial condition for (1.1) is (3.6) with A = 1.82 and H = 0.74. For this exponent set, in
addition to the zigzag instability, a breakup instability is guaranteed since the breakup band
does not terminate in the weak interaction regime. From the dashed curve in Figure 12(a)
the most unstable breakup mode is ε0m ≈ 0.96 with a growth rate of λ0 ≈ 0.147. With

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/63508_01.gif
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(a) Experiment 5: t = 500 (b) Experiment 5: t = 800

(c) Experiment 5: t = 3000 (d) Experiment 5: t = 30000

Figure 16. Experiment 5. The numerical solution to (1.1) for (p, q, r, s) = (2, 1, 2, 0) with ε0 = 0.025,
D0 = 15.0, τ = 0.01, and in a square domain Ω = [−1, 1] × [0, 2]. The stripe initially breaks up into eight
spots that are not in perfect vertical alignment, owing to the zigzag instability of the initial stripe. There is no
self-replication behavior and there is an exponentially slow, or metastable, evolution of the eight spots towards
a stable equilibrium configuration consisting of a hexagonal structure.

this most unstable mode, we predict that the stripe will break up into N = m
π = 0.96

πε0
≈ 12

spots. Alternatively, from the solid curve in Figure 12(b), the most unstable zigzag mode is
ε0m ≈ 0.43 with a corresponding growth rate λ0 ≈ 0.051. This corresponds to a most unstable
zigzag mode with N = m

π = 0.43
πε0

≈ 5 crests. In the numerical results shown in Figure 18 we
observe that the initially straight stripe breaks up into fourteen spots (see Figure 18(a)) and
then develops a zigzag instability with six crests, which breaks the vertical symmetry of the
array of spots (see Figure 18(b)). Since D0 < D0s = 5.23 the resulting spots then undergo
a spot-splitting process (cf. Figure 18(c)) leading to a final state that closely resembles a
Turing-type pattern (cf. Figure 18(d)).

Experiment 8. Finally, we consider (p, q, r, s) = (2, 1, 3, 0), ε0 = 0.01, and D0 = 14.0. The
initial condition for (1.1) is (3.6) with A = 1.6 and H = 1.3. For this exponent set there are no
breakup instabilities on the rather wide range 10.35 < D0 < 19.14 (see Table 2). Therefore,
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(a) Experiment 6: t = 75 (b) Experiment 6: t = 175

(c) Experiment 6: t = 225 (d) Experiment 6: t = 250

Figure 17. Experiment 6. The numerical solution to (1.1) for (p, q, r, s) = (2, 1, 2, 0) with ε0 = 0.025,
D0 = 6.8, τ = 0.01, and in a square domain Ω = [−1, 1] × [0, 2]. Since D0 < D0c, the initially straight stripe
splits into two. The two stripes become wriggled as a result of a zigzag instability. Spots are formed near the
region of maximum curvature of the wriggled stripes. These spots then undergo a self-replication process. See
also the accompanying animation (63508 02.gif [512KB]).

we expect no breakup instability. From the dashed curve in Figure 12(b) the most unstable
zigzag mode is ε0m ≈ 0.23, with a corresponding growth rate λ0 ≈ 0.0131, and the expected
number of zigzag crests is N = m

π = 0.23
πε0

≈ 7. In the numerical results shown in Figure 19(b)
a zigzag instability with exactly seven crests is observed. In contrast to Experiment 4, where
D0 was only slightly below the breakup threshold D0b, for this example D0 is significantly
below the breakup threshold, and the wriggled stripe in Figure 19 is less vulnerable than in
Experiment 4 (see Figure 15) to a breakup instability occurring near a local maxima of its
curvature. The final pattern in Figure 19(d) is composed almost exclusively of stripes.

4. The GM model with saturation: A mesa-stripe solution in the near-shadow limit.
For the modified GM model (1.6) with saturation parameter κ, we now construct a different
type of equilibrium stripe solution centered along the midline of the rectangular domain Ω :=

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/63508_02.gif
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(a) Experiment 7: t = 100 (b) Experiment 7: t = 200

(c) Experiment 7: t = 250 (d) Experiment 7: t = 1000

Figure 18. Experiment 7. The numerical solution to (1.1) for (p, q, r, s) = (3, 2, 2, 0) with ε0 = 0.025,
D0 = 4.5, τ = 0.01, and in a square domain Ω = [−1, 1]× [0, 2]. Since the breakup instability band exists up to
D0c, the initially straight stripe breaks up into spots. It then develops a twist as a result of a zigzag instability.
Since D0 < D0s = 5.23, the spots then undergo a repeated self-replication process leading to a Turing-type
pattern.

[0, 1]× [0, d0], with ∂na = ∂nh = 0 on ∂Ω. In section 5 we analyze the stability of this solution.
For our analysis of (1.6) we assume that ε0 � 1 and κ > 0, where κ is independent of ε0.
Recall that the case κ = O(ε2

0) was considered in section 2.3.
Our analysis is limited to a near-shadow limit D 
 1, where D = D/ε0 with D = O(1).

A similar restriction was made in [35] in their study of interface stability for a generalized
Fitzhugh–Nagumo system. The analysis of mesa-stripes in the regime D = O(1) is not a
straightforward extension of the analysis for the near-shadow limit D = O(ε−1). For D = O(1)
a new phenomenon related to the self-replication of mesa-stripes can occur. This behavior
is shown in Experiment 11 below. Since a detailed study of mesa-splitting for the regime
D = O(1) is expected to be rather involved, and is not related to the goal of this paper of
characterizing breakup and zigzag instabilities of a stripe, we do not attempt to study the
regime D = O(1) here.
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(a) Experiment 8: t = 1400 (b) Experiment 8: t = 1600

(c) Experiment 8: t = 1800 (d) Experiment 8: t = 4300

Figure 19. Experiment 8. The numerical solution to (1.1) for (p, q, r, s) = (2, 1, 3, 0) with ε0 = 0.01,
D0 = 14.0, τ = 0.01, and in a square domain Ω = [−1, 1]× [0, 2]. There is no breakup instability of the straight
stripe, and the wriggled stripe is less vulnerable than in Experiment 4 to a breakup instability occurring near
local maxima of the curvature. The zigzag instability of the straight stripe is seen to be the precursor to a
large-scale deformation of the stripe. See also the accompanying animation (63508 03.gif [362KB]).

In the near-shadow limit, (1.6) admits an equilibrium stripe solution in the form of a
front-back transition layer structure, where the layers are connected by an asymptotically
flat plateau. We refer to such a solution as a mesa-stripe. This type of solution is distinctly
different from the homoclinic stripe solutions of sections 2 and 3. Since D 
 O(1), then h ∼ H
uniformly on 0 ≤ x1 ≤ 1, where H is a constant. Therefore, from the inhibitor equation of
(1.6), we get

H ∼
∫ 1

0
a2 dx1 .(4.1)

The transition layer solution centered at some x1 = ξl is given by a ∼ Hw(y), with y =
ε−1
0 (x1 − ξl). From (1.6) we obtain that w satisfies (2.24) with b = κH2. It was shown in

section 2.3 that (2.24) has a heteroclinic orbit connecting w = 0 and w = w+ when b = b0.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/63508_03.gif
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Here w+ and b0 are given in (2.27). For b = b0, the heteroclinic solution to (2.24) satisfies

w
′′ − w + g0(w) = 0 , −∞ < y < ∞ , g0(w) ≡ w2

1 + b0w2
, b0 = κH2 ,

(4.2a)

w(y) ∼ c− exp(y) , y → −∞ , w(y) ∼ w+ − c+ exp(−ν+y) , y → +∞ , ν+ ≡
√

1 − 2

w+

(4.2b)

for some positive constants c±. To break the translation invariance we impose the condition
w(0) = w+/2. For the stability analysis in section 5, we must evaluate β ≡

∫∞
−∞(w

′
)2 dy. A

simple calculation gives

β ≡
∫ ∞

−∞
(w

′
)2 dy =

∫ w+

0

√
2F(w) dw ≈ 1.49882 , F(w) ≡ w2

2
− w

b0
+

1

b
3/2
0

tan−1
(
w
√

b0

)
.

(4.3)

For b = b0 and ε0 � 1, a composite expansion for the mesa-stripe solution has the form

a ∼ H [wl(yl) + wr(yr) − w+] , wl(yl) ≡ w
[
ε−1
0 (x1 − ξl)

]
, wr(yr) ≡ w

[
ε−1
0 (ξr − x1)

]
.

(4.4)

By using (4.1) and (4.4) , we obtain that H ∼ H2w2
+L+O(ε0), where L = ξr− ξl. Then, from

the relation b = H2κ of (4.2a), we obtain that

H ∼ 1

w2
+L

+ O(ε0) , L ∼
√
κ√

b0w2
+

< 1 .(4.5)

In Figure 20(a) we plot the numerically computed equilibrium solution ae versus x for several
values of κ when ε0 = 0.02 and D = 10. This solution was computed using COLSYS [2].
Notice that as κ increases, the maximum value of ae decreases, while the spatial extent of the
plateau also increases. For a range of κ, in Figure 20(b) we show a very favorable comparison
between the numerically computed value for the plateau height ae(1/2) and the corresponding
asymptotic result ae(1/2) ∼ Hw+ = (w+L)−1. As a remark, the analysis of homoclinic
solutions in section 2 showed that ae (1/2) = O(ε−1

0 ) when κ = 0. In Figure 21 we plot the
relation (4.5) between the saturation parameter κ and the plateau length L. The condition
L < 1 ensures that the plateau fits within the unit length of the rectangle. Although ξl and
ξr are undetermined at this stage, we anticipate by symmetry that the plateau is centered
in the middle of the interval [0, 1] so that ξl = (1 − L)/2 = (1 − ξr). This result is derived
analytically below.

Although (4.4) and (4.5) give the leading-order solution, a higher-order construction of
the equilibrium solution is required for the stability analysis of section 5. This is done by
first considering the outer regions, comprised of the plateau region ξl < x1 < ξr together with
near-boundary regions 0 < x1 < ξl and ξr < x1 < 1. In these outer regions we expand

h ∼ H + ε0h1 + ε2
0h2 + · · · .(4.6)
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(b) am ≡ ae (1/2) versus κ

Figure 20. (a) the numerically computed equilibrium solution ae versus x for ε0 = 0.02 and D = 10 when
κ = 1 (dashed curve), κ = 2.5 (solid curve), and κ = 5.0 (heavy solid curve). The length L of the plateau
increases with increasing κ. (b) comparison of the asymptotic plateau value am ≡ ae (1/2) ∼ Hw+ (dashed
curve) versus κ with the corresponding full numerical result for ae (1/2) (heavy solid curve).
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Figure 21. The length L of the plateau of the mesa versus the saturation parameter κ of the activator
kinetics.

In the near-boundary regions a is exponentially small as ε0 → 0, while in the plateau region
a ∼ Hw+ + O(ε0). Therefore, by substituting (4.6) into the inhibitor equation of (1.6) with
D = D/ε0, we obtain that

Dh1x1x1 =

⎧⎨
⎩

H , 0 < x1 < ξl ,
H−H2w2

+ , ξl < x1 < ξr ,
H , ξr < x1 < 1 ,

(4.7)

with h1x1(0) = h1x1(1) = 0. The conditions for h1 at the transition layers ξl and ξr are found
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below upon matching h1 to appropriate inner solutions. In the plateau region we expand a as

a ∼ Hw+ + ε0A1 + · · · , ξl < x1 < ξr .(4.8)

By substituting (4.8) into the activator equation of (1.6), we obtain that A1 satisfies

A1 = ga (Hw+,H)A1 + gh (Hw+,H)h1 , ξl < x1 < ξr .(4.9)

By using ga(Hw+,H) = 2/w+ and gh(Hw+,H) = −w+, we calculate A1 from (4.9) as

A1 =
w2

+h1

2 − w+
.(4.10)

In the inner region near x1 = ξl, we let y = ε−1
0 (x1 − ξl), and we expand a(y) and h(y) as

a = a0 + ε0a1 + ε2
0a2 + · · · , h = H + ε0H1 + ε2

0H2 + · · · .(4.11)

Upon substituting (4.11) into the equilibrium problem for (1.6), and letting D = D/ε0, we
obtain that a0 = Hw and that a1 satisfies

La1 ≡ a
′′
1 − a1 + g

′
0(w)a1 = g0(w)H1 , H′′

1 = 0 , −∞ < y < ∞ .(4.12)

Here g0(w) is defined in (4.2a). This yields that H1 = H10+yH11, for some unknown constants
H10 and H11. However, since h = H + O(ε0) in the plateau and near-boundary regions, we
require that H11 = 0 in order to match the inner and outer solutions for h. Therefore,
H1 = H10. To determine H10 we use a solvability condition. Since Lw

′
= 0, the solvability

condition for (4.12) gives H10

∫∞
−∞ g0(w)w

′
dy = 0, which yields H10 = 0. Therefore, since

La1 = 0, we get a1 = c1w
′

for some constant c1. However, since a(0) = Hw+/2 defines
the transition layer location, we require that a1(0) = 0. Since w

′
(0) �= 0, this implies that

c1 = 0. Therefore, a1 = H1 ≡ 0, and we must proceed to the next order in ε0 to find the first
nonvanishing correction term.

Upon substituting (4.11) into (1.6), we obtain that a2 and H2 satisfy

La2 ≡ a
′′
2 − a2 + g

′
0(w)a2 = g0(w)H2 , H′′

2 = 0 , −∞ < y < ∞ .(4.13)

Therefore, H2 = H20 + H21y for some constants H20 and H21. The solvability condition for
(4.13) gives one relation between these two constants in the form∫ ∞

−∞
(H20 + yH21) g0(w)w

′
dy = 0 .(4.14)

The other relationship between these constants is determined from the matching condition
that h ∼ H + ε2

0H2 + · · · agrees asymptotically as y → ±∞ with the behavior of the outer
solution h ∼ H+ ε0h1(x1)+ ε2

0h2(x1)+ · · · as x → ξ±l . This matching condition readily yields
that

h1(ξ
±
l ) = 0 , H21 = h1x1(ξ

−
l ) = h1x1(ξ

+
l ) ,(4.15)
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and h2(ξ
±
l ) = H20. The condition h1x1(ξ

−
l ) = h1x1(ξ

+
l ) is found below to determine the

equilibrium transition layer location ξl uniquely as ξl = (1−L)/2. The conditions (4.15) and
(4.14) determine H20 and H21 uniquely.

Finally, we derive a key identity needed in section 5. We differentiate (4.13) with respect
to y to obtain

La
′
2 = −g

′′
0 (w)w

′
a2 + g0(w)H′

2 + g
′
0(w)H2w

′
.(4.16)

Since Lw
′
= 0, the solvability condition for (4.16) yields the identity

−H′
2

∫ ∞

−∞
g0(w)w

′
dy =

∫ ∞

−∞

[
g
′
0(w)H2 − g

′′
0 (w)a2

]
(w

′
)2 dy ,(4.17)

where H′
2 = h1x1(ξ

+
l ) by the matching condition (4.15).

A similar analysis can be done near the other transition layer at x1 = ξr to obtain that
h1(ξ

±
r ) = 0. By solving (4.7) with h1x1(0) = h1x1(1) = 0 and h1(ξ

±
l ) = h1(ξ

±
r ) = 0, we obtain

that

h1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2Dw2

+L

(
x2

1 − ξ2
l

)
, 0 < x1 < ξl,

H(L−1)
2DL

[
(x1 − ξl)

2 − (ξr − ξl) (x1 − ξl)
]
, ξl < x1 < ξr,

1
2Dw2

+L

[
(1 − x1)

2 − (1 − ξr)
2 ], ξr < x1 < 1.

(4.18)

From this solution, we calculate the following one-sided derivatives, which are also needed in
section 5 below:

h1x1(ξ
+
l ) =

H(1 − L)

2D = −h1x1(ξ
−
r ) , h1x1(ξ

−
l ) =

Hξl
D , h1x1(ξ

+
r ) = −H(1 − ξr)

D .

(4.19)

The condition that h1x1 is continuous across x1 = ξl and x1 = ξr determines the equilibrium
layer locations uniquely in terms of the length L of the plateau as ξl = (1 − L)/2 and 1− ξr =
(1 − L)/2.

5. The GM model with saturation: Stability analysis in the near-shadow limit. We
now study the stability of the mesa-stripe equilibrium solution ae(x1), he(x1) constructed
in section 4. Since there are Neumann boundary conditions on the sides x2 = 0, d0 of the
rectangular domain, the perturbation takes the form

a = ae + eλt+imx2φ , h = he + eλt+imx2ψ , m =
kπ

d0
, k = 1, 2, . . . ,(5.1)

where φ = φ(x1) � 1 and ψ = ψ(x1) � 1. The bands of instability with respect to the
continuous variable m derived below can be mapped to integer k-bands of instability using
(5.1).

Substituting (5.1) into (1.6) and using D = D/ε0, we obtain the eigenvalue problem

Lεφ + gh(ae, he)ψ = λ̄φ , 0 < x1 < 1 , φx1(0) = φx1(1) = 0 ,(5.2a)

ψx1x1 −m2ψ =
ε0

D (1 + τλ)ψ − 2ε0

D aeφ , 0 < x1 < 1 , ψx1(0) = ψx1(1) = 0 .(5.2b)
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Here λ̄ and the operator Lε are defined by

Lεφ ≡ ε2
0φx1x1 − φ + ga(ae, he)φ , λ̄ ≡ λ + ε2

0m
2 .(5.2c)

In the analysis below we will show that λ = O(ε2
0) when m > 0 and m = O(1). Therefore, for

ε0 � 1, the term τλ in (5.2b) is asymptotically negligible when τ = O(1) and is consequently
neglected.

We first determine the asymptotic form of the eigenfunction φ corresponding to λ̄ � 1.
In the plateau region, where ae ∼ Hw+, ga(ae, he) ∼ 2w−1

+ , and gh(ae, he) ∼ −w+, we obtain
from (5.2a) that

φ ∼ μψ , μ ≡ w2
+

2 − w+
, ξl < x1 < ξr .(5.3)

In the near-boundary regions φ is exponentially small as ε0 → 0. Near the transition layers
at ξl and ξr, φ is proportional to the derivative w

′
of the heteroclinic orbit. Therefore, this

motivates the asymptotic form

φ ∼

⎧⎨
⎩

cl
(
w

′
(yl) + O(ε0) + · · ·

)
, yl ≡ ε−1

0 (x1 − ξl) = O(1) ,
φi ≡ μψ , ξl < x1 < ξr ,

cr
(
w

′
(yr) + O(ε0) + · · ·

)
, yr ≡ ε−1

0 (ξr − x1) = O(1) ,

(5.4)

for some unknown constants cl and cr to be found. Here μ is defined in (5.3).
Since φ is localized near the transition layers, we use (5.4) to calculate in the sense of

distributions that

2ε0aeφ

D ∼ ε2
0Hw2

+

D [clδ(x1 − ξl) + crδ(x1 − ξr)] +

(
2ε0

D

)
Hw+μψχ[ξl,ξr] ,(5.5)

where H ∼ 1/(w2
+L). Here χ[ξl,ξr] is the indicator function defined to be unity for ξl ≤ x1 ≤ ξr

and zero outside this plateau region. Substituting (5.5) into (5.2b), we obtain that ψ satisfies

ψx1x1 − θ2ψ = −ε2
0Hw2

+

D [crδ(x1 − ξr) + clδ(x1 − ξl)] , 0 < x1 < 1,(5.6a)

ψx1(0) = ψx1(1) = 0 .

Here θ is the piecewise constant function

θ =

⎧⎨
⎩

θ− ≡
[
m2 + ε0

D
]1/2

, 0 < x1 < ξl , ξr < x1 < 1 ,

θ+ ≡
[
m2 + ε0

D

(
1 + 2w+

L(w+−2)

)]1/2
, ξl < x1 < ξr .

(5.6b)

The jump conditions for (5.6) are that

ψx1(x
+
l ) − ψx1(x

−
l ) = −ε2

0Hw2
+cl

D , ψx1(x
+
r ) − ψx1(x

−
r ) = −ε2

0Hw2
+cr

D .(5.6c)
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Next, we derive a matrix eigenvalue problem for λ̄. We substitute (5.4) into (5.2a) and
multiply the resulting expression by w

′
l , where w

′
l ≡ w

′
(yl). Since w

′
l is localized, we then

obtain for ε0 � 1 that

cl

(
w

′
l , Lεw

′
l

)
+
(
w

′
l , gh(ae, he)ψ

)
∼ clλ̄

(
w

′
l , w

′
l

)
.(5.7)

Here we have defined (f, g) ≡
∫ 1
0 fg dx1. We use (4.2) to estimate the second and third terms

in (5.7) as

(
w

′
l , gh(ae, he)ψ

)
∼ −ε0ψ(ξl)

∫ ∞

−∞
w

′
g0(w) dy = −ε0ψ(ξl)

∫ ∞

−∞
(w − w

′′
)w

′
dy = −ε0ψ(ξl)

w2
+

2
,

(5.8a)

(
w

′
l , w

′
l

)
∼ ε0

∫ ∞

−∞
(w

′
)2 dy = ε0β , β ≡

∫ ∞

−∞
(w

′
)2 dy .(5.8b)

To calculate the first term in (5.7) we first use the inner solution ae ∼ Hw + ε2
0a2 and

he ∼ H + ε2
0H2 to obtain

ga(ae, he) ∼ ga (Hw,H) + ε2
0 [gaa (Hw,H) a2 + gah (Hw,H)H2] + · · · ,(5.9a)

ga(ae, he) ∼ g
′
0(w) +

ε2
0

H

[
g
′′
0 (w)a2 − g

′
0(w)H2

]
+ · · · .(5.9b)

By using (5.9b), and upon differentiating (4.2) with respect to y, we readily obtain that

Lεw
′ ∼ ε2

0

H

[
g
′′
0 (w)a2 − g

′
0(w)H2

]
w

′
.(5.10)

Then, using (5.10) and the identity (4.17), we derive that(
w

′
l , Lεw

′
l

)
∼ ε3

0

H

∫ ∞

−∞

[
g
′′
0 (w)a2 − g

′
0(w)H2

]
(w

′
)2 dy =

ε3
0H

′
2

H

∫ ∞

−∞
g0(w)w

′
dy(5.11a)

∼ ε3
0H

′
2

H

∫ ∞

−∞
(w − w

′′
)w

′
dy =

ε3
0H

′
2w

2
+

2H =
ε3
0h1x1(ξ

+
l )w2

+

2H .(5.11b)

Finally, upon substituting (5.8) and (5.11b) into (5.7), we obtain that

λ̄ε0clβ ∼ ε3
0cl

2H h1x1(ξ
+
l )w2

+ − ε0

2
ψ(ξl)w

2
+ .(5.12a)

In a similar way, we obtain from the transition layer solution at x1 = ξr that

λ̄ε0crβ ∼ −ε3
0cr
2H h1x1(ξ

−
r )w2

+ − ε0

2
ψ(ξr)w

2
+ .(5.12b)

The next step in the analysis is to reduce (5.12) to an explicit matrix eigenvalue problem.
To do so, we first solve (5.6) for ψ in order to calculate ψ(ξl) and ψ(ξr). A simple calculation
shows that (

ψ(ξl)
ψ(ξr)

)
=

ε2
0Hw2

+

D Gc , c ≡
(

cl
cr

)
,(5.13)
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where G is the Green’s function matrix defined by

G ≡ 1

d2 − e2

(
d e
e d

)
, d ≡ θ+ coth(θ+L) + θ− tanh

(
θ−(1 − L)

2

)
, e ≡ θ+csch(θ+L) .

(5.14)

Substituting (5.13) and (4.19) into (5.12), and recalling that λ̄ = λ + ε2
0m

2 and Hw2
+ ∼ 1/L

from (5.2c) and (4.5), we obtain that λ is an eigenvalue of the matrix eigenvalue problem

α(λ + ε2
0m

2)c ∼ ε2
0

[
1

2
L(1 − L)I − G

]
c .(5.15)

Here I is the identity matrix, and α ≡ 2βLD/w2
+.

The spectrum Gv = σv is readily calculated as

v+ =

(
1
1

)
, σ+ =

1

d− e
=

[
θ+ tanh

(
θ+L

2

)
+ θ− tanh

(
θ−(1 − L)

2

)]−1

(5.16a)

and

v− =

(
1
−1

)
, σ− =

1

d + e
=

[
θ+ coth

(
θ+L

2

)
+ θ− tanh

(
θ−(1 − L)

2

)]−1

.(5.16b)

Here θ± are defined in (5.6b). Combining (5.16) and (5.15), we obtain the explicit eigenvalues

λ± ∼ ε2
0

α

[
−αm2 +

L

2
(1 − L) − σ±

]
, c+ =

(
1
1

)
, c− =

(
1
−1

)
, α ≡ 2βLD

w2
+

.

(5.17)

The two eigenvectors c± in (5.17), which determine the eigenfunction φ in (5.4), lead to
two different types of transverse instability of the mesa-stripe. The zigzag mode, where ξl
and ξr are perturbed in the same direction, corresponds to c− = (1,−1)t because the signs
of x1 in yl and yr in (5.4) are different. Alternatively, the mode c+ = (1, 1)t corresponds
to a breather-type instability. For α sufficiently large, it is easy to see that λ± < 0 for any
m ≥ 0. Therefore, a mesa-stripe is stable when D is above some threshold. However, as D is
decreased (or equivalently as α is decreased), first the zigzag mode and then the breather mode
admits a nontrivial band of unstable wave numbers m. The fact that the zigzag mode becomes
unstable before the breather mode as D is decreased arises from the inequality σ− < σ+. Since
λ± = O(ε2

0) the time-scale for the development of these instabilities is O(ε−2
0 ).

We first consider zigzag and breather instabilities for a one-dimensional pulse where m = 0.
For ε0 → 0, a simple calculation using (5.16) for m = 0 and ε0 � 1 gives

σ− ∼ L

2
+ O(ε0) , σ+ ∼ 2D

ε0

[
1 − 2w+

2 − w+

]−1

.(5.18)

Then, from (5.17), we obtain for m = 0 and ε0 � 1 that

λ− ∼ −ε2
0L

2

2α
= −1.8112

ε2
0L

D < 0 , λ+ ∼ −ε0w
2
+

βL

[
1 − 2w+

2 − w+

]−1

= −1.1899
ε0

L
< 0 .

(5.19)
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(a) λ− versus κ for m = 0
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(b) λ+ versus κ for m = 0

Figure 22. Comparison of asymptotic (heavy solid curves) and full numerical results (dashed curves) for
λ± versus κ for m = 0 when ε0 = 0.02 and D = 10.0. (a) the zigzag eigenvalue λ−. (b) the breather eigenvalue
λ+.

Therefore, when L > 0, we have λ± < 0 for m = 0 and ε0 � 1, with λ− = O(ε2
0) and

λ+ = O(ε0). This shows that a one-dimensional pulse solution is always stable under the
effect of activator saturation. For the parameter set m = 0, ε0 = 0.02, and D = 10, for which
D = 0.2, in Figure 22(a) we compare the asymptotic result for the zigzag eigenvalue λ−, given
in (5.17), with the corresponding full numerical result computed from (5.2). The numerical
result is obtained by first discretizing (5.2) using centered differences and then using LAPACK
[1] to compute the relevant eigenvalue of a matrix eigenvalue problem. For the same parameter
set m = 0, ε0 = 0.02, and D = 10, in Figure 22(b) we show a similar favorable comparison
between the asymptotic result for the breather eigenvalue λ+ of (5.2) and the corresponding
full numerical result for λ+ computed from (5.2).

A similar favorable agreement between the asymptotic and numerical results for λ± occurs
for m > 0. As a function of m, in Figures 23(a) and 23(b) we show a favorable comparison be-
tween the asymptotic results for λ− and λ+, respectively, and the corresponding full numerical
results computed from (5.2) when ε0 = 0.02 and κ = 5.0.

For both λ− and λ+ we have λ± < 0 when m = 0 and λ± < 0 for m 
 1. This latter
inequality is readily seen from the estimate σ± = O(m−1) for m 
 1 obtained from (5.16). For
α sufficiently small, or equivalently for D sufficiently small, it follows from (5.17) that there
will be a band of unstable zigzag and breather modes where m = O(1). For three values of D,
in Figure 24(a) we plot λ− versus m, computed from the asymptotic result (5.17), for κ = 2.0
and ε0 = 0.0025. A similar plot is shown in Figure 24(b) for κ = 4.0 and ε0 = 0.0025. For a
fixed value of the saturation parameter, these figures show the emergence of O(1) instability
bands as D is decreased.

For the zigzag mode a nontrivial band of unstable modes emerges at the value α = αz and
m = mz, where the tangency conditions λ− = 0 and dλ−/dm = 0 are satisfied. From these
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(b) λ+ versus m

Figure 23. (a) Comparison of asymptotic (heavy solid curve) and full numerical results (dashed curve) for
λ− versus m when κ = 5.0 and ε0 = 0.02. (b) Comparison of asymptotic (heavy solid curve) and full numerical
results (dashed curve) for λ+ versus m when κ = 5.0 and ε0 = 0.02.
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(a) λ− versus m
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(b) λ+ versus m

Figure 24. (a) the asymptotic result λ− of (5.17) versus m for κ = 2.0 and ε0 = 0.0025 when D = 10.0
(heavy solid curve), D = 6.0 (solid curve), and D = 4.0 (dashed curve). An instability band exists when D = 4.0
since D = Dε0 = 0.010 < Dz. (b) the asymptotic result λ+ versus m of (5.17) for κ = 4.0 and ε = 0.0025
when D = 10.0 (heavy solid curve), D = 3.5 (solid curve), and D = 2.8 (dashed curve). An instability band
exists when D = 2.8 since D = Dε0 = 0.007 < Db.

conditions, we obtain that mz is the root of

m

2

dσ−
dm

= σ− − L

2
(1 − L) .(5.20)

Here mz depends on the plateau length L, which depends on the saturation parameter κ
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(a) mz and mb versus L
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(b) Dz and Db versus L

Figure 25. (a) the critical modes mz and mb versus L for the emergence of a zigzag (heavy solid curve)
and a breather (dashed curve) instability band, respectively. (b) the critical diffusivities Dz (heavy solid curve)
and Db (dashed curve) at the modes mz and mb, where an unstable zigzag and breather instability respectively,
emerge. The mesa-stripe solution is stable for values of D that lie above both curves in the right figure.

from (4.5). In terms of m = mz, the critical value αz is αz = m−2
z

[
L
2 (1 − L) − σ−

]
. Since

α is related to D by (5.17), this latter formula defines a critical value Dz for the inhibitor
diffusivity as a function of either L or κ as

Dz =
w2

+

2βLm2
z

[
L

2
(1 − L) − σ−

]
.(5.21)

To compute the curve mz at each fixed L we use Newton’s method coupled to a continuation
procedure in L starting from L � 1. For L � 1, a simple calculation using (5.16b) for σ−
shows that

σ− ∼ L

2
− mL2

4
tanh

(m
2

)
+ O(L3) .(5.22)

Therefore, from (5.20) we obtain for L � 1 that mz ≈ 4.5298 is the unique root of

−m

4
tanh

(m
2

)
+

m2

8
sech2

(m
2

)
= −1 .(5.23)

In Figure 25(a) we plot mz versus L, and in Figure 25(b) we plot the critical diffusivity Dz

versus L. The relation between L and κ in Figure 21 then determines these critical values
in terms of the saturation parameter. In Figure 25(b), the maximum value of the curve Dz

versus L occurs at Dz ≈ 0.0124 and mz = 4.92 when L ≈ 0.277, or equivalently κ = 1.92 from
Figure 21.

A similar calculation can be done for the breather instability corresponding to λ+. To
determine the value m = mb and D = Db where a nontrivial breather instability band first
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Figure 26. Experiment 9. The numerical solution to (1.6) in a square domain [0, 1]× [0, 1] at time t = 1000
for the parameter set ε0 = 0.03, κ = 5.0, and D = 10 Since D = Dε0 = 0.3 > Dz = .0124, the mesa-stripe
solution is stable to both zigzag and breather instabilities.

emerges, we set λ+ = dλ+/dm = 0 to obtain

m

2

dσ+

dm
= σ+ − L

2
(1 − L) , Db =

w2
+

2βLm2
z

[
L

2
(1 − L) − σ+

]
.(5.24)

In Figure 25(a) we plot mb versus L, and in Figure 25(b) we plot the critical diffusivity
Db versus L. Notice that Dz > Db, which implies that a zigzag instability occurs before a
breather instability as D is decreased. From Figure 25(a) we also observe that mb 
 1 for
L � 1. This is readily seen by using (5.16a) for σ+ in the transcendental relation (5.24) for
mb. In Figure 25(b), the maximum value of the curve Db versus L occurs at Db ≈ 0.00798
and mb ≈ 7.09 when L ≈ 0.406, or equivalently κ = 4.11 from Figure 21.

Finally, we perform a few full numerical simulations on (1.6) to confirm the asymptotic
stability theory.

Experiment 9. Consider (1.6) in the square [0, 1] × [0, 1] for the parameter set ε0 = 0.03,
κ = 5.0, and D = 10. For these values, (4.5) yields that L ≈ 0.45 and H ≈ 0.2056. The initial
condition for (1.6) is taken to be

a =
Hw+

2

(
tanh

[
ε−1
0 (x1 − ξl)

2

]
+ tanh

[
ε−1
0 (ξr − x1)

2

])
, h = H ,(5.25)

where ξl = 0.275 and xr = 0.725. Since D = Dε0 = 0.3 > Dz = .0124, the asymptotic theory
predicts that the mesa-stripe solution is stable to both zigzag and breather instabilities. This
is confirmed in Figure 26, where we plot the numerical solution to (1.6) at time t = 1000,
showing its convergence to a stable mesa-stripe solution.

Experiment 10. Next, we consider (1.6) in the square [0, 1] × [0, 1] with ε0 = 0.01 and
κ = 1.92, and for various values of D. The initial condition for (1.6) is (5.25) with L ≈ 0.28,
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Figure 27. Experiment 10. The numerical solution to (1.6) in a square domain [0, 1] × [0, 1] for ε0 = 0.01
and κ = 1.92. Top left: D = 0.6 at time t = 10, 000. Top right: D = 0.8 at time t = 10, 000. Bottom left:
D = 1.0 at time t = 20, 000. Bottom right: D = 1.4 at time t = 20, 000. A zigzag instability occurs in each
case, except for the value D = 1.4, which is above the zigzag instability threshold.

H = 0.33, ξl = 0.36, and ξr = 0.64. From Figure 25(b), κ = 1.92 corresponds to the
maximum point Dz ≈ 0.0124 of the curve Dz versus L. Since ε0 = 0.01 and D = D/ε0, the
asymptotic theory predicts that a zigzag instability occurs when D < Dz = 1.24. Although
this asymptotic stability result was derived in the limit D 
 1, we now show that it is in
reasonable quantitative agreement with full numerical simulations even when D ≈ 1. In
Figure 27 we plot the numerical solution to (1.6) for D = 0.6, D = 0.8, D = 1.0, and D = 1.4,
at the times shown in the figure caption. The mesa-stripe has a pronounced zigzag instability
for D = 0.6 and D = 0.8, but only a very slight instability for D = 1.0. For these parameter
values and for the domain width d0 = 1, the asymptotic theory predicts that the unstable
zigzag mode has exactly one crest. For D = 1.4, which is above the zigzag threshold D = 1.24,
the mesa-stripe is found to be stable. We believe that the saturation of the zigzag instability
leading to the apparent steady-state solution in Figure 27 is a result of the interaction of the
global inhibitor field h with the lateral boundaries of the rectangle. We remark that in order
to give a more precise test of the instability threshold, one would have to compute numerical
solutions of (1.6) with a value of ε0 that is a decade smaller than ε0 = 0.01. With such a small
value of ε0, it is challenging to obtain sufficient numerical resolution to resolve the transition
layers at the edges of the mesa-stripe.

Experiment 11. Finally, we consider (1.6) in the square [0, 1] × [0, 1] with k = 2.0. We
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Figure 28. Experiment 11. The numerical solution to (1.6) in a square domain [0, 1] × [0, 1] for k = 2.0
when ε0 and D are slowly decreasing functions of time given in (5.26). The initial condition is given in (5.25)
with H = 0.21, ξl = 0.36, and ξr = 0.64. The mesa-stripe is found to undergo a self-replication process leading
to a multistripe pattern. Top left: t = 100. Top right: t = 140. Bottom left: t = 160. Bottom right: t = 180.
See also the accompanying animation (63508 04.gif [731KB]).

take ε0 and D to be slowly decreasing functions of time given by

ε0(t) = 0.2D(t) , D(t) = 0.2e−0.002t .(5.26)

The initial condition for (1.6) is (5.25) with H = 0.21, ξl = 0.36, and ξr = 0.64. Since D
is not asymptotically large, the theory developed in sections 4 and 5 does not apply for this
example. The numerical results in Figure 28 show a new phenomenon whereby the initial
mesa-stripe splits into two, with the two daughter stripes undergoing a further splitting at
later times. Since the time-scale for splitting is much less than that for the development of
transverse instabilities, there are no zigzag instabilities observed in Figure 28. This stripe-
replication phenomenon is significantly more robust than that observed in Experiment 6 of
section 3 for the unsaturated GM model in the weak interaction regime. An analysis of this
mesa self-replication phenomena of Figure 28 is an open problem.

6. Conclusion. We have analyzed the stability of a stripe for two different forms of the
GM activator-inhibitor model in a rectangular domain. For the basic GM model, where sat-
uration effects are neglected, the stability of a homoclinic stripe was analyzed with respect
to spot-generating breakup instabilities and transverse zigzag instabilities. The wave num-
ber instability bands for each of these mechanisms were found to depend sensitively on the
asymptotic range of the inhibitor diffusivity D. In the semistrong regime, where D = O(1),
the homoclinic stripe typically disintegrates into an array of spots unless the domain width
is asymptotically small. In contrast, in the weak interaction regime, where the activator and
inhibitor diffusivities have the same asymptotic order, there are certain exponent sets asso-
ciated with the nonlinear kinetics where the homoclinic stripe can be destabilized solely by

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/63508_04.gif
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a transverse zigzag instability. In the semistrong regime it was also shown that a homoclinic
stripe can be stabilized with respect to breakup instabilities upon allowing for an asymptot-
ically small level of activator saturation. For larger levels of the saturation, the homoclinic
stripe ceases to exist and is replaced by a mesa-stripe, whose cross section consists of front-
back transition layers joined by an asymptotically flat plateau. For an asymptotically large
inhibitor diffusivity, it was shown that such a mesa-stripe can be stable with respect to both
zigzag and breakup instabilities.

There are some open problems suggested by this study. For homoclinic stripe solutions of
(1.4), a key open problem is to provide an analytical theory that characterizes the intricate
nature of the zigzag and breakup instability bands for a homoclinic stripe in the weak interac-
tion regime. For a mesa-stripe solution of (1.6), an interesting open problem is to rigorously
study the transition behavior in the stability properties of a stripe as the saturation parameter
κ decreases. In particular, for κ = O(ε2

0) in (2.23), where “fattened” homoclinic stripes occur,
it would be interesting to give a rigorous analytical confirmation of the disappearance of the
spot-generating breakup instability band shown numerically in section 2.3. Additionally, it
would be interesting to construct multiple mesa-stripe equilibria to (1.6) when D = O(1) in
order to study the global bifurcation properties of these solutions. Such a bifurcation diagram
is likely to be crucial for an analysis of the mesa-stripe self-replication behavior observed
in Experiment 11 of section 5. Other important open problems include providing a weakly
nonlinear theory for zigzag and breakup instabilities of homoclinic stripes, and studying the
stability of multistripe patterns.

Finally, it would be interesting to extend the stability analyzes given here to investigate
breakup and zigzag instabilities of stripes in the hybrid chemotaxis reaction-diffusion systems
of [36], [45], [30], and [31], and in the models of [9] and [19] for the spatial patterning of
vegetation in arid environments.

Appendix A. The nonlocal eigenvalue problem: Semistrong regime. We first outline
the derivation of the NLEP (2.9). In terms of the inner variable y = x1/ε, we use (2.1) to
calculate pap−1

e /hqe ∼ pwp−1 and qape/h
q+1
e ∼ qHγp−(q+1)wp. Therefore, from (2.6a), Φ(y)

satisfies

Φ
′′ − Φ + pwp−1Φ − qHγp−(q+1)wpη(0) =

(
λ + ε2m2

)
Φ , −∞ < y < ∞ ,(A.1)

Φ → 0 as |y| → ∞ .

In (2.6b), η is not singularly perturbed, and so we can determine η(0) in (A.1) from the outer
solution for η(x1). To do this, we use (2.1) and (2.3) to calculate the coefficients in (2.6b) in
terms of Dirac masses. This leads to

ηx1x1 − θ2
λη = 0 , −l < x1 < l , ηx1(±l) = 0 , θλ ≡

√
1 + m2 + τλ ,(A.2a)

[η] = 0 , [ηx1 ] =
sη(0)

Gl(0)
− rH−γ+1

Gl(0)

(∫∞
−∞wr−1Φ dy∫∞

−∞wr dy

)
.(A.2b)
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Here [f ] ≡ f(0+)− f(0−). To solve (A.2), we introduce the Green function Gλ(x1) satisfying

Gλx1x1 − θ2
λGλ = −δ(x1) , |x1| < l , Gλx1(±l) = 0 , Gλ(x1) =

cosh [θλ (l − |x1|)]
2θλ sinh (θλl)

.

(A.3)

The solution η(x1) can be written in terms of Gλ(x1), and in this way we determine η(0) as

η(0) = rH1−γ

[
s +

θλ tanh(θλl)

tanh l

]−1
(∫∞

−∞wr−1Φ dy∫∞
−∞wr dy

)
.(A.4)

Upon substituting (A.4) into (A.1), we obtain the eigenvalue problem (2.9) in Principal Result
2.2.

In the remainder of this appendix we prove Proposition 2.3 for the spectrum of (2.9). We
begin with a key lemma, which is an extension of a result of [41].

Lemma A.1 (from [38]). Let f(μ) and Cm(λ) be as defined in (2.11) and (2.9b), and let
ν0 > 0 be the unique positive eigenvalue of the local operator L0 in (2.9). Then, when μ and
λ are real, the following properties hold:

(i) f(0) =
1

p− 1
, f

′
(0) =

1

p− 1

[
1

p− 1
− 1

2r

]
,

(A.5a)

(ii) f
′
(μ) > 0 for 0 < μ < ν0 , when either r = 2 , 1 < p ≤ 5 , or r = p + 1 , p > 1 ,

(A.5b)

(iii) f
′′
(μ) > 0 for 0 < μ < ν0 , when either r = 2 , p = 2 , or r = p + 1 , 1 < p ≤ 5 ,

(A.5c)

(iv) f(μ) → +∞ as μ → ν−0 , f(μ) < 0 for μ > ν0 .
(A.5d)

In addition, C
′
m(λ) > 0, C

′′
m(λ) < 0, dCm

dm (0) > 0, and Cm(λ) = O(m) for m 
 1, where
Cm(λ) is given in (2.9b).

Proof. The proof of (A.5) is given in Proposition 3.5 of [38]. The positivity of C
′
m(λ), the

concavity of Cm(λ), and the positivity of dCm(0)
dm , all follow from a simple direct calculation

using the expression for Cm(λ) in (2.9b).
The proof of Proposition 2.3 is given in two parts. In part 1, Lemma A.1 is used to analyze

the spectrum of the NLEP (2.9) on the positive real axis. In part 2 a winding number criterion
locates any complex unstable spectrum.

We begin with part 1. By calculating Cm(0) in (2.9b) and by using dCm
dm (0) > 0, we obtain

that Cm(0) > 1/(p− 1) when m > mb−, where mb− is the unique root of the transcendental
equation (2.12) in Proposition 2.3. Then, with εm � 1, it follows from (A.5) and the condi-
tions C

′
m(λ) > 0 and C

′′
m(λ) < 0, that the curves Cm(λ) and f(λ + ε2m2) intersect exactly

once in 0 < λ < ν0 for any τ ≥ 0 when the condition (A.5c) on the exponents r and p are
satisfied. Therefore, under this condition, we conclude for m > mb− and εm � 1 that there
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is a unique real root in 0 < λ < ν0 to g(λ) = 0 defined in (2.11). Under these conditions, we
obtain a unique unstable real eigenvalue of (2.9).

Next, we consider real spectrum on the range 0 < m < mb− = O(1), for which Cm(0) <
f(ε2m2) ∼ 1

p−1 . Since Cm(λ) = O(τ1/2) for τ 
 1, it follows from (A.5) that for τ > τm
there are exactly two real roots to g(λ) = 0 in 0 < λ < ν0 when the condition (A.5c) on the
exponents holds. This yields two unstable real eigenvalues. Alternatively, for τ < τm, there
are no real roots to g(λ) = 0, and hence no unstable real eigenvalues. For m = mb− a simple
calculation shows that λ = 0 is a double zero eigenvalue when C

′
m(0) = f

′
(ε2m2). By using

(2.9b) for Cm, (A.5a) for f
′
(0), and assuming that p−1 < 2r, this condition yields the critical

value τm− > 0 of τ , defined in (2.14) of Proposition 2.3. For m = mb− and τ > τm− there is
a unique unstable real eigenvalue of (2.9).

Next, we consider real spectrum when m >
√
ν0/ε. For this range of m, (A.5d) shows that

f(λ+ ε2m2) < 0 for any λ > 0. Thus, since Cm(0) > 0 and C
′
m(λ) > 0, there are no real roots

to g(λ) = 0 in λ > 0 for any τ > 0, and consequently no unstable real eigenvalues of (2.9).
Finally, suppose that m =

√
β/ε with 0 < β < ν0, so that g(λ) = Cm(λ) − f(λ + β). Then,

since Cm(0) = O(m) for m 
 1, we get Cm(0) = O(ε−1) > f(β) for 0 < β < ν0. Therefore,
under the condition (A.5c) on the exponents r and p, there is a unique root to g(λ) = 0 in
0 < λ < ν0 − β for any τ ≥ 0, and consequently a unique unstable real eigenvalue to (2.9).

In part 2 of the proof we must count the number N of complex eigenvalues in the right
half-plane Re(λ) > 0. To do so, we proceed as in section 3 of [38] by using a winding number
criterion that determines N in terms of the change in the argument of g(iλI) along the positive
imaginary axis ΓI , denoted by [arg g]ΓI

, traversed in the downwards direction. For any τ > 0,
a slight modification of Proposition 3.3 of [38] shows that

N =
5

4
+

1

π
[arg g]ΓI

, 0 < m <

√
ν0

ε
, N =

1

4
+

1

π
[arg g]ΓI

, m >

√
ν0

ε
.(A.6)

Assume that the exponents satisfy r = 2 and p > 1. Then, by adapting the proof of Proposition
3.4 of [38], we conclude that [arg g]ΓI

= −π/4 when m > mb− and τ > 0 . This yields N = 1
when mb− < m <

√
ν0/ε and N = 0 when m >

√
ν0/ε. Therefore, the unstable eigenvalue

for mb− < m <
√
ν0/ε is the real positive eigenvalue obtained in part 1 of the proof. For the

range 0 < m < mb−, Proposition 3.4 of [38] can be applied directly, and for r = 2 and p > 1
we conclude that [arg g]ΓI

= 3π/4 when τ is sufficiently large and [arg g]ΓI
= −5π/4 when τ is

sufficiently small. For 0 < m < mb− with r = 2, this shows that N = 2 when τ is sufficiently
large and N = 0 when τ is sufficiently small. Therefore, for this range of the parameters,
there is a Hopf bifurcation as τ is increased past some critical value, which generates unstable
complex conjugate eigenvalues. Our results above for the positive real axis λ > 0 show that
these unstable complex eigenvalues must merge onto this axis when τ is sufficiently large.
This completes the proof of Proposition 3.3.

Appendix B. Zigzag eigenvalue: Semistrong regime. In this appendix we outline the
derivation of (2.21). We first write (2.6a) in terms of an operator Lε as

Lεφ− qape

hq+1
e

η = (λ + ε2m2)φ , −l < x < l , φx(±l) = 0 , Lεφ ≡ ε2φxx − φ +
pap−1

e

hqe
φ .

(B.1)
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We differentiate the equilibrium problem for ae in (1.4) with respect to x1 to get Lεaex1 =
qapehex1/h

q+1
e , where Lε is defined in (B.1). Therefore, since ae ∼ Hγw, we obtain

Lεw
′ ∼ εqHqwp

hq+1
e

hex1 .(B.2)

This suggests that we expand φ and η as

φ = w
′
+ εφ1 + · · · , η(x1) = εη0(x1) + · · · .(B.3)

We substitute (B.3) into (B.1) and use (B.2) with λ = O(ε2) and m = O(1). This yields
that φ1(y) satisfies

Lεφ1 ∼ qwpHq

hq+1
e

f(εy) , f(x1) ≡ Hγη0(x1) − hex1(x1) .(B.4)

By substituting (B.3) and η = εη0 into (2.6b) and labeling θλ ≡
√

1 + m2 + τλ, we get that
η0 satisfies

η0x1x1 − θ2
λη0 = −rar−1

e

ε2hse

(
w

′
+ εφ1

)
+

sare
εhs+1

e
η0 , −l < x < l , η0x1(±l) = 0 .(B.5)

The term proportional to w
′

on the right-hand side of (B.5) behaves like a dipole as ε →
0. Therefore, for ε → 0, it can be represented as a multiple of δ

′
(x1), where δ(x1) is the

delta function. Thus, η0 is discontinuous across x1 = 0. However, f(x1) defined in (B.4) is
continuous across x1 = 0. To see this, we differentiate (1.4) for he with respect to x1 and then
subtract appropriate multiples of the resulting equation and (B.5) to find that the dipole term
cancels exactly. Thus, f(x1) is continuous across x1 = 0, and so 〈f〉 = f(0). Since 〈hex〉 = 0
from (2.1), we get f(0) = Hγ〈η0〉. Here and below we have defined 〈ξ〉 ≡ (ξ(0+) + ξ(0−))/2
and [ξ] ≡ ξ(0+)− ξ(0−), where ξ(0±) are the one-sided limits of ξ(x1) as x1 → 0±. Therefore,
for ε � 1, φ1 in (B.4) satisfies

Lεφ1 ∼ qwpHγ−1〈η0〉 .(B.6)

Since Lεw = (p− 1)wp + O(ε), the solution to (B.6) is simply

φ1(y) =
q

p− 1
w(y)Hγ−1〈η0〉 + O(ε) .(B.7)

Next, we use (2.1), (2.3), (B.3), and (B.7) to calculate the coefficients in (B.5) in the sense
of distributions. With η̃0 defined by η0 = H1−γ η̃0, and by using Gl(0) = 1

2 coth l as given in
(2.3), we obtain that η̃0 satisfies

η̃0x1x1 − θ2
λη̃0 = 0 , −l < x1 < l , η̃0x1(±l) = 0 , θλ ≡

√
1 + m2 + τλ ,(B.8a)

[η̃0] = − 1

Gl(0)
, [η̃0x1 ] =

(
s− qr

p− 1

)
〈η̃0〉
Gl(0)

.(B.8b)
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The remaining part of the derivation proceeds as in (4.16)–(4.23) of [10]. This leads to

(
λ + ε2m2

)
∼ ε2qJ

p + 1

(
〈η̃0x1〉 −

hex1x1(0)

H

)
, J ≡

∫∞
−∞wp+1 dy∫∞
−∞w′2 dy

.(B.9)

From Appendix A of [37] we calculate J = 2(p + 1)/(p− 1). Then, from (2.1), we obtain
hex1x1(0) = H. Finally, by solving (B.8) explicitly, we calculate

〈η̃0x1〉 = θλ tanh l tanh(θλl) .(B.10)

Upon substituting these formulae into (B.9), we obtain that the small eigenvalue λ = O(ε2)
satisfies (2.21).
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Accurately Model the Kuramoto–Sivashinsky Dynamics with Holistic
Discretization∗
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Abstract. We analyze the nonlinear Kuramoto–Sivashinsky equation to develop accurate discretizations model-
ing its dynamics on coarse grids. The analysis is based upon center manifold theory, so we are assured
that the discretization accurately models the dynamics and may be constructed systematically. The
theory is applied after dividing the physical domain into small elements by introducing isolating
internal boundaries which are later removed. Comprehensive numerical solutions and simulations
show that the holistic discretizations excellently reproduce the steady states and the dynamics of
the Kuramoto–Sivashinsky equation. The Kuramoto–Sivashinsky equation is used as an example
to show how holistic discretization may be successfully applied to fourth-order, nonlinear, spatio-
temporal dynamical systems. This novel center manifold approach is holistic in the sense that it
treats the dynamical equations as a whole, not just as the sum of separate terms.
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1. Introduction. The Kuramoto–Sivashinsky equation, here

∂u

∂t
+ 4

∂4u

∂x4
+ α

(
u
∂u

∂x
+

∂2u

∂x2

)
= 0,(1)

was introduced by Sivashinsky [32] as a model of instabilities on interfaces and flame fronts,
and by Kuramoto [16] as a model of phase turbulence in chemical oscillations. It receives con-
siderable attention as a model of complex spatio-temporal dynamics [13, 21, 5, 12, e.g.]. In
the form (1), with 2π periodic boundary conditions, α is a bifurcation parameter that depends
upon the size of the typical pattern [31]. The Kuramoto–Sivashinsky equation includes the
mechanisms of linear negative diffusion αuxx, high-order dissipation 4uxxxx, and nonlinear
advection/steepening αuux. The pde (1) has strong dissipative dynamics arising from the
fourth-order dissipation. Many modes of this pde decay rapidly because of this strong dissi-
pation. Thus the dynamics are dominated by a relatively few large scale modes. We create
and explore the macroscopic modeling of the Kuramoto–Sivashinsky dynamics using holistic
discretization as initiated by MacKenzie and Roberts [18].

We study the Kuramoto–Sivashinsky equation here for several reasons. First, the pde is
fourth-order and therefore, following the example of Burgers’ equation [25], provides a further
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test case for the application of the holistic approach to higher-order dissipative pdes. Second,
the Kuramoto–Sivashinsky equation has analogies with the Navier–Stokes equations of fluid
dynamics. Holmes, Lumley, and Berkooz [12] argued that these analogies exist on two levels:
in the energy source and dissipation terms of both dynamical systems, and in the reflection and
translational symmetries of the Kuramoto–Sivashinsky equation and the spanwise symmetries
of the Navier–Stokes equations in the boundary layer. This analogy between symmetries
suggests that the Fourier series and corresponding modal interactions are comparable for
these two problems. Third, Cross and Hohenberg [5] describe how the Kuramoto–Sivashinsky
equation exhibits the complexities of weak turbulence or spatio-temporal chaos. The complex
dynamics of the Kuramoto–Sivashinsky equation (1) is a searching test of the performance of
the holistic approach to coarse grained modeling of dynamical systems.

Approximate inertial manifolds and variants [11, 9, 10, 1, 14, e.g.] capture the long-term
low-dimensional behavior of the Kuramoto–Sivashinsky equation. Most constructions of ap-
proximate inertial manifolds are based upon nonlinear Galerkin methods [22, 20, 14, 10, e.g.].
Approximate inertial manifolds are generally constructed by finding global eigenfunctions of
the linear dynamics. Our approach is similar to these methods, in that we project onto nat-
ural solutions of the pde, and performs nearly as well; see section 4.3. However, in contrast,
the holistic approach undertaken here bases analysis upon the local dynamics within and
between finite elements, and thus we contend it will be more useful in applications; for exam-
ple, the approach is readily adapted to the modeling of a wide variety of physical boundary
conditions [27].

Our approach is to divide the spatial domain into disjoint elements of finite size h (sec-
tion 2.1). Initially these finite elements are decoupled, and so dissipation would cause solu-
tions to exponentially quickly become constant in each element. We then couple the elements
together so that information is exchanged between elements—parameterized by a coupling
parameter γ so that γ = 1 recovers the original Kuramoto–Sivashinsky dynamics. The cou-
pling drives the evolution of the field in each element. Solving the Kuramoto–Sivashinsky pde

within each element, and with the interelement coupling, hence resolves subgrid scale dynam-
ics and their interactions with nearby elements. Crucially, such solutions are determined in
constructing the holistic model and so are done only once; the holistic model may then be
used many times without any further analysis of subgrid structure, as the subgrid structure
has already been incorporated into the closure of the holistic model. Center manifold theory
[3, 23, e.g.] provides rigorous support for holistic models as introduced by Roberts [25] for
Burgers’ equation and discussed in section 2.2.

For example, a low-order analysis, reported in section 3.1, of the Kuramoto–Sivashinsky
equation (1) favors the discretization

duj
dt

+
4uj+2 − 16uj+1 + 24uj − 16uj−1 + 4uj−2

h4

+ α

(
−uj+2 + 16uj+1 − 30uj + 16uj−1 − uj−2

12h2

)

+ α

(
uj

uj+1 − uj−1

4h
+

u2
j+1 − u2

j−1

4h
− uj+2uj+1 − uj−2uj−1

12h

)
≈ 0,(2)
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where the uj ’s are grid values spaced h apart (one for each element). The first two lines of
the holistic discretization (2) show that the holistic method generates conventional centered
finite difference approximations for the linear terms 4uxxxx and αuxx. The third line details
a specific nonstandard approximation for the nonlinear term αuux: it is a mix of three valid
approximations to uux; the holistic analysis determines the specific mix through the sub-
grid scale modeling of physical processes; see section 3.2. The holistic discretization is not
constructed by discretizing the Kuramoto–Sivashinsky equation (1) term-by-term; rather, the
subgrid scale dynamics of (1) together with interelement coupling generate the specific holistic
discretization (2).

The discretization (2) is a low-order approximation. Center manifold theory provides
systematic refinements. Analysis of the center manifold to higher orders in nonlinearity or
interelement interaction, discussed in section 3, gives further refinement to the discretization.
The higher-order terms come from resolving more subgrid scale processes and interactions.
One effect of resolving systematically the interactions between elements is that the holistic
model and the pde agree to high order in the element size h: for example, the low-order
model (2) is equivalent to the pde

∂u

∂t
= −α

(
u
∂u

∂x
+

∂2u

∂x2

)
− 4

∂4u

∂x4
− 2h2

3

∂6u

∂x6
+ O

(
h4

)
(3)

as h → 0. Thus the nonlinear processes are modeled with an error that decreases quadratically
to zero with element size. Further higher-order analyses lead to higher-order consistency, as
element size h → 0, between the equivalent pdes, such as (3), of the holistic discretizations
and the Kuramoto–Sivashinsky pde (see section 3.3). Such consistency is further justification
for our approach, in addition to the support provided by center manifold theory for finite
element size h.

The bulk of this paper is then a comprehensive comparative study of the various models
of the Kuramoto–Sivashinsky dynamics; even further details are reported by MacKenzie [19].
A detailed numerical study of the holistic predictions for the steady states of the Kuramoto–
Sivashinsky equation is the focal point of section 4, followed by an exploration of the holistic
predictions for the time dependent phenomena of the Kuramoto–Sivashinsky equation in sec-
tion 5. We compare the predicted steady states, their stability and bifurcation diagrams;
the dynamics near the steady states; Hopf bifurcations leading to period doubling sequences;
and the spatio-temporal patterns at relatively large nonlinearity parameter α. We find that
the holistic models have excellent performance on coarse grids, thus enabling simulations to
use large time steps. The excellent performance detailed herein is further evidence that the
holistic approach is a robust and useful method for discretizing pdes.

2. Use a homotopy in interelement coupling. The construction of a discretization is
based upon breaking the spatial domain into disjoint finite elements and then joining them
together again. We control this process by a coupling parameter γ that smoothly parametrizes
the transition between decoupled elements and fully coupled elements for which we recover a
model for the original pde. Furthermore, we construct the model using solutions of the pde

within each element and hence resolve subgrid scale dynamics. Center manifold theory [3, 23,
e.g.] provides rigorous support for holistic models, as introduced by Roberts [25] for Burgers’
equation.
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Figure 1. An example of the one-dimensional grid with regular elements of width h. The jth element is
centered about the grid point xj. The vertical blue lines form the element boundaries, which for the jth element
are located at xj±1/2 = (j ± 1/2)h.

2.1. Introduce internal boundaries between elements. Establish the spatial discretiza-
tion by dividing the domain into m elements of equal and finite width h and introducing
an equispaced grid of collocation points, xj = jh, at the center of each element; see Fig-
ure 1.1 Express the subgrid field in the jth element by u = vj(x, t)—we solve the Kuramoto–
Sivashinsky pde (1) with interelement coupling introduced via artificial internal boundary
conditions (ibcs). We introduce a homotopy in an interelement coupling parameter γ: when
γ = 0 the elements are effectively isolated from each other, providing the basis for the ap-
plication of center manifold theory; whereas when evaluated at γ = 1 the elements are fully
coupled together, and hence the discretized model applies to the original pde. Since the
Kuramoto–Sivashinsky pde is fourth-order we require four ibcs for each element to ensure
satisfactory coupling between neighboring elements. Here we use the nonlocal ibcs

δxvj(x, t) = γ δvj±1/2(x, t) at x = xj±1/2,(4)

δ3
xvj(x, t) = γ2δ3vj±1/2(x, t) at x = xj±1/2,(5)

which are an extension of the nonlocal ibcs explored by Roberts [26] for Burgers’ equation;
alternative local ibcs were explored by MacKenzie [19] but are generally inferior. The nonlocal
ibcs (4)–(5) involve the centered difference operators δ and δx: the operator δx denotes a
centered difference in x only, with step h, whereas the operator δ denotes a centered difference
applied to the grid index j with step 1; so for example, the first of the ibcs, (4), is

vj(xj±1, t) − vj(xj , t) = γ[vj+1(xj±1, t) − vj(xj , t)].(6)

Note that the field vj(x, t) extends analytically to at least xj±2 to allow the application of
the nonlocal ibcs (5). The physical interpretation of these ibcs is not obvious. First, when
γ = 0, (4)–(5) ensure that the first and third differences in x of the field vj centered about the
element boundaries xj±1/2 are zero. These isolate each element from its neighbors, as there
is then no coupling between them. In each element vj(x, t) = constant is an equilibrium. It
is dynamically attractive, provided that the instability controlled by α/h2 is not too large
compared with the dissipation of order 1/h4. This simple class of piecewise constant solutions
provide the basis for analyzing the dynamics when the elements are coupled together with
nonzero γ. Second, the nonlocal ibcs evaluated at γ = 1 require that the field vj(x, t),
when extrapolated to xj±1 and xj±2, is equal to the grid point value of the subgrid field of
that element, uj±1 and uj±2, respectively. See the schematic representation in Figure 2 of

1In principle, elements may be of unequal size. However, to simplify the analysis, herein all elements are of
equal width h.
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Figure 2. Schematic diagram of the fields vj(x, t), vj+1(x, t), and vj−1(x, t) for the nonlocal ibcs (4)–(5)
with γ = 1. See the fields pass through neighboring grid values uj and uj±1, and also uj±2 when appropriate.

these nonlocal boundary conditions evaluated at γ = 1. This requirement restores sufficient
continuity to ensure that the holistic model applies to the original pde.

The interelement coupling parameter γ controls the flow of information between neighbor-
ing elements. We construct solutions as power series expansions in the coupling parameter γ.2

When O(γ2) terms are neglected in the holistic model, the field in the jth element involves
information about the fields in the j± 1 elements. Similarly, when O(γ3) terms are neglected
in the approximation, the field in the jth element involves information about the fields in the
j ± 1 and j ± 2 elements. Consequently, the order of γ retained in the holistic model controls
the stencil width of the discretization.

Roberts [26] argued that this particular form of the nonlocal ibcs ensures that these holistic
models are consistent with any given pde to high order in the grid size h as h → 0. Inter-
estingly, Roberts and Kevrekidis [29] show that closely related coupling boundary conditions
provide high-order consistency for multiscale simulations using the gap-tooth scheme.

2.2. Center manifold theory supports the discretization. The existence, relevance, and
approximation theorems [3, 4, e.g.] of center manifold theory apply to the Kuramoto–Sivashin-
sky pde (1) with ibcs (4)–(5). Similar to the application to Burgers’ equation by Roberts [25],
the result here is support for a low-dimensional discrete model for the Kuramoto–Sivashinsky
dynamics at finite grid size.

Theoretical support is based upon the piecewise constant solutions obtained when all the
elements are insulated from each other. Adjoin to the Kuramoto–Sivashinsky pde (1) the
dynamically trivial equations for the coupling parameter γ and the nonlinearity parameter α,

∂γ

∂t
=

∂α

∂t
= 0,(7)

and consider the dynamics in the extended state space (u(x), γ, α). Adjoining such trivial
equations for parameters is commonly used to unfold bifurcations [3, section 1.5]. In this
extended space there is a subspace of fixed points with u = constant in each element and

2Such homotopies are used successfully in other numerical methods. For example, Liao [17] proposed a
homotopy in his general boundary element method from auxiliary linear operators whose fundamental solutions
are well known. Here the homotopy is only in the ibcs.
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γ = α = 0.3 Linearizing the pde and ibcs about each fixed point, u = constant + u′(x, t) for
small u′, gives

∂u′

∂t
= −∂4u′

∂x4
such that δxu

′(x, t)
∣∣
x=xj±1/2

= δ3
xu

′(x, t)
∣∣
x=xj±1/2

= 0.

Solving these linear equations, the nth linear eigenmode associated with each element is

α = γ = 0, u′ ∝ eλnt cos
[nπ
h

(x− xj−1/2)
]

(8)

for the nonlocal ibcs (4)–(5), where n = 0, 1, 2, . . . and the eigenvalue λn = −n4π4/h4. There
are also the trivial modes γ = const and α = const. Therefore, in a spatial domain of
m elements there are m+ 2 zero eigenvalues: one associated with each of the m elements and
two from the trivial (7). All other eigenvalues are negative, ≤ −π4/h4. Thus, the existence
theorem (see [4, p. 281] or [33, p. 96]) guarantees that an m+2-dimensional center manifold M
exists for the Kuramoto–Sivashinsky pde (1) with the trivial (7) and ibcs (4)–(5).

We parametrize the (m+2)-dimensional center manifold M by the m+2 parameters γ, α,
and the grid values uj .

4 Define u as the vector of the m grid values. Thus for some function v
to be determined, the center manifold M is

u(x, t) = v(x; u, γ, α).(9)

However, we find it convenient to view the center manifold (9) as the union of the set of
subgrid fields vj(x; u, γ, α) over the physical domain. The corresponding amplitude condition,
that the field in each element has to pass through its grid value, is

uj = vj(xj ; u, γ, α).(10)

The existence theorem [4] also asserts that on the center manifold the grid values uj evolve
deterministically in time according to the system of odes

u̇j = duj/dt = gj(u, γ, α),(11)

where gj is the restriction of the Kuramoto–Sivashinsky pde (1) with the trivial (7) and ibcs
(4)–(5) to the center manifold M. It is this evolution (11) of the grid values that gives the
holistic discretization.

Note that the center manifold M is global in u but local in γ and α. When the parameters
γ = α = 0 the Kuramoto–Sivashinsky pde has an m-dimensional center subspace E of fixed
points with the field u being independently constant in each element; these are fixed points for
all u. When the parameters γ and α are nonzero this subspace is “bent” to the curved center

3In principle we need not base the analysis about a zero nonlinearity parameter. In practice, allowing
nonzero α as a base makes the algebra too complicated, as the subgrid structure would then be determined by
recursively solving equations of the form −4u′

xxxx−α(u′
xx +uju

′
x) = rhs for corrections u′. Thus the practical

route for this modeling of nonlinear pdes is to adjoin ∂α/∂t = 0 so we treat the nonlinear parameter α as
small.

4These grid values are one choice to represent the magnitude of the field u in each element. Other choices
to represent the local field are possible, but the grid values appear most convenient.
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manifold M. Thus the models we construct are valid for small enough γ and α, although
we use them at finite γ and α, but are formally valid for all |u|. Numerical solutions of the
center manifold models, such as those in section 3.2, indicate that parameter values as large
as γ = 1 and α = 20–50 are indeed within the range of validity of our approach, even on
relatively coarse grids.

We now support the claim that the evolution of the discrete grid values (11) actually
models the Kuramoto–Sivashinsky pde (1). The relevance theorem of center manifolds (see
[4, p. 282] or [33, p. 128]) guarantees that all solutions of the Kuramoto–Sivashinsky pde (1)
with (7) and the ibcs (4)–(5) that remain in some neighborhood of the center subspace E in
(u(x), γ, α) space are exponentially quickly attracted to the center manifold M and thence to
a solution of the m discrete odes (11). For our application of center manifold theory to the
holistic model we seek regimes where this neighborhood includes γ = 1 and α of interest. We
estimate the rate of attraction by the leading negative eigenvalue, here λ1 = −π4/h4. The
actual rate of attraction may be less due to the difference between center manifold M and
the center subspace E , but λ1 is the correct order of magnitude. This exponentially quick
attraction ensures the so-called asymptotic completeness [30]: after the exponentially quick
transients of the approach to M by any trajectory, the evolution of the discretization (11)
on M accurately models the dynamics of the Kuramoto–Sivashinsky pde (1).

2.3. Approximate the shape of the center manifold. Having established that we may
find a low-dimensional description (9)–(11) of the interacting elements that is relevant to the
Kuramoto–Sivashinsky pde (1), we need to construct the shape of the center manifold and the
corresponding evolution on the manifold. The approximation theorem of Carr and Muncaster
[4, p. 283] assures us that upon substituting the ansatz (9)–(11) into the complete system and
solving to some order of error in α and γ, then the center manifold M and the evolution thereon
will be approximated to the same order. However, we need to evaluate the approximations at
the coupling parameter γ = 1 because it is only then that the artificial internal boundaries are
removed. Thus the actual error of the model due to the evaluation at γ = 1 is not estimated.
However, the holistic method for discretizing the Kuramoto–Sivashinsky equation is supported
in three ways: first, the smooth homotopy from γ = 0 with large spectral gap to the gravest
decaying mode with decay rate ≈ −π4/h4; second, the holistic models are consistent with
the Kuramoto–Sivashinsky pde to high order in grid size h (see section 3.3); third, we see
in sections 4–5 that the holistic discretization resolves accurately both steady-state solutions
and time dependent phenomena of the Kuramoto–Sivashinsky pde.

To construct the center manifold, we solve for the field vj in each element. For definiteness,
here we consider domains periodic in space, or equivalently elements far from the influence of
any physical boundary. By translational symmetry of the Kuramoto–Sivashinsky pde (1) the
subgrid field in each element is identical, except for the appropriate shift in the grid index j.
Thus we construct the subgrid field and evolution for a general jth element; section 3 gives
some examples.

The algebraic details of the derivation of the center manifold model (9)–(11) are handled
by computer algebra. In an algorithm introduced by Roberts [24], iteration drives to zero the
residuals of the governing pde (1) and its ibcs (4)–(5) and amplitude condition (10). Since the
algebraic details of the construction are tedious, they are not given; instead, see the computer
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algebra procedure of [28].

This computer algebra is based upon driving the residuals of the governing equations to
zero in the following manner. Recall from section 2.2 that the grid values u parametrize the
center manifold (9) and that (11) gives the evolution of the grid values. Thus substitute these
into the Kuramoto–Sivashinsky pde (1) and seek to solve

∂vj
∂t

=
∑
k

∂vj
∂uk

gk = −4
∂4vj
∂x4

− α

(
∂2vj
∂x2

+ vj
∂vj
∂x

)
,(12)

together with the nonlocal ibcs(4)–(5) and the amplitude equation (10), to some order in
parameters γ and α. The iteration is that, given any approximation, denoted by ·̃, we seek
corrections, denoted by primes, such that vj = ṽj + v′j and gj = g̃j + g′j better satisfy the
Kuramoto–Sivashinsky pde. Thus in each iteration we solve a problem of the form

−4
∂4v′j
∂x4

= g′j + Residual,(13)

where from (12) the

Residual =
∑
k

∂ṽj
∂uk

gk + 4
∂4ṽj
∂x4

+ α

(
∂2ṽj
∂x2

+ ṽj
∂ṽj
∂x

)
,(14)

together with the ibcs, for the corrections, primed quantities, to the subgrid field and the
evolution of the grid values. Note that the residual in (14) is the residual of the Kuramoto–
Sivashinsky pde for the current approximation. The iteration scheme starts with the linear
solution in each element, namely vj(x,u, γ, α) = uj and gj(u, γ, α) = 0. The iteration ter-
minates when the residuals of the Kuramoto–Sivashinsky pde (12), and the ibcs, are zero
to some order in (γ, α). Then theory assures us that the subgrid field in each element and
the evolution of the grid values are correct to the same order in (γ, α); that is, when the
residuals are of order O(γm, αn), theory assures us the errors are also of order O(γm, αn).
This assurance holds for both steady states and time dependent dynamics.

3. Various holistic models. Here we record holistic models of the Kuramoto–Sivashinsky
pde (1), to various orders in coupling parameter γ, governing the width of the numerical
stencil, and in the nonlinearity parameter α. In order to be used, the models need to be
evaluated at γ = 1, as then the nonlocal ibcs (4)–(5) ensure sufficient continuity in the
solution field. We write the models in terms of the centered difference and mean operators,

δuj = uj+1/2 − uj−1/2 and μuj = (uj+1/2 + uj−1/2)/2,

respectively. A reduce program [28] constructs all models. We present in detail here only
holistic models to errors O(α2), as the level of complexity increases enormously with the order
of nonlinearity α.
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3.1. Some holistic discretizations. In order to represent the spatial fourth derivative
in the Kuramoto–Sivashinsky equation, we need at least a five-point stencil approximation.
Thus we determine the interactions between at least next-nearest neighboring elements by
obtaining up to at least quadratic terms in the coupling parameter γ. Computer algebra
readily determines higher-order expressions in the coupling parameter γ:

u̇j = −γα

h2
δ2uj −

γα

h
ujδμuj −

4γ2

h4
δ4uj +

γ2α

12h2
δ4uj

+
γ2α

12h

(
2ujδ

3μuj + δ2ujδ
3μuj + δ4ujδμuj

)
(15)

+
2γ3

3h4
δ6uj −

γ3α

90h2
δ6uj

− γ3α

480h

(
16ujδ

5μuj + 30 δ4ujδ
3μuj + 40 δ2ujδ

3μuj

+ 40 δ4ujδμuj + 28 δ2ujδ
5μuj + 14 δ6ujδμuj

+ 7δ4ujδ
5μuj + 7δ6ujδ

3μuj
)

(16)

− 7γ4

60h4
δ8uj +

γ4α

560h2
δ8uj

+
γ4α

60480h

(
432ujδ

7μuj + 3528 δ2ujδ
5μuj + 1507 δ2ujδ

7μuj

+ 3780 δ4ujδ
3μuj + 3951 δ4ujδ

5μuj + 984 δ4ujδ
7μuj

+ 1764 δ6ujδμuj + 3419 δ6ujδ
3μuj + 1414 δ6ujδ

5μuj

+ 164 δ6ujδ
7μuj + 523 δ8ujδμuj + 656 δ8ujδ

3μuj

+ 164 δ8ujδ
5μuj

)
+ O

(
γ5, α2

)
.(17)

We have ordered (and colored) the terms in this discretization in increasing powers of coupling
parameter γ in order to discuss the three different truncations labeled by the three different
equation numbers.

The O(γ3, α2) holistic discretization is formed by truncating the above model to the
(green) terms before and at (15). Evaluated at coupling parameter γ = 1, this discretization
forms the basic five-point stencil approximation (2) discussed in the Introduction. The first line
of (15), when evaluated at γ = 1, gives a second-order centered difference approximation for
the hyperdiffusion term 4uxxxx, a fourth-order centered difference approximation to the linear
growth term αuxx, and a second-order centered difference approximation to the nonlinear
advection term αuux. The second line modifies the nonlinear discretization to account for
interaction with nonlinear effects caused by the next-nearest neighbor elements.

The holistic discretization (15) contains the approximation

uux|xj ≈
(
uj

uj+1 − uj−1

4h
+

u2
j+1 − u2

j−1

4h
− uj+2uj+1 − uj−2uj−1

12h

)
(18)
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when evaluated at γ = 1. This is a 1/2 : 1 : −1/2 mix of the approximations

uux|xj ≈ uj
uj+1 − uj−1

2h
≈

u2
j+1 − u2

j−1

4h
≈ uj+2uj+1 − uj−2uj−1

6h
,(19)

respectively. This particular nonstandard approximation (18) to the nonlinear term αuux
arises due to the modeling of subgrid scale interactions between the Kuramoto–Sivashinsky
equation and the interelement coupling. Such nonstandard approximations generated through
this approach can have robust numerical characteristics [26, section 2].

The O(γ4, α2) holistic discretization is formed by truncating the above model to the (green
and olive green) terms before and at (16). This discretization forms a seven-point stencil
approximation, involving uj , uj±1, uj±2, and uj±3. The first and third lines of (16), when
evaluated at γ = 1, give a fourth-order centered difference approximation to the hyperdiffusion
term, a sixth-order centered difference approximation to the linear growth term, and a second-
order centered difference approximation to the nonlinear advection term. The second, fourth,
fifth, and sixth lines account for higher-order subgrid scale dynamics of the nonlinearity and
its interelement coupling to generate a fourth-order centered difference approximation to the
nonlinearity uux.

The O(γ5, α2) holistic discretization (17) (all colored terms) forms a nine-point stencil
approximation, involving only uj , uj±1, uj±2, uj±3, and uj±4. The first, third, and seventh
lines of (17) when evaluated at γ = 1 give a sixth-order centered difference approximation
for the hyperdiffusion term, an eighth-order centered difference approximation for the linear
growth term, and a second-order centered difference approximation for the nonlinear advection
term. The remaining lines provide modifications to model the nonlinear uux to sixth order
through resolving subgrid scale dynamics.

We do not code these discretizations manually. Instead, the computer algebra program
of [28] is used with the unix editor sed to automatically write the discretization in a form
suitable for Matlab simulation.

Compare with conventional centered difference models. Traditional direct finite differences
generate the following discretization of the Kuramoto–Sivashinsky pde (1):

u̇j = −α

h
ujδμuj −

α

h2
δ2uj −

4

h4
δ4uj(20)

+
α

h

1

6
ujδ

3μuj +
α

h2

1

12
δ4uj +

4

h4

1

6
δ6uj(21)

− α

h

1

30
ujδ

5μuj −
α

h2

1

90
δ6uj −

4

h4

7

240
δ6uj + O

(
h6

)
.(22)

Truncate the above discretization to the terms before and at

• (20) to obtain a five-point conventional discretization;
• (21) to obtain a seven-point conventional discretization;
• (22) to obtain a nine-point conventional discretization.

Consider the different view of the errors for the discretizations: the centered difference
approximations (20)–(22) are justified by consistency as grid size h → 0, whereas the holistic
discretizations (15)–(17) are supported by center manifold theory at finite grid size h. The
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Figure 3. α = 5. Wave-like solutions at t = 0, 0.2, 0.4, 0.6, 0.8, 1 for the O(γ3, α2) holistic model (15),
shown in green, and the second-order centered difference approximation (20), in magenta, on coarse grids of
eight elements on [0, 2π]. The accurate solution is shown in blue.

errors in the center manifold approach are due to the truncation of dependence in the in-
terelement coupling parameter γ and the nonlinearity parameter α. However, as argued by
Roberts [26] for linear systems and as demonstrated in section 3.3, the particular choice of
the ibcs (4)–(5) ensures that the holistic discretizations are also consistent as h → 0 with the
Kuramoto–Sivashinsky pde (1).

3.2. Modeling the subgrid field powers our methodology. Recall that the set of sub-
grid fields over the physical domain form a state on the center manifold. Here we plot some
example subgrid fields for various holistic models. For example, Figure 3 shows the evolv-
ing subgrid fields of wave-like solutions of the holistic discretization (15) compared with an
accurate solution and the Lagrangian interpolation of the second-order centered difference
model (20). Such plots reinforce the link between the abstract center manifold description of
the dynamics and the physical subgrid fields for the low-order holistic models. Recall that
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Figure 4. Subgrid fields of the holistic models with errors O(γ3, α2) (15) (green), O(γ4, α2) (16) (olive
green), and O(γ5, α2) (17) (cyan), for a steady state of the Kuramoto–Sivashinsky equation at α = 20, with
eight elements on [0, π]. An accurate solution is also plotted in blue.

the key methodology difference with conventional finite differences, and finite elements, is
that the subgrid fields of the holistic models are constructed by actual local solutions of the
Kuramoto–Sivashinsky pde; see section 2.3.

Until section 5 we restrict our attention to odd symmetric solutions that are 2π periodic.
This restriction is to compare results with the numerical investigations of Jolly, Kevrekidis,
and Titi [14], which we consider in more detail in sections 4 and 5. Typically we use a
grid of eight equi-spaced elements on the interval [0, π]. The subgrid fields are plotted for
approximations to the steady states of the Kuramoto–Sivashinsky equation (1) with these
periodic boundary conditions, computed using holistic discretizations at the high values of
the nonlinearity parameter α = 20 and α = 50.

Higher-order holistic models improve the accuracy and continuity of the subgrid field. Fig-
ure 4 displays the subgrid fields of three holistic models for a steady state of the Kuramoto–
Sivashinsky pde for α = 20. Observe that the collection of subgrid fields forms the field u,
which is a state on the center manifold. The O(γ3, α2) holistic model (15) (green) is the
least accurate and has the largest jump at element boundaries. But note that Lagrangian
interpolation of the steady state of the second-order conventional approximation (20) is sig-
nificantly less accurate [19]. The O(γ4, α2) (16) model (olive green) displays improvement over
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Figure 5. Subgrid fields of the holistic models with errors O(γ3, α2) (15) (green), O(γ4, α2) (16) (olive
green), and O(γ5, α2) (17) (cyan), for a steady state of the Kuramoto–Sivashinsky equation at α = 50, with
eight elements on [0, π]. An accurate solution is also plotted in blue.

the holistic O(γ3, α2) approximation. The O(γ5, α2) (17) model (cyan) is the most accurate,
being almost indistinguishable from the correct solution (dark blue).

Figure 5 shows a steady state of the Kuramoto–Sivashinsky pde at α = 50. The accurate
field is symmetric (blue curve). For this value of the nonlinearity there is no steady-state
solution for centered difference approximations of either second (20), fourth (21), or sixth
order (22) on this coarse grid of eight elements on [0, π]. However, the five-point stencil
holistic approximation with errors O(γ3, α2) (15) (green) models this steady state of the
Kuramoto–Sivashinsky equation even for such a large value of the nonlinearity on this coarse
grid. This O(γ3, α2) holistic solution has significant jumps across the subgrid field at element
boundaries; moreover, the subgrid field is not symmetric and is most inaccurate near the center
of the spatial domain considered here. The seven-point stencil holistic approximation with
errors O(γ4, α2) (16) (olive green) is more accurate with smaller jumps between neighboring
subgrid fields, but is also not symmetric. The nine-point stencil holistic approximation with
errors O(γ5, α2) (17) (cyan) is the most accurate of the holistic models illustrated here; it is
symmetric, and the jumps between neighboring subgrid fields are almost indiscernible.

These illustrations of the subgrid fields of steady states of the Kuramoto–Sivashinsky
equation at α = 20 and α = 50 indicate that the holistic models perform well even at such
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Table 1
Errors E of the equivalent pde of holistic and conventional discretizations; see (24). MacKenzie [19] gave

more details.

Stencil Holistic (15)–(17) Conventional (20)–(22)

5 point − 2h2

3
∂6u
∂x6 + O

(
h4

)
−h2

(
α
6

∂3u
∂x3

∂u
∂x

+ α
12

∂4u
∂x4 + 2

3
∂6u
∂x6

)
+ O

(
h4

)
7 point − 7h4

60
∂8u
∂x8 + O

(
h6

)
−h4

(
α
30

∂5u
∂x5

∂u
∂x

+ α
90

∂6u
∂x6 + 7

60
∂8u
∂x8

)
+ O

(
h6

)
9 point − 41h6

1890
∂10u
∂x10 + O

(
h8

)
−h6

(
α

140
∂7u
∂x7

∂u
∂x

+ α
560

∂8u
∂x8 + 41

1890
∂10u
∂x10

)
+ O

(
h8

)

large values of a supposedly small parameter. The performance of the holistic models are
explored further in section 4 for steady states and section 5 for time dependent phenomena.

3.3. The holistic discretizations are consistent. Holistic models constructed by imple-
menting the ibcs (4)–(5) have dual justification [26]: they are supported by center manifold
theory for small enough α and γ, as well as being justified by their consistency as the grid
size h → 0. We explore consistency as a well-established feature of numerical analysis.5

Here we examine the equivalent pdes for the holistic discretizations (15)–(17) evaluated at
γ = 1, and the centered difference approximations (20)–(22). These equivalent pdes establish
the O(h2p−2) consistency with the Kuramoto–Sivashinsky pde for holistic models constructed
with residuals O(γp+1).

Roberts [26] proved that using ibcs of the form introduced in section 2 and retaining
terms up to γp in the holistic approximations results in approximations which are consistent
with the linear terms of the Kuramoto–Sivashinsky equation (1) to O(h2p−2), provided p ≥ 2.
However, accumulating evidence indicates the ibcs (4)–(5) also ensure O(h2p−2) consistency
for the nonlinear dynamics. As yet no formal proof exists of this nonlinear consistency, but
all holistic models of the Kuramoto–Sivashinsky equation, containing terms up to γ7 and α4

and constructed using (4)–(5), are nonlinearly consistent (although not all are recorded here).

Find the equivalent pdes for the various discretizations by expanding the discretizations
in grid size h about a grid point xj . That is, write

uj±m = uj ±mh
∂uj
∂x

+ m2h
2

2

∂2uj
∂x2

+

∞∑
k=3

(±m)k
hk

k!

∂kuj
∂xk

,(23)

to whatever order in h is required. Computer algebra performs the tedious details. As for the
example equivalent pde (3), all equivalent pdes have the form

∂u

∂t
= −α

(
u
∂u

∂x
+

∂2u

∂x2

)
− 4

∂4u

∂x4
+ E,(24)

where E denotes the error between the equivalent pde of the discretization and the Kuramoto–
Sivashinsky pde (1). Table 1 lists the errors for the holistic discretizations (15)–(17) and the
conventional finite difference discretizations (20)–(22). Observe that for each stencil width,

5However, note that high-order consistency is not a primary goal of this holistic approach, since we aim to
develop and support models for finite element size h.
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both the holistic and the conventional discretizations are consistent to the same order in grid
spacing h. However, the holistic discretizations have fewer error terms than their correspond-
ing conventional finite difference approximations. The holistic discretizations better model
the nonlinear terms through the resolution of subgrid scale structures.

4. Holistic models accurately give steady states. The relevance of our holistic models
is rigorously supported by center manifold theory for sufficiently small parameters γ and α.
However, the holistic models must be evaluated at coupling parameter γ = 1 to model the
Kuramoto–Sivashinsky dynamics. The important question is: Does evaluating the holistic
models at γ = 1 provide useful and accurate numerical models? Numerical experiments
detailed in this and the next section provide strong support that it does.

In this section we explore the accuracy of the holistic models by constructing bifurca-
tion diagrams of the various holistic discretizations and comparing them to conventional ex-
plicit centered difference approximations and to the bifurcation diagrams presented by Jolly,
Kevrekidis, and Titi [14] for various traditional Galerkin and nonlinear Galerkin approxima-
tions.

We restrict our exploration to solutions that are both 2π periodic and odd: thus

u(x, t) = u(x + 2π, t) and u(x, t) = −u(2π − x, t).(25)

We also restrict the nonlinearity parameter to the range 0 ≤ α ≤ 70. These restrictions
are to compare our results to those of [14] for approximate inertial manifold methods. For
this range of nonlinearity α, the trivial solution u = 0 undergoes pitchfork bifurcations at
α = 4, 16, 36, 64, leading to the unimodal, bimodal, trimodal, and quadrimodal branches,
respectively; see the bifurcation diagram Figure 6.

Such bifurcation diagrams usefully summarize qualitative and quantitative information for
a large range of the nonlinearity parameter α. We use the software package xppaut [8], which
incorporates the continuation software auto [7], to calculate the bifurcation information. The
information is then filtered through a function written in matlab to draw the bifurcation
diagram. The input to xppaut is a text .ode file describing the set of odes. Because the
holistic models contain a large number of terms, the .ode files are generated automatically
using reduce and matlab; see [19] for more details.

4.1. The reference bifurcation diagram. Here we introduce accurate solutions for the
steady states of the Kuramoto–Sivashinsky pde (1) over the range 0 ≤ α ≤ 70, as summarized
in the bifurcation diagram of Figure 6. The sixth-order centered difference approximation (22)
with 48 grid points on [0, π] provides these accurate solutions. These provide the reference for
the approximations on coarse grids, and serve to also introduce the conventions we adopt in
bifurcation diagrams.

All the bifurcation diagrams plot a signed solution norm versus the nonlinearity parame-
ter α. Incorporating the sign is a difference from the plots of Jolly, Kevrekidis, and Titi [14]
but empowers us to investigate more detail by separating positive and negative branches—
stability differs along these branches. For example, Figure 6 shows that the negative bimodal
branch is stable for 16.140 < α < 22.556, whereas the positive bimodal branch is unstable.
The solution norm is signed corresponding to the sign of the first grid value, u1 = u(x1). The
blue curves are branches of stable fixed points, and the red curves are branches of unstable
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Figure 6. Accurate bifurcation diagram 0 ≤ α ≤ 70 for the Kuramoto–Sivashinsky equation, using a
sixth-order centered difference approximation with 48 points on the interval [0, π]. A signed L2 norm is plotted
against α.

fixed points. The open squares denote pitchfork bifurcations, and the black squares denote
Hopf bifurcations.

The labeling scheme used in Figure 6 follows that of [14] and [31], with the addition of a
plus or minus sign, depending upon the sign of u1. For example, the secondary bifurcation on
the negative bimodal branch is labeled R2b1− from the labeling scheme of Scovel, Kevrekidis,
and Nicolaenko, with the addition of the − sign because it occurs on the negative branch. Fig-
ure 6 appears to show several discontinuities. For example, the positive unimodal branch ends
at approximately α = 12. This apparent discontinuity arises due to the convention adopted
here of taking the sign of u1 to sign the norm: actually there is a continuous transformation as
the positive unimodal branch and the negative unimodal branch transform into the negative
bimodal branch. It is straightforward to sign the branch near the trivial solution, but away
from the trivial solution the distinction between positive and negative may be ambiguous and
occasionally leads to jumps in the bifurcation diagram.
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Figure 7. Bifurcation diagrams for coarse grid approximations with eight elements on [0, π] for (a) holistic
model (17), O(γ5, α2), (b) centered difference sixth order (22).

4.2. Holistic models are accurate on coarse grids. We investigate the reproduction of
the bifurcation diagram, Figure 6, of the Kuramoto–Sivashinsky dynamics using coarse grids
on the interval [0, π] by both the holistic and centered difference discretizations. Bifurca-
tion diagrams are analogous to skeletons for the dynamics: dynamically evolving solutions
fit around the steady states of a bifurcation diagram. Reproducing the “skeleton” of the
bifurcation diagram is crucial to accurate modeling.

Note that holistic discretizations such as (15)–(17) provide reasonable solutions for sig-
nificantly higher nonlinearity α than do the centered difference discretizations (20)–(22). We
discuss bifurcation diagrams for 0 < α < 70.

4.2.1. Bifurcation diagrams show success. Now turn to the bifurcation diagram to ob-
tain a more comprehensive view. We see that the holistic model has good bifurcation diagrams
on a coarse grid of eight elements.

Figure 7 shows a side-by-side comparison of the holistic model with errors O(γ5, α2) with
eight elements on [0, π] and the sixth-order centered difference approximation with eight grid
points on [0, π]. These approximations are both nine-point stencil approximations. Plotted in
grey, but without any stability information, is the accurate bifurcation diagram. The signed
L2 norms for the bifurcation diagrams on the coarse grid of eight elements are adjusted by
a factor of

√
6 to allow comparison to the accurate bifurcation diagram constructed with

48 grid points on [0, π]. When comparing bifurcation diagrams of different grid resolutions,
the signed L2 norms are adjusted this way to provide a consistent reference. Figure 7(a) shows
that the O(γ5, α2) holistic model gives good agreement with the accurate bifurcation diagram
for α < 40 and qualitatively reproduces most of the bifurcation picture for 40 < α < 70.
The O(γ5, α2) holistic model does not detect the bifurcation points R3t2± on this coarse
grid, and the bifurcation points R3t1± are incorrectly identified as fold points. However, the
O(γ5, α2) holistic model finds all of the other bifurcation points in this range of nonlinear-
ity α. Figure 7(b) shows that the sixth-order centered difference approximation gives good
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Table 2
α values at which bifurcation points occur for the various coarse grid approximations; ∗ denotes a bifurcation

point identified as a fold point.

Approximation R2b1 R2b2 R2b3 R2b4 R3t1 R3t2 R4b1 R4q1
Accurate 48 pts
6th-order 16.14 22.56 52.89 63.74 36.23 50.91 64.56 64.28

Holistic 8 elements
O(γ3, α2) (15) 14.64 20.36 39.34 44.96 29.28∗ — 45.28 44.87
O(γ3, α3) 14.65 20.52 39.66 45.16 29.33∗ — 45.47 44.96
O(γ3, α4) 14.65 20.53 39.72 45.21 29.33∗ — 45.51 44.97
O(γ4, α2) (16) 16.00 22.56 48.62 57.38 34.73∗ — 57.89 57.49
O(γ4, α3) 16.00 22.56 48.25 56.84 34.73∗ — 57.45 57.28
O(γ4, α4) 16.00 22.57 48.10 56.63 34.73∗ — 57.30 57.21
O(γ5, α2) (17) 16.13 22.72 51.54 61.54 35.89∗ — 62.20 61.78
O(γ5, α3) 16.13 22.73 51.53 61.37 35.91∗ — 62.04 61.70
O(γ5, α4) 16.13 22.73 51.60 61.38 35.91∗ — 62.02 61.69

Centered 8 pts
2nd-order (20) 15.30 19.81 — — — — — —
4th-order (21) 16.02 21.55 — — 35.94∗ — — —
6th-order (22) 16.12 21.99 — — 35.83∗ — — —

Holistic 12 elements
O(γ3, α2) (15) 15.45 21.67 45.96 53.94 32.86 45.98 54.49 54.17
O(γ3, α3) 15.45 21.69 46.05 54.00 32.87 46.33 54.55 54.20
O(γ4, α2) (16) 16.11 22.62 51.93 62.10 35.90 50.92 62.83 62.52
O(γ4, α3) 16.11 22.62 51.94 62.10 35.90 50.94 62.83 62.52

Centered 12 pts
2nd-order (20) 15.77 21.68 48.33 57.63 34.36 44.70 58.34 58.36
4th-order (21) 16.12 22.37 51.74 62.33 35.98 48.62 63.11 62.98

agreement with the accurate bifurcation diagram only for α < 20 and qualitatively reproduces
the bifurcation diagram for 20 < α < 40. The sixth-order centered difference approximation
performs poorly for α > 40. Table 2 lists the values of α at which the bifurcation points occur
and confirms that the O(γ5, α2) holistic model performs more accurately than the sixth-order
centered difference approximation on this coarse grid of eight elements.

MacKenzie [19] also showed how the holistic model reproduces more of the bifurcation
diagram than the sixth-order centered difference approximation even on a coarser grid of just
six elements.

We also investigate various holistic models for the Kuramoto–Sivashinsky pde by compar-
ing bifurcation diagrams of holistic models of higher orders. We examine bifurcation diagrams
for holistic models with errors O(γp, αq), for 3 ≤ p ≤ 5 and 2 ≤ q ≤ 4, and find that retaining
terms of higher order in coupling parameter γ, corresponding to wider stencil approxima-
tions, gives much greater improvement in accuracy than retaining terms of higher order in the
nonlinearity parameter α.

Figure 8 shows the bifurcation diagrams for the holistic models up to and including the
O(γ5, α4) holistic model. Surveying across the columns of Figure 8, note the bifurcation
diagrams for holistic models of increasing order of coupling parameter γ, corresponding to
approximations of increasing stencil width. For example, the top row of Figure 8 shows the
bifurcation diagrams for the holistic models (15), (16), and (17), respectively. Lower rows of
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Figure 8. Bifurcation diagrams for the holistic models with eight elements on the interval [0, π] up to and
including the O(γ5, α4) holistic model.

Figure 8 display the bifurcation diagrams for increasing orders of the nonlinearity parameter α.
Figure 8 illustrates the improvement in accuracy of the higher-order holistic models. Note first
the dramatic improvement in accuracy gained by moving from left to right across Figure 8,
corresponding to approximations of higher orders in the coupling parameter γ.

Second, less improvement is gained by moving from top to bottom in Figure 8, corre-
sponding to approximations of higher order in the nonlinearity parameter α. There are some
peculiarities about this series of bifurcation pictures for holistic models of increasing order
in α. For the five-point stencil approximations displayed in the left column of Figure 8, higher
orders in α appear to gain some improvement. In particular, Figures 8(d) and (g) show that
the O(γ3, α3) and O(γ3, α4) holistic models reproduce the unstable trimodal branches that
were missing from the O(γ3, α2) bifurcation diagram shown in Figure 8(a). However, for the
seven-point stencil approximations displayed in the second column of Figure 8, holistic mod-
els of higher orders in α lose some features of the Kuramoto–Sivashinsky pde. The correct
behavior of the unstable trimodal and quadrimodal branches is reproduced for the O(γ4, α2)
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model shown in Figure 8(b), but not reproduced for the higher-order O(γ4, α3) and O(γ4, α4)
models shown in Figures 8(e) and (h) respectively. For the nine-point stencil approximations,
displayed in the third column of Figure 8, the O(γ5, α2) holistic model shown in Figure 8(c)
reproduces the unstable trimodal branch, whereas the higher-order O(γ5, α3) model shown
in Figure 8(f) does not reproduce the unstable trimodal branch. These peculiarities suggest
that while we have observed excellent performance of the holistic models constructed with
the nonlocal ibcs on coarse grids, it may be possible that modifications could be made to the
nonlocal ibcs such that higher-order approximations in the nonlinear parameter are improved.
Further research will explore such possible modifications.

4.2.2. Holistic models outperform centered differences. Section 4.2.1 shows that the
performance of the O(γ5, α2) holistic model (17) constructed with nonlocal ibcs is far superior
to the explicit sixth-order centered difference approximation (22). To complete the comparison
of holistic models to explicit centered difference schemes, we compare the O(γ3, α2) (15)
and O(γ4, α2) (16) holistic models to the second-order (20) and fourth-order (21) centered
difference approximations; these are five-point and seven-point discretizations respectively.

The first row of Figure 9 is a side-by-side comparison of the O(γ3, α2) holistic model and
the second-order centered difference approximation with eight elements on [0, π]. The second
row of Figure 9 is a side-by-side comparison of the O(γ4, α2) holistic model and the fourth-
order centered difference approximation on the same coarse grid. The accurate bifurcation
diagram is plotted in grey without any stability information.

Although comparing Figures 9(b) and (d) shows that some improvement is gained by tak-
ing higher-order centered difference approximations, this improvement is not as pronounced
as for the holistic models on this coarse grid, as shown in Figures 9(a) and (c). Both the
second-order and fourth-order centered difference approximations fail to reproduce the cor-
rect behavior of the unstable trimodal and quadrimodal branches. In contrast, even the
five-point stencil O(γ3, α2) holistic approximation qualitatively reproduces the trimodal and
quadrimodal branches on the same coarse grid. The values at which the bifurcation points
occur are listed in Table 2 and confirm that these holistic models outperform the centered
difference approximations on this coarse grid of eight elements on [0, π].

4.2.3. Grid refinement improves accuracy. Since the equivalent pdes (24) for our holistic
models are of O(h2), O(h4), and O(h6) consistency, respectively (see Table 1), grid refinement
should result in improved accuracy.

Figure 10 shows the bifurcation diagrams of the holistic models up to and including the
O(γ4, α3) model on a finer grid of 12 elements on [0, π]. Compare Figure 10 with Figure 8
to confirm the improved accuracy for the holistic models on this refined grid. Table 2 also
shows that the bifurcation points are more accurately reproduced for the holistic models on
this refined grid.

4.3. Comparison to Galerkin approximations. Here we investigate the traditional Galer-
kin and nonlinear Galerkin approximations [14] for the Kuramoto–Sivashinsky equation (1)
with the periodic and odd conditions (25). We find that the holistic models compare well
with the Galerkin methods. While the Galerkin methods are of superior accuracy for solving
the Kuramoto–Sivashinsky pde (1) with periodic boundary conditions, because of their global
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Figure 9. Bifurcation diagrams for (a) O(γ3, α2) holistic model, (b) second-order centered difference,
(c) O(γ4, α2) holistic model, and (d) fourth-order centered difference all with eight elements on the interval
[0, π].

nature they lack the flexibility of the local nature of the holistic models. Although not ex-
plored here, this local nature of the holistic models empowers its use with physical boundary
conditions [27] other than periodic.

Galerkin methods seek solutions in the form which is dominantly the superposition of
m periodic, global modes:

u(x, t) =
m∑
k=1

bk(t) sin(kx).(26)

The m-mode traditional Galerkin approximation [14] is

dbk
dt

≈
(
−4k4 + αk2

)
bk − αβm

k , 1 ≤ k ≤ m,(27)
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Figure 10. Bifurcation diagrams for the holistic models with 12 elements on the interval [0, π]. Compare
with Figure 8 with 8 elements.

where

βm
k (b1, . . . , bm) =

1

2

m∑
j=1

jbj
[
bk+j + sign(k − j)b|k−j|

]
.(28)

The m-mode first iterate nonlinear Galerkin approximation [14] is based upon the adia-
batic approximation (30) for higher wavenumber modes k = m + 1 : 2m, namely,

dbk
dt

≈
(
−4k4 + αk2

)
bk − αβ2m

k (b1, . . . , bm, φm+1, . . . , φ2m),(29)

for 1 ≤ k ≤ m, where

φj = − α

4j4
β2m
j (b1, . . . , bm, 0, . . . , 0)(30)

for m + 1 ≤ j ≤ 2m and β2m
j is given by (28).
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Figure 11. Bifurcation diagrams for (a) 3 mode, (b) 4 mode, (c) 6 mode, and (d) 8 mode traditional
Galerkin approximations on [0, π].

Obtain higher-order nonlinear Galerkin approximations [22] through recognizing time
derivatives of these and even higher wavenumber modes. We do not explore such higher-
order Galerkin approximations.

Now examine the bifurcation diagrams of the two Galerkin approximations (26)–(30) for
0 ≤ α ≤ 70, and compare them with the bifurcation diagrams of the holistic models on coarse
grids, presented in section 4.2. Figure 11 shows the bifurcation diagrams for the 3 mode,
4 mode, 6 mode, and 8 mode traditional Galerkin approximations on [0, π]. See that at least
four modes are needed to qualitatively reproduce the behavior of the stable bimodal branch.
The O(γ5, α2) holistic model with eight elements from Figure 7(a) and the 8 mode traditional
Galerkin approximation qualitatively model most steady-state dynamics. However, the 8 mode
traditional Galerkin approximation is more accurate.

Figure 12 shows the bifurcation diagrams for the 3 mode, 4 mode, 6 mode, and 8 mode
first iterate nonlinear Galerkin approximations (29) on [0, π]. Note the impressive accuracy
for the low mode first iterate nonlinear Galerkin approximations. The 6 mode nonlinear
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Figure 12. Bifurcation diagrams for (a) 3 mode, (b) 4 mode, (c) 6 mode, and (d) 8 mode first iterate
nonlinear Galerkin approximations on [0, π].

Galerkin approximation reproduces all of the steady-state dynamics for the range 0 ≤ α ≤ 70.
There is no discernible difference between the bifurcation diagram of the 8 mode nonlinear
Galerkin approximation and the accurate bifurcation diagram for this range of α. Table 3 lists
the values of nonlinearity parameter α at which bifurcation points occur for the coarse grid
holistic models and the Galerkin approximations [14]. The low mode first iterate nonlinear
Galerkin approximations are impressively accurate.

This evidence suggests that the holistic models are competitive with traditional Galerkin
approximations, but that nonlinear Galerkin models are significantly better. However, recall
that the holistic models are based upon analysis of local dynamics, and thus we expect them
to be more flexibly useful in applications than the global methods of these Galerkin approx-
imations, which rely on not only global eigenfunctions being known, here the sine functions,
but also knowing closed-form expressions for nonlinear combinations of the eigenfunctions.
Furthermore, even when the nonlinear combinations of the eigenfunctions are known, the op-
eration count of the nonlinear Galerkin method is high. For example, evaluating the time
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Table 3
α values at which bifurcation points occur for the various coarse grid holistic models and low mode Galerkin

approximations. (“k-m” denotes the k mode Galerkin.)

Approximation R2b1 R2b2 R2b3 R2b4 R3t1 R3t2 R4b1 R4q1
Accurate 48 pts
6th-order 16.14 22.56 52.89 63.74 36.23 50.91 64.56 64.28

Holistic 8 elements
O(γ3, α2) (15) 14.64 20.36 39.34 44.96 29.28∗ — 45.28 44.87
O(γ3, α3) 14.65 20.52 39.66 45.16 29.33∗ — 45.47 44.96
O(γ3, α4) 14.65 20.53 39.72 45.21 29.33∗ — 45.51 44.97
O(γ4, α2) (16) 16.00 22.56 48.62 57.38 34.73∗ — 57.89 57.49
O(γ4, α3) 16.00 22.56 48.25 56.84 34.73∗ — 57.45 57.28
O(γ4, α4) 16.00 22.57 48.10 56.63 34.73∗ — 57.30 57.21
O(γ5, α2) (17) 16.13 22.72 51.54 61.54 35.89∗ — 62.20 61.78
O(γ5, α3) 16.13 22.73 51.53 61.37 35.91∗ — 62.04 61.70
O(γ5, α4) 16.13 22.73 51.60 61.38 35.91∗ — 62.02 61.69

Holistic 12 elements
O(γ3, α2) (15) 15.45 21.67 45.96 53.94 32.86 45.98 54.49 54.17
O(γ3, α3) 15.45 21.69 46.05 54.00 32.87 46.33 54.55 54.20
O(γ4, α2) (16) 16.11 22.62 51.93 62.10 35.90 50.92 62.83 62.52
O(γ4, α3) 16.11 22.62 51.94 62.10 35.90 50.94 62.83 62.52

Galerkin [14]
3-m Euler–Galerkin 16.10 20.59 246.14 — 36.21 — — —
3-m Pseudo-stdy II 16.13 21.93 102.90 — 36.21 — — —
3-m Pseudo-stdy 16.13 22.01 93.91 — 36.24 63.91 — —
12-m traditional 16.14 22.56 52.89 63.74 36.23 50.91 64.56 64.28
6-m traditional 16.14 22.55 52.72 63.28 36.23 46.85 64.00 64.00
3-m traditional 16.14 16.00 16.0 16.0 36.00 36.0 — —

derivatives in (29) costs roughly 3m2 operations. Being quadratic in the number m of modes,
this evaluation is not scalable in the size of the domain. However, a holistic model with
m elements to some order O(γp, αq) will evaluate all necessary time derivatives in a time
proportional to m and is thus scalable. True, the constant of proportionality may be rather
large for any given order of truncation, due to the modeling of the subgrid and interelement
interactions. Nonetheless, holistic discretization is scalable, whereas Galerkin modeling is not.

4.4. Coarse grids allow large time steps. A major benefit of accurate models on coarse
grids is that larger time steps are possible while maintaining numerical stability. Section 4.2
shows the remarkable accuracy of the O(γ5, α2) holistic model (17) on a coarse grid of eight
elements. Here we investigate the maximum stable time step for explicit Runge–Kutta time
integration on various holistic models—implicit integration schemes are not considered here.

In particular, we compare approximations of similar accuracy but different grid resolutions
to demonstrate the superior performance of the holistic models. MacKenzie [19] showed that
the O(γ5, α2) holistic model (15) on eight elements is of similar accuracy to the 16-point
second-order centered difference approximation (20). Thus we compare the computability of
these two schemes.

Numerical experiments used the fourth-order Runge–Kutta scheme to estimate the max-
imum stable time step for different holistic models and centered difference approximations
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Table 4
Approximate maximum time steps for stability of the fourth-order Runge–Kutta scheme.

Approximation α = 10 α = 20 α = 30

Holistic 8 elements
O(γ3, α2) (15) .0011 .0014 .0017
O(γ3, α3) .0011 .0014 .0017
O(γ3, α4) .0011 .0014 .0017
O(γ4, α2) (16) .0006 .0007 .0008
O(γ4, α3) .0006 .0007 .0008
O(γ4, α4) .0006 .0007 .0008
O(γ5, α2) (17) .0005 .0005 .0006
O(γ5, α3) .0005 .0005 .0006
O(γ5, α4) .0005 .0005 .0006

Centered 8 points
2nd-order (20) .0011 .0012 —
4th-order (21) .0006 .0007 .0008
6th-order (22) .0005 .0005 .0006

Centered 16 points
2nd-order (20) .00006 .00006 .00006

at various values of nonlinearity parameter α. Table 4 lists the approximate maximum time
steps that maintain numerical stability along both the negative unimodal branch at α = 10
and the negative bimodal branch at α = 20 and α = 30. For the O(γ5, α2) holistic model
with eight elements, the maximum time step maintaining numerical stability is approximately
10 times larger than the corresponding time step for the second-order centered difference ap-
proximation with 16 grid points. The O(γ5, α2) holistic model requires approximately 3 times
the number of floating point operations per grid value at each time step compared to the
second-order centered difference approximation. However, on a coarse grid of 16 points the
second-order centered difference approximation must be applied at twice as many grid points.
Thus the O(γ5, α2) holistic model can be integrated an order of magnitude faster than the
second-order centered difference approximation while maintaining similar accuracy.

Note that Table 4 shows that the higher-order terms in the nonlinearity α, generated by
the holistic method, do not reduce numerical stability. Wider stencil holistic approximations
reduce the maximum stable time step somewhat, but so do the wider stencil conventional
centered difference approximations. Thus, bear in mind that we need to balance the accuracy
gained by using higher-order approximation in γ, that is, wider stencil approximations, with
the reduction in numerical stability and the increase in computation per grid value.

5. Holistic models are accurate for time dependent phenomena. The Kuramoto–Siva-
shinsky equation (1) has rich dynamics [16, 14, 15, 31, 5, 12, 6, 2]. Having established the
excellent performance of the holistic models in reproducing the steady states of the Kuramoto–
Sivashinsky pde in section 4, we now investigate the holistic model’s performance at repro-
ducing time dependent phenomena. The Kuramoto–Sivashinsky pde exhibits complex time
dependent behavior such as limit cycles, period doubling, and spatio-temporal chaos. This
provides us with an example to explore the holistic approach to modeling time dependent
phenomena with relatively coarse discretizations.
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Figure 13. The four largest (least negative) eigenvalues along the stable bimodal branch for the
(a) O(γ3, α2) (15), (b) O(γ4, α2) (16), (c) O(γ5, α2) (17) holistic models shown in green for eight elements on
[0, π]. Accurate eigenvalues are shown in blue.

We restrict our attention to 2π periodic solutions,

u(x, t) = u(x + 2π, t).(31)

Initially we restrict ourselves further to solutions with odd symmetry, as in the previous sec-
tion, which exhibit (see Figure 6) Hopf bifurcations to limit cycle solutions, and subsequent
period doubling bifurcations apparently leading to low-dimensional chaos [14, 15, 31]. In
section 5.1 we examine the dynamics of the holistic models on coarse grids through the eigen-
values of the models near the steady states. For example, we see that the O(γ5, α2) holistic
model reproduces much of the eigenvalue information for 0 ≤ α ≤ 70 on a coarse grid of
eight elements. In section 5.2 we explore the bifurcation diagrams near the first Hopf bifur-
cation and capture the stable limit cycles and period doubling sequence. The holistic models
more accurately model the dynamics than centered difference approximations of equal stencil
width. Subsequently we just require spatial periodicity, whence stable traveling waves appear
followed by, at higher values of the nonlinearity parameter α, more complex spatio-temporal
chaos, as investigated by Holmes, Lumley, and Berkooz [12] and Dankowicz et al. [6]. In
section 5.3 we find that the holistic discretizations more accurately model the amplitude and
wave speed of traveling wave solutions, and predict better space time plots and time averaged
power spectra, than the corresponding centered difference approximations.

5.1. Dynamics near steady states are reproduced. Consider the eigenvalues of the
Kuramoto–Sivashinsky pde (1) linearized about the steady states and restricted to odd sym-
metry. Accurate modeling of the eigenvalues near the steady states is a necessary condition
for the accurate modeling of the dynamics.

Compare eigenvalues along the bimodal branch. Consider the real part of the four largest
(least negative real part) eigenvalues for low-order holistic models and compare to explicit
centered difference approximations on a coarse grid of eight elements on [0, π]. Figure 13
shows the four largest eigenvalues for the O(γ3, α2) (15), O(γ4, α2) (16), and O(γ5, α2) (17)
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Figure 14. The four largest eigenvalues along the stable bimodal branch for the (a) second-order (20),
(b) fourth-order (21), (c) sixth-order (22) centered difference approximations shown in magenta for eight grid
points on [0, π]. Accurate eigenvalues are shown in blue.

holistic models in green and the accurate solution in blue.6 Figure 13(c) shows that the four
largest eigenvalues for the O(γ5, α2) holistic model closely match the accurate solution over
this range of nonlinearity parameter α.

Similarly, Figure 14 shows the four largest eigenvalues for the second-order (20), fourth-
order (21), and sixth-order (22) centered difference approximations in magenta on the same
coarse grid. The centered difference approximations shown here are of equal stencil width
to the corresponding holistic models in Figure 13. Figure 14(a) shows that the second-
order centered difference barely approximates the behavior of the stable bimodal branch for
α < 20. Even the sixth-order centered difference approximation, Figure 14(c), is inferior to the
O(γ4, α2) holistic model for α > 30. This is despite the sixth-order centered difference model
having a wider stencil of nine points compared to the seven-point stencil of the O(γ4, α2)
holistic model. Figures 13 and 14 show that the low-order holistic models are superior to
the corresponding centered difference approximations for reproducing the dynamics near the
stable bimodal branch.

Compare eigenvalues across the bifurcation diagram. Here we explore a new view of the
earlier bifurcation diagrams that additionally depicts the real part of the eight largest (least
negative) eigenvalues by color. Compare the eigenvalues of the O(γ5, α2) (17) holistic model
(see Figure 15) on the coarse grid of eight elements on [0, π] to accurate ones for the Kuramoto–
Sivashinsky pde (see Figure 16) over the nonlinearity parameter 0 ≤ α ≤ 70. Colors code
the magnitude of the real part of the eigenvalues according to the color bar shown; the least
negative eigenvalues are plotted above the more negative to give a small band of color for each
branch of steady states at each parameter value. Similarly to the bifurcation diagrams shown
in section 4, the open squares denote bifurcation points, and the black squares denote Hopf
bifurcations. Figure 15, when compared to Figure 16, shows that in addition to reproducing
the stability of the accurate Kuramoto–Sivashinsky pde for 0 ≤ α ≤ 70, as discussed in
section 4.2, the O(γ5, α2) holistic model reproduces well the eigenvalues for most of this range
of the nonlinearity parameter α. This accurate modeling of the eigenvalues is evidence of

6As in section 4, a sixth-order centered difference approximation with 48 grid points on [0, π] provides the
accurate reference for solutions.
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Figure 15. Bifurcation diagram of the O(γ5, α2) holistic model (15) with eight elements and odd symmetry
on [0, π], depicting the real parts of the eight largest (least negative) eigenvalues color-coded according to the
color bar shown.

accurate modeling of the Kuramoto–Sivashinsky dynamics, at least near the steady states.

5.2. Extend the Hopf bifurcations. Hopf bifurcations give rise to time periodic solutions
(limit cycles). We explore the predictions of the various models to see how well they capture
these strongly time dependent phenomena.

Here we investigate the bifurcation diagrams obtained by extending the first Hopf bifur-
cation, at α = 30.345, on the positive bimodal branch and the period doubling sequence that
ensues. Trajectories in the period doubling sequence are reported and compared by MacKen-
zie [19]. As before, the holistic models outperform the corresponding centered difference
approximations.

Investigate the first Hopf bifurcation hb1 with a coarse grid of eight elements on [0, π].
Figure 17 shows the bifurcation diagrams of the low-order holistic models and the accurate
bifurcation diagram near the first Hopf bifurcation. The stable limit cycles (light blue) that
continue from this bifurcation point undertake a period doubling sequence commencing at a
point labeled pd (yellow square). The pair of unstable limit cycles born at pd give rise to the
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Figure 16. Bifurcation diagram of the accurate Kuramoto–Sivashinsky pde, depicting the real parts of the
eight largest (least negative) eigenvalues, color-coded according to the color bar shown.

period doubling sequence leading to chaos.

The accurate bifurcation diagram shown is identical to the bifurcation diagram for the
same range of α produced by Jolly, Kevrekidis, and Titi [14]. Figure 17(a) shows that even the
lowest-order O(γ3, α2) (15) holistic model reproduces the first Hopf bifurcation and finds the
period doubling point on this coarse grid of eight elements.7 In comparison, the corresponding
second-order centered difference approximation does not even have the first Hopf bifurcation;
see Figure 9(b).

Figures 17(b) and (c) show that higher-order holistic models accurately model the first
Hopf bifurcation and the resulting stable and unstable limit cycles. The accuracy of the
O(γ5, α2) holistic model (17) for reproducing these periodic solutions of the Kuramoto–
Sivashinsky pde is remarkable on this coarse grid. Figure 18 shows the corresponding bi-
furcation diagrams for the fourth-order and sixth-order centered difference approximations
with eight grid points on [0, π]. Compare Figures 18 and 17 to see that the sixth-order cen-

7Figure 17(a) displays the bifurcation diagram for 25 ≤ α ≤ 32 compared to 30 ≤ α ≤ 37 for the other
diagrams. Since the first Hopf bifurcation for the O(γ3, α2) holistic model occurs at α = 25.595 the bifurcation
diagram is shifted to contain the important dynamics.
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Figure 17. Bifurcation diagrams near the first Hopf bifurcation for (a) O(γ3, α2) (15), (b) O(γ4, α2) (16),
(c) O(γ5, α2) (17) holistic models with eight elements on [0, π] and (d) an accurate bifurcation diagram. Stable
limit cycles are shown in light blue, and unstable limit cycles are shown in orange.

tered difference approximation which has a nine-point stencil does not perform as well as the
O(γ4, α2) holistic model (16), which has a seven-point stencil. Figures 17(b) and (c) show
that higher-order holistic models more accurately model the first Hopf bifurcation and the
resulting stable and unstable limit cycles. Table 5 shows the parameter values α for the Hopf
bifurcations, hb1, and the initial period doubling point pd: both the O(γ4, α2) and O(γ5, α2)
holistic models are more accurate than the fourth-order and sixth-order centered difference
approximations in reproducing the first Hopf bifurcation and the resulting period doubling
point.

5.3. Dynamics of periodic patterns without odd symmetry. Consider the Kuramoto–
Sivashinsky pde (1) with solutions that are spatially periodic (31)—we remove the require-
ment for odd symmetry. Consequently, we now explore traveling wave–like solutions at low
nonlinearity α. Also we illustrate the spatio-temporal chaos that occurs at higher α.
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Figure 18. Bifurcation diagrams near the first Hopf bifurcation for (a) fourth-order (21) and (b) sixth-
order (22) centered difference approximations with eight grid points on [0, π]. Stable limit cycles are shown in
light blue, and unstable limit cycles are shown in orange.

Table 5
Nonlinearity parameter α values for the first Hopf bifurcation point hb1 and resulting period doubling

point pd.

Approximation hb1 pd

Holistic 8 elements
O(γ3, α2) (15) 25.60 27.22
O(γ4, α2) (16) 30.04 32.03
O(γ5, α2) (17) 30.66 32.95

Centered 8 points
2nd-order (20) — —
4th-order (21) 27.91 29.57
6th-order (22) 29.11 31.40

Accurate 30.35 32.97

Good performance for holistic models at low nonlinearity α. Consider the holistic models
of the Kuramoto–Sivashinsky pde (1) and (31) for nonlinearity parameter α = 5 and α = 10
on coarse grids of eight elements on [0, 2π]; that is, the element size is twice as big as many
earlier solutions because the domain is twice as big. Figure 3 shows solutions obtained from
the lowest order O(γ3, α2) holistic model (15) for α = 5 in green, the accurate solution in blue,
and the corresponding second-order centered difference approximation (20) with eight points
on [0, 2π], in magenta. The solutions are shown starting from the half-wave initial condition
of u(x, 0) = |sin(x/2)|. Note that the O(γ3, α2) holistic model is superior to the second-
order centered difference approximation on this coarse grid. In particular, the amplitude of
the evolving wave-like solution and the wave speed are more accurately reproduced by the
O(γ3, α2) holistic model for α = 5.

Similarly, Figure 19 shows the solutions at the same times but for larger nonlinearity
α = 10. For this α the second-order (20) and fourth-order (21) centered difference approxima-
tions do not generate a wave-like solution at all. However, the sixth-order centered difference
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Figure 19. α = 10. Wave-like solutions at times t = 0, 0.2, 0.4, 0.6, 0.8, 1 for the O(γ3, α2) (15),
O(γ4, α2) (16), and O(γ5, α2) (17) holistic models shown in green, light green, and light blue, respectively,
and the sixth-order centered difference approximation (22) shown in red on a coarse grid of eight elements on
[0, 2π]. The accurate solution is shown in blue.

approximation (22) does produce the traveling wave–like solution shown in red. The O(γ3, α2)
holistic model (green) is the least accurate on this coarse grid, but it does reproduce a sta-
ble solution on this coarse grid for only a five-point stencil approximation. The O(γ4, α2)
holistic model (light green) more accurately models the amplitude of the wave compared
to the sixth-order centered difference approximation, despite having a smaller stencil width.
The O(γ5, α2) holistic model is the most accurate at reproducing the evolution of the stable
wave-like solution for α = 10 on this coarse grid of eight elements.

Good performance for more complex dynamics. For higher values of nonlinearity param-
eter α for which the Kuramoto–Sivashinsky pde exhibits more complex dynamics, including
spatio-temporal chaos, we compare time averaged power spectra rather than particular trav-
eling waves. Here we investigate the performance of the holistic models on coarse grids for
α = 20 and 50, using the example of the O(γ5, α2) holistic model (17), and compare it with
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Figure 20. α = 20. Space time plots for (a) the O(γ5, α2) holistic model (17) with 12 elements on [0, 2π],
(b) sixth-order centered difference approximation (22) with 12 grid points on [0, 2π], and (c) the accurate
solution.

the sixth-order centered difference approximation (22), as it is of equal stencil width. Further,
we also compare the O(γ5, α2) holistic model on coarse grids to the second-order centered
difference approximations of similar accuracy. We find that the O(γ5, α2) holistic model, but
with approximately 1/3 of the grid points, has comparable accuracy to second-order centered
difference approximations.

Figure 20 shows space time plots of (a) the O(γ5, α2) holistic model (17), (b) the sixth-
order centered difference approximation (22), and (c) the accurate solution.8 The O(γ5, α2)
holistic model reproduces much of the complex structure of the accurate solution for nonlin-
earity α = 20 with 12 elements. Figure 20(b) shows that the sixth-order centered difference
approximation incorrectly finds a periodic solution after approximately t = 0.2. Similar be-
havior occurs for nonlinear parameter α = 50 with 24 elements [19]: the holistic discretization

8The accurate solutions plotted in this section are computed using a sixth-order centered difference approx-
imation and 256 grid points on the interval [0, 2π]. This is sufficient grid resolution to capture the important
dynamics of the Kuramoto–Sivashinsky pde for the values of α investigated here.
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Figure 21. α = 20. Time averaged power spectra for the O(γ5, α2) holistic model (17) with 12 elements
on [0, 2π] shown in light blue, and the sixth-order centered difference approximation (22) in red for (a) 12 grid
points on [0, 2π] and (b) 16 grid points on [0, 2π]. The accurate power spectrum is shown in blue.

accurately models the apparently chaotic dynamics, whereas the centered difference model
incorrectly locks onto a periodic traveling wave.

Since the Kuramoto–Sivashinsky pde at nonlinearity parameter α = 20 exhibits more
complex time dependent behavior than simple limit cycles, we compare time averaged power
spectra, denoted here by S(k) for wavenumber k. Figure 21(a) shows a log-log plot of the time
averaged power spectra of the O(γ5, α2) holistic model, the sixth-order centered difference ap-
proximation on a coarse grid of 12 elements on [0, 2π], and the accurate power spectrum. For
this coarse grid of only 12 elements, only five wavenumbers are relevant, as displayed. Note
that the O(γ5, α2) holistic model is superior to the sixth-order centered difference approxi-
mation on this coarse grid. Figure 21(b) compares the time averaged power spectrum of the
O(γ5, α2) holistic model with 12 elements and the sixth-order centered difference approxima-
tion with 16 grid points. The O(γ5, α2) holistic model achieves similar accuracy on a coarser
grid.

Figures 22(a) and (b) show the power spectra of the O(γ5, α2) holistic model on a coarse
grid of 12 elements and the second-order centered difference approximation on the more refined
grids of 24 and 36 points, respectively. A refined grid of 36 points is needed to achieve similar
accuracy to that for the O(γ5, α2) holistic model on a coarse grid of 12 elements on [0, 2π].
That is, through its subgrid scale modeling, the holistic model achieves similar accuracy with
one-third the dimensionality.

This investigation of the O(γ5, α2) holistic model on coarse grids for α = 20 and that
of MacKenzie [19] for nonlinearity α = 50 show that it reproduces accuracy similar to the



400 T. MACKENZIE AND A. J. ROBERTS

10
0

10
1

10
-2

10
-1

10
0

10
1

k

(b) Centered 2nd-order, 36 points

10
0

10
1

10
-2

10
-1

10
0

10
1

k

S
(k

)

(a) Centered 2nd-order, 24 points

O(γ5,α2) Holistic, 12 elements
Centered 2nd-order, 24 points
Accurate

O(γ5,α2) Holistic, 12 elements
Centered 2nd-order, 36 points
Accurate

Figure 22. α = 20. Time averaged power spectra for the O(γ5, α2) holistic model with 12 elements on
[0, 2π] shown in light blue, and the second-order centered difference approximation in magenta for (a) 24 grid
points on [0, 2π] and (b) 36 grid points on [0, 2π]. The accurate spectrum is shown in blue.

second-order centered difference approximation on a coarse grid of approximately 1/3 the res-
olution, and accuracy similar to the sixth-order centered difference approximation on grids of
approximately 3/4 the resolution. MacKenzie [19] reports that even at α = 200 the holistic
model qualitatively captures the dynamics of the Kuramoto–Sivashinsky pde well. This in-
creased accuracy on coarse grids allows larger time steps for explicit time integration schemes,
as discussed in section 4.4.

6. Conclusion. Holistic discretization [25] is straightforwardly extended to fourth-order
dissipative pdes through the example of the Kuramoto–Sivashinsky equation [18]. We divide
the domain into elements by introducing artificial internal boundary conditions (section 2),
which isolate the elements when γ = 0 but which fully couple the elements to recover the
Kuramoto–Sivashinsky dynamics when γ = 1. Then center manifold theory supports the
discretization; see section 2.2. The holistic models listed in section 3 have a dual justifica-
tion (section 3.3): not only are they supported by center manifold theory for finite element
size h, but also the ibcs are specially crafted [26] so that the models are consistent with the
Kuramoto–Sivashinsky equation as the grid spacing h → 0.

No formal error bounds currently exist for the holistic method; the difficulty is that the
models are based at γ = 0 but are evaluated at finite γ = 1. Instead we present a detailed nu-
merical investigation of the holistic models of the steady states (section 4) and time dependent
solutions (section 5) of the Kuramoto–Sivashinsky on coarse grids.

We compared, in section 4.4, the accuracy of different approximations in predicting steady
states on different grid resolutions. The holistic O(γ5, α2) approximation on a grid of eight
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elements has accuracy similar to a second-order centered difference approximation on a grid
of 16 points. Consequently the holistic model allows a maximum time step that is an order
of magnitude larger than that of the explicit centered difference approximation of similar
accuracy, while maintaining numerical stability. The accuracy of the holistic approximations
to the Kuramoto–Sivashinsky equation on coarse grids and subsequent improved performance
justify further application of the holistic method and future investigation of the approach.

Holistic models on coarse grids also model well time dependent phenomena of the Ku-
ramoto–Sivashinsky pde. In particular, in section 5.1 we saw that the holistic models more
accurately model the eigenvalues near the steady states of the first form of the Kuramoto–
Sivashinsky pde compared to explicit centered difference approximations of equal stencil
widths. The coarse grid holistic models also more accurately model the first Hopf bifur-
cation and the resulting period doubling sequence; see section 5.2. Further, in comparison
with explicit centered difference models, in section 5.3 we saw good performance for higher
values of the nonlinearity parameter α and more accurate predictions of time averaged power
spectra: the O(γ5, α2) holistic model achieves accuracy similar to that of the second-order
and sixth-order centered difference approximations on approximately 1/3 and 3/4 of the grid
resolutions, respectively.

This good performance of the holistic models for accurately reproducing both the steady
states and the time dependent phenomena of the Kuramoto–Sivashinsky pde is good evidence
that the holistic approach is a powerful method for discretizing dissipative pdes on coarse
grids.
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Abstract. We explore situations in which certain stochastic and high-dimensional deterministic systems behave
effectively as low-dimensional dynamical systems. We define and study moment maps, maps on
spaces of low-order moments of evolving distributions, as a means of understanding equation-free
multiscale algorithms for these systems. The moment map itself is deterministic and attempts to
capture the implied probability distribution of the dynamics. By choosing situations where the low-
dimensional dynamics can be understood a priori, we evaluate the moment map. Despite requiring
the evolution of an ensemble to define the map, this can be an efficient numerical tool, as the
map opens up the possibility of bifurcation analyses and other high level tasks being performed
on the system. We demonstrate how nonlinearity arises in these maps and how this results in the
stabilization of metastable states. Examples are shown for a hierarchy of models, ranging from
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with a heat bath.
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1. Introduction. An equation-free framework has recently been developed as a means
of computationally analyzing the dynamical behavior of a large class of complex multiscale
dynamical systems. The systems may be either stochastic or deterministic with many degrees
of freedom and subject to random initial data. The key observation behind the equation-
free framework is that in many cases the quantities of interest are averages or low-order
moments of evolving distributions, which are smooth in space and time and which evolve
effectively as closed low-dimensional systems. In effect, the low-order moments evolve as
though they are governed by reduced closed equations, even though the reduced equations
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as numerical integration or bifurcation and stability analysis of these unavailable reduced
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Figure 1. Model system. A distinguished particle (light gray) sits in an asymmetric double well potential.
The particle is coupled via linear springs to N other (bath) particles (of which three are shown as an illustration).
The full Hamiltonian system has N + 1 degrees of freedom.

The systems we consider are exemplified by the following model. A particle, called the
distinguished particle, with position Q and momentum P , sits in a potential well V (Q). It is
coupled via linear springs to a large number N of particles comprising a heat bath; see Figure 1.
The potential well considered here is a slightly asymmetric double well. The full system is an
N + 1 degree-of-freedom Hamiltonian system. A detailed description of the model, including
the choice of spring constants, masses, and initial data for the bath particles is given below and
in [10, 28, 43]. The important point is that the dynamics of this simple model (and the others
that we consider in this paper) is typical of many more complex molecular and stochastic
systems in which the state is primarily confined to a few conformations (here defined by the
minima of V ) with rare switching events between them. This is illustrated in Figure 2 with a
typical trajectory and time series for the distinguished particle.

Consider now the dynamics of an ensemble of trajectories for the model system. Figure 3
illustrates the evolution of an ensemble of trajectories all with the same initial conditions
(Q,P ) = (0, 3) for the distinguished particle, but with different initial data for the bath
particles. (The total initial energy of the bath is approximately the same for all realizations;
see section 2.) Over a time of order 10 the initial density evolves to a nearly Gaussian density
centered near the bottom of the right well, where it remains roughly constant for some time.
While not immediately evident, during the initial 10 time units the density is never very far
from Gaussian. However, it is evident from the left-hand plot that a small percentage of the
realizations are located in the left well at time 10. Over a much longer time scale, O(104), the
density evolves to the bimodal equilibrium distribution and is hence far from Gaussian. Thus
the system exhibits metastability with near equilibration within one well dominating over
medium time scales, before the system ultimately converges to an equilibrium distribution
which sees both wells. The time it takes the system to reach equilibrium clearly depends
on the potential barrier height; the time scale of the intermediate time evolution to the well
bottom depends only on properties of the particular well.

Our aim is to study the behavior of coarse dynamics and coarse bifurcation methods on
problems which exhibit metastable behavior of this type. In section 2 we introduce a hierarchy
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Figure 2. Typical behavior for the dynamics of the distinguished particle in contact with a bath with
N = 8000 particles. Most of the time the distinguished particle is located in one of the two potential wells, but
occasionally it makes a jump between wells.

of model problems, all of which exhibit rare transitions between a small number of states, and
which we then use throughout as illustrations.

In section 3 we define the discrete-time moment map Φ for the first k moments of the
ensemble of solutions to a time evolving system. Specifically, Φ will be a deterministic low-
dimensional map defined by the short-time evolution of only the low-order moments, in a
general setting which applies to systems of both ordinary differential equations (ODEs), with
randomness from initial data, and stochastic differential equations (SDEs), with randomness
from initial data and Brownian driving noise. Figure 4 illustrates the first-order moment
map for the heat bath example. The short-term dynamics of the map resemble those of the
ensemble, but significantly, the moment map has stable fixed points corresponding to means
of metastable densities centered in each well. The second-order moment map (not illustrated)
additionally captures the widths of the metastable measures. The algorithms we study are
based on these maps. The maps, and their fixed points, are good approximations on time
scales on which the evolving probability density function is well represented by the number of
moments used.

The heart of this paper is section 4, which is devoted to the study of the moment map when
applied to a variety of model systems. We use a combination of exact solutions for Gaussian
problems, approximate solutions for metastable systems, and numerical experiments. Of
central interest is the observation that the moment maps stabilize the metastable states in
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Figure 3. Evolution of an ensemble of 104 realizations for the model system. On the left, density plots
of position and momentum of the distinguished particle are shown at four times as labeled. For clarity only
103 realizations are plotted. The initial conditions are (Q,P ) = (0, 3). The right shows the trajectory and time
series for the ensemble expectations. Red points indicate the four times shown on the left. There are N = 8000
particles in the heat bath.

Figure 4. Dynamics of a moment map for the first-order moments of the position Q and momentum P of
the distinguished particle. The map has three fixed points, two stable foci and one unstable saddle, shown as
blue crosses. Two trajectories are shown, one evolving to each of the stable fixed points. The right trajectory
has initial condition (Q̄, P̄ ) = (0, 3), corresponding to that in Figure 3. There are N = 8000 particles in the
heat bath.

the model problems of interest. The moment map is a nonlinear map, defined from the linear
flow of probability densities for ODEs and SDEs, with the nonlinearity entering through the
process of repeatedly projecting onto the space of moments. This process of nonlinearization
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creates interesting fixed points that are associated with metastable behavior and are amenable
to low-dimensional bifurcation analyses; related issues are addressed in [5, 20]. Section 5
contains our concluding remarks.

2. Model problems. We consider three example systems in this paper. Two are SDEs,
and one is the ODE heat bath model described in the introduction and illustrated in Figure 1.
A major thrust of this paper is to establish, through computational experimentation, that the
moment map stabilizes metastable behavior arising from the slow dynamics between potential
wells with large energy barriers; this gives rise to nonlinear phenomena, such as bifurcations,
in the moment map. Such phenomena can be illustrated both in SDE models and in the
ODE heat bath model. Furthermore, in various parameter limits, the SDEs can be derived as
approximations for the heat bath, further justifying their study.

2.1. Heat-bath model. This model problem is defined by the Hamiltonian

H(Q,P, q, p) =
1

2M
P 2 + V (Q) +

N∑
j=1

p2
j

2mj
+

N∑
j=1

kj
2

(qj −Q)2,(2.1)

where Q and P are the position and momentum of a distinguished particle of unit mass in a
potential field V (·). The qj ’s and pj ’s are the coordinates and momenta of N particles that are
referred to as heat bath particles. The jth heat bath particle has mass mj and interacts with
the distinguished particle via a linear spring with stiffness constant kj . If the distinguished
particle were held fixed, it would be the anchor point of N independent oscillators with
frequencies ωj = (kj/mj)

1/2. The numerical experiments are all conducted with mass M = 1.
Initial conditions for the distinguished particle are Q(0) = Q0, P (0) = P0. The initial

data for the heat bath particles, qj(0) = q0
j and pj(0) = p0

j , are randomly drawn from a
Gibbs distribution with inverse temperature β. The Gibbs measure is conditioned by the
(nonrandom) initial data Q0 and P0. For fixed Q,P the Hamiltonian (2.1) is quadratic in q, p,
and hence the corresponding measure is Gaussian. It is easily verified that

q0
j = Q0 + (1/βkj)

1/2ξj ,

p0
j = (mj/β)1/2ηj ,

where ξj , ηj ∼ N (0, 1) are mutually independent sequences of independently and identically
distributed (i.i.d.) random variables.

This leaves the specification of the values for kj and mj . For our purposes the only
important property is that the frequencies ωj = (kj/mj)

1/2 cover an increasingly large range
in an increasingly dense manner as the number of particles N increases. Hence what we
actually specify is the frequencies. These are chosen to be random and uniformly distributed
in [0, N1/3],

ωj = N1/3νj , νj i.i.d., ν1 ∼ U [0, 1].

It is important to note that, in addition to the initial data, the model specification itself
contains this random element. We shall be careful to distinguish between the two types of
randomness.
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From the frequencies the spring constants and masses are given by

kj =
2α2

π(α2 + ω2
j )

N1/3

N
, mj =

kj
ω2
j

(2.2)

with α > 0. See [28] for further details. The parameters α and β are fixed at α = 100, β = 2.
The potential considered in this paper is

V (Q) =
Q4

4
− μQ2

2
+ νQ,(2.3)

where μ and ν are parameters with ν typically small.

2.2. Two-dimensional SDE approximation. For large N and α, the distinguished particle
Q in the heat bath model can be approximated by the SDE

MQ̈ + γQ̇ + V ′(Q) =
√

2γ/β Ẇ .(2.4)

A theorem justifying this approximation can be proved using the techniques of weak conver-
gence, by taking the limit N → ∞ (see [28]) and then α → ∞ (see [34]). In the absence of
noise (the zero temperature limit β → ∞) this damped Hamiltonian system exhibits decay
towards stationary points with zero velocity and positions at the critical points of V . The
presence of noise (finite β) then induces transitions between the minima of V , with time scales
determined by the well-depths relative to the size of the noise.

2.3. One-dimensional SDE approximation. The stochastic dynamics between potential
wells is also present in simple one-dimensional SDEs. A particular instance of such a one-
dimensional SDE follows from (2.4) for M � 1. In the limit M → 0, the solutions of (2.4)
converge strongly [33] or weakly [11] to solutions of the SDE

γQ̇ + V ′(Q) =
√

2γ/βẆ .(2.5)

We will use this problem to illustrate the moment map and its properties on systems exhibiting
metastable dynamics within potential wells.

2.4. Remark. In most respects the SDE systems derived above are simpler to treat, and
computationally they are far less expensive to simulate, than the full heat-bath model. There-
fore, when we later use these models as examples, we will study the models in the opposite
order from what has just been presented. We start with the one-dimensional SDE and exam-
ine its behavior extensively, and then consider more briefly the two-dimensional SDE and the
heat bath system of ODEs.

3. The moment map. The central objects of our study are maps on moments. The basic
ingredients are an evolution equation (either an SDE or a system of ODEs), a space of low-
order moments, and a measure determined uniquely by low-order moments. We refer to the
latter as lifting, and the choice of the lifting operator is an essential ingredient in the method.
We start with the SDE case, then describe the situation for ODEs. For both the SDE and
the ODEs the flow on probability densities is linear. The nonlinearity inherent in the moment
map comes from the relationship between the probability density function and its moments.
After describing the moment map for the SDE and the ODE, the section concludes with some
general remarks.
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3.1. The SDE case. Let x ∈ C([0,∞),Rd) solve the following Itô SDE, driven by Brown-
ian motion W ∈ C([0,∞),Rm):

dx

dt
= f(x) + σ(x)

dW

dt
.(3.1)

This includes (2.4) and (2.5) as special cases. We will consider ensembles of solutions of this
equation, with ensembles taken over multiple driving noises and random initial data. Let
Xj(t) be the jth moment of x(t), with expectation taken with respect to both the driving
Brownian motion W and random initial data, the latter being assumed independent of the
Brownian motion. Denote the first k moments of x by X(t) = (X1(t), . . . , Xk(t)).

Let μ be a measure on R
d determined by exactly k moments, with density ρ̂(x;X). Here X

denotes the dependence of the density on the k moments, and we require that the k moments
of ρ̂ are exactly those given by X.

We now define the map Φ on k moments. Fix a time τ ∈ (0,∞) and set

Φ(X) = X(t = τ),(3.2)

where the initial data X(0) = x0 is distributed with density ρ̂(x;X). (Note that if τ = 0, then
Φ is the identity.) We refer to this as the moment map. Three choices that need to be made
when calculating the moment map are:

(i) the evolution time τ ,
(ii) the number of moments we choose to use,
(iii) the lifting step: the way we choose to distribute the initial density based on the

moments.
We will return to this dependence in more detail below.

The two examples of the measures which will be used throughout this paper are the Dirac
measure and the Gaussian measure, uniquely determined by the first moment and the first
two moments, respectively. We emphasize that the moment map is a deterministic map.

In practice the moment map must be obtained numerically, through Monte Carlo simu-
lation, for example. However, it is insightful to describe the definition of the map through
the Fokker–Planck equation for (3.1). This linear PDE for the probability densities ρ(x, t)
propagated by (3.1) is

∂ρ

∂t
= −∇ · (fρ) +

1

2
∇ · ∇ · (Σρ) := L∗ρ,(3.3)

ρ(x, 0) = ρ̂(x;X),(3.4)

where Σ = σ(x)σ(x)T . Here L∗ is the adjoint of the generator for the process L. We denote
the solution by

ρ(x, t) = eL
∗tρ̂(x;X).(3.5)

From ρ(x, t = τ) we can construct Φ(X) by (3.2). In general the moment map is nonlinear
because of the nonlinear dependence of ρ̂(x;X) on X and the nonlinearity of the map from
ρ(x, τ) to X(τ). Thus we have constructed a nonlinear map on R

d from the linear flow on
R
d-valued densities.
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Figure 5. Sketch illustrating the definition of the moment map. From a point (X1, X2) in moment space a
density ρ̂ is uniquely determined. This initial density is evolved by the system dynamics (e.g., the Fokker–Planck
equation). From the resulting density ρ(τ), τ time units later, a new point in moment space is determined.
This point is defined to be the image of (X1, X2) under the moment map.

It is helpful to consider Figure 5, illustrating the definition of the moment map. One
should view the map as a composition of three steps: (1) lifting from a space of moments
(subset of R

d) to a space of probability densities (captured by our choice of ρ̂(·;X)), (2) time
evolution of the density by the underlying process (a linear flow, given by the map eL

∗τ ),
(3) projection back to moment space by integrating against the time-evolved measure.

In the case of a single moment, in this paper, we take μ to be a Dirac measure at X, and
then X(τ) = Ex(τ) can be calculated from

Φ(X) =

∫
Rd

xeL
∗τδ(x−X)dx.

In the case of two moments we have

X(τ) = {Ex(τ),E[x(τ) − Ex(τ)][x(τ) − Ex(τ)]T },

and we take μ to be a Gaussian measure with mean and covariance determined by these
moments. It is convenient to express the moment map in terms of the mean x̄ ∈ R

d and
covariance matrix Σ ∈ R

d×d. We obtain the map

Φ(x̄,Σ) =

{
Φ1(x̄,Σ)
Φ2(x̄,Σ)

}
.
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The functions Φi are defined as follows. Since the density ρ̂ is determined by the moments we
are carrying, in this Gaussian case it is

ρ̂(x; x̄,Σ) =
exp(−1

2‖Σ
− 1

2 (x− x̄)‖2)√
((2π)d det Σ)

.

Then Φ1 : R
d × R

d×d → R
d is given by

Φ1(x̄,Σ) =

∫
Rd

x{eL∗τ ρ̂(x; x̄,Σ)}dx,

and Φ2 : R
d × R

d×d → R
d×d is given by

Φ2(x̄,Σ) =

∫
Rd

(x− Φ1(x̄,Σ))(x− Φ1(x̄,Σ))T {eL∗τ ρ̂(x; x̄,Σ)}dx.

There is a connection between particle filters and the moment map. In their basic form
particle filters represent the desired evolving probability density function as a sum of several
delta functions, or Gaussians, not just as one [6]. However, various simplifications are often
used in high-dimensional problems, such as the extended Kalman filter and the ensemble
Kalman filter, and these methods have some resemblance to the moment map in spirit.

3.2. The ODE case. The moment map can be defined for deterministic problems of the
form

dx

dt
= f(x, y),(3.6)

dy

dt
= g(x, y).(3.7)

Here x ∈ R
d and y ∈ R

m, and the randomness is assumed to come entirely from the initial
data. In systems characterized by a separation of time scales, it is sometimes the case that
one can write an effective reduced model in terms of a subset of (typically slow) variables.
Under such appropriate conditions, we might, for example, be interested in finding a map in
terms of the first k moments of x alone. Thus the measure μ must be chosen on R

d × R
m so

that it is uniquely characterized by X, the first k moments of x ∈ R
d. It is natural to choose

μ to be an invariant measure for the flow, conditioned by knowledge of the first k moments
of x; if the flow is Hamiltonian, then a Gibbs measure is often used. We denote the density
associated with this measure by ρ̂(x, y;X). This occurs in the heat bath example considered in
the introduction, where x represents coordinate and momentum of the distinguished particle,
while y represents the heat bath coordinates and momenta.

Rather than the Fokker–Planck equation (3.3) we have the Liouville equation for propa-
gation of probability densities. This is

∂ρ

∂t
= −∇x · (fρ) −∇y · (gρ) := L∗ρ,

ρ(x, y, 0) = ρ̂(x, y;X),
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and we denote the solution by

ρ(x, y, t) = eL
∗tρ̂(x, y;X).

In the case of a Dirac mass we take ρ̂(x, y;X) = δ(x−X)ρ̂(y;X), and then the map

Φ(X) =

∫
Rd×Rm

x{eL∗τδ(x−X)ρ̂(y;X)}dxdy.

Here ρ̂(y;X) is chosen so that δ(x − X)ρ̂(y;X) is the density of μ conditional on x = X.
Generalization to Gaussian, and higher moment problems, is also possible.

3.3. General remarks.
• Notation. We use X to represent a point in the moment space up to some order k,

which will be made explicit for each particular example we consider. In practice, the
coordinates used to describe the moment space are dictated by the particular problem.
For example, in our case we use the mean and standard deviation as coordinates when
considering k = 2 and d = 1. For k = 2 and d = 2 we use the two means, the two
standard deviations, and the cross correlation as coordinates.

• Usage. In discussing moment maps we often do not distinguish between a point X in
moment space and the uniquely determined density ρ̂(·;X) based on this point. That
is, we sometimes speak of the moment map as mapping Xn to Xn+1 and sometimes
speak of the moment map as mapping density ρ̂(·;Xn) to density ρ̂(·;Xn+1).

• Relation to optimal prediction. The map Φ can be used to generate an approximate
vector field by defining

F (X) =
Φ(X) −X

τ
.(3.8)

For the ODE case (3.6) and μ a Dirac at X, the limit τ → 0 coincides with the vector
field found by the method of optimal prediction [3]; this is demonstrated in [16].
In general the method of optimal prediction leads to errors which grow linearly in
time T [19]. The approach we study here attempts to overcome this error growth by
closing the system with a larger number of moments.

• Previous work. For simple problems in chemical kinetics, which are modeled by birth-
death processes, the equation for the first moment is a closed ODE, in the limit of a
large number of independent particles, and the moment map studied here then works
well in the Dirac mass case [29, 30, 31]. For more complex problems, such as lattice
Boltzmann, a closed effective PDE may sometimes be found, using first and second
moments, and again, the moment map works well in this case [40, 12, 41, 9]. In this
paper we study examples where no closure is proved to exist, and demonstrate the
properties of the moment map. In particular we study the relevance of fixed points
of this map to the identification of metastable states. Although no rigorous analysis
is presented, the numerical studies show that the moment map has some merit as an
approach for elucidating long-term dynamics of large systems, through low-dimensional
dynamical systems studies.
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• Lifting. Initialization of the detailed simulation consistently with coarse-grained ob-
servables is the lifting step in equation-free computation [40, 12, 25, 38]. This step is
obviously not unique, as there exist many ways of initializing a distribution conditioned
on a few of its lower-order moments. Our choice of a particular measure depending
only on the lower-order moments allows for a systematic initialization of the fine-scale
dynamics, a concept that goes back to Ehrenfest (see [8, 17]), and is an important
component of our computational approach. In the case of systems with metastability,
different effective dynamics will be deduced (different closures will be obtained) de-
pending (a) on the time scale of the observation (the time horizon of the simulation τ
with the fine scale solver) and (b) on the nature of the lifting from the moments (the
choice of ρ). Over very short times, and initializing with a Dirac delta function, the
simulation will effectively sample the local gradient of the well; over medium times,
and initializing within one well, one will observe equilibration within this well; and
over very long times (no matter what the initialization) one will observe the approach
to the equilibrium density. If we want to study the system over medium time scales,
it is obviously important to use a time τ in the construction of the moment map that
is short compared to the escape time between wells, but long enough for the noise
(dynamics) to allow the sampling of the features of the well bottom. On a longer time
scale it is necessary to incorporate the transition time between wells, as is done, for
example, in the method of conditional averaging [36].

• Computational savings. The moment map can lead to computational savings in two
primary ways:
(i) the map Φ can be used in finite-dimensional bifurcation and continuation studies;
(ii) the estimated vector field F can be used to advance the moments over several

multiples of the time-step τ .
In case (i), savings can arise from using accelerated methods, such as Newton iteration
in a continuation environment, to find fixed points. In case (ii), savings arise by
considering maps of the type

Xn+1 = Xn + l{Φ(Xn) −Xn}

to advance the moments through lτ time units, using solution of the full problem (3.1)
or (3.6) only over τ time units. (If l = 1, this simply reduces to the moment map.) The
above formula constitutes a projective forward Euler explicit coarse integrator. Much
more sophisticated integrators, including multistep and implicit ones, can also be used;
a rigorous analysis of savings in case (ii) has only recently been initiated [13, 14, 35].
These ideas have been applied to a wide range of problems, both deterministic and
stochastic; see, e.g., [15, 12, 29, 30, 31, 41, 38, 9, 18, 27, 22, 37, 4] and other references
in [25, 26]. An approach related to case (ii), which can be fully optimized for variance
reduction and so forth when explicit time scale separation occurs between the x and
y dynamics in (3.8), is outlined in [42]; for a rigorous analysis see [7].

4. Examples. Here we explore a series of examples of moment maps. We start with
examples based on the Ornstein–Uhlenbeck (OU) process, for which explicit representation is
possible. In these cases the moment maps are linear. We then proceed to the more interesting
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Figure 6. Phase portraits for first-order (left) and second-order (right) moment maps for the OU process.
Trajectories for these linear maps are shown starting from several different initial conditions. Parameters are
α = 1, λ = 2, and τ = 0.5. See also the accompanying animations (63866 01.gif [714KB], 63866 02.gif [1.4MB],
and 63866 03.gif [2.5MB]).

nonlinear maps arising from systems with double-well potentials.

4.1. The OU process. Consider the OU process

dx

dt
= −αx +

√
λ
dW

dt
.(4.1)

This is essentially the simplest example of (3.1) and corresponds to (2.5) in the case of a
quadratic potential.

The exact solution of this process is

x(t) = e−αtx(0) +
√
λ

∫ t

0
e−α(t−s)dW (s).(4.2)

For a first-order moment map on x̄, we take initial data with Dirac measure with density
ρ̂(x; x̄) = δ(x− x̄). The map on the first moment x̄ is explicitly

Φ(x̄) = Ex(τ) =

∫
x{eL∗τδ(x− x̄)}dx.

From (4.2) we have

Φ(x̄) = e−ατ x̄.(4.3)

The map Φ is linear and has a unique globally attracting fixed point at x̄ = 0. Figure 6 shows
a phase portrait for this simple map.

Before discussing this we consider the second-order moment map with mean x̄ and stan-
dard deviation σ as coordinates. In this case the initial data has density

ρ̂(x; x̄, σ) =
1√
2πσ

e−
(x−x̄)2

2σ2 .

From (4.2) we then have that the moment map on (x̄, σ) is given by

Φ1(x̄, σ) = e−ατ x̄,(4.4)

Φ2(x̄, σ) =

{
e−2ατσ2 +

λ

2α
[1 − e−2ατ ]

} 1
2

.(4.5)

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/63866_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/63866_02.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/63866_03.gif


THE MOMENT MAP 415

While not a linear map on (x̄, σ), this is linear on (x̄, σ2). Figure 6 shows a phase portrait
for map (4.4). The map has the unique fixed point (x̄, σ) = (0,

√
{ λ

2α}), which is globally
attracting.

The solution to (4.2) is Gaussian if x0 is Gaussian. Hence the second-order moment map
(4.4) gives exact time τ samples of the distribution of the SDE. This unique fixed point
of the map characterizes the unique invariant (Gaussian) measure of (4.1). In contrast, the
first-order moment map, with μ a Dirac, can only approximate the solution. Although this
map does not quantitatively represent the solution, since it contains no information about the
width of the measure, it captures the correct dynamics of the first-order moment and shows
that probability mass initially far from the origin will be transported towards the origin.

4.2. One-dimensional SDE: The double-well potential. We now present a detailed study
of moment maps for the one-dimensional SDE (2.5) with double-well potential. In this section
we focus on the dynamics of these maps using numerical simulations. In the next section we
analyze the maps, in particular the nonlinearity of the maps, in more detail.

After suitable scaling, SDE (2.5) can be rewritten in the notation of (3.1) as

ẋ = −V ′(x) + Ẇ .(4.6)

We consider the double-well potential

V ′(x) = x(x2 − μ) + ν.(4.7)

For ν = 0 the potential is symmetric about zero, and for ν small this symmetry is weakly
broken. The potential has two local minima for |ν| < 2(μ/3)3/2 and one minimum otherwise.

The first-order (Dirac-based measure) and second-order (Gaussian-based measure) mo-
ment maps for this equation are nonlinear. In particular, these maps have multiple stable
fixed points that undergo bifurcations as the potential (μ or ν) is varied. We are interested
in these fixed points and their stable and unstable manifolds as a function of μ for ν fixed.
We shall consider two cases, the slightly asymmetric case ν = 0.3 and the symmetric case
ν = 0. We resort solely to numerical studies of the moment maps throughout this section.
In brief, we use Monte Carlo simulations to evolve densities forward over time interval τ , as
in the evolution from ρ̂ to ρ in Figure 5. This numerically determines the moment maps.
By employing additional techniques, we can compute steady states and bifurcations. The
effective fixed point, bifurcation, and continuation calculations require estimates of the Jaco-
bian of the moment map (or its action). This is achieved by using nearby initializations of
the moment map (see [29, 30] as well as [40, 25, 23] and the monograph [24] for matrix-free
implementations of Newton-GMRES).

We first consider the moment maps for the slightly asymmetric potential with represen-
tative values of μ and map time τ . Figure 7 shows phase portraits for both first-order and
second-order moment maps. Each map has three fixed points. These are shown together with
unstable, and for the second-order map also stable, manifolds of the unstable fixed point.

Figure 8 shows one iteration of both the first- and second-order maps. Consider the first-
order map. The initial density ρ(0) = ρ̂(x; x̄) is a Dirac delta at x̄, here a point slightly to the
right of the unstable fixed point near zero. After time τ = 0.1 the mean of the density has
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Figure 7. Phase portraits for first-order (left) and second-order (right) moment maps for the one-variable
SDE in the case of a slightly asymmetric potential. Fixed points are indicated by crosses. The stable (for
second-order map) and unstable manifolds of the middle fixed point are shown. Note, the stable manifold of the
saddle in the second-order map does not pass through the middle fixed point of the first-order map. Parameters
are μ = 6, ν = 0.3, τ = 0.1.

Figure 8. One iteration of the first and second order maps whose phase portraits are shown in Figure 7.
The bold red curve shows ρ(0) = ρ̂(x;Xn), the thin green curve shows ρ(τ), and the dash bold red curve shows
ρ̂(x;Xn+1). (See Figure 5.)

moved to the right, and hence the map takes x̄ to the right in this case. The density spreads
considerably, but over τ = 0.1 it remains nearly symmetric (the mean is indistinguishable
from the maximum). The initial density for the next iteration is a Dirac delta displaced to
the right.

For the second-order map the initial density ρ(0) = ρ̂(x; x̄) is a Gaussian centered at x̄
with width σ. Here (σ, x̄) = (0.418, 0.409) corresponds to a point on the lower branch of the
stable manifold of the saddle fixed point. After τ = 0.1 time units the density has spread, and
the mean has moved slightly to the right. The map thus corresponds to substantial increase
in σ and small increase in x̄. The density ρ(τ) is slightly non-Gaussian, as can be seen in
comparison with the initial (Gaussian) density for the next iteration.

Figure 9 shows all fixed points in Figure 7. In each case we plot the density ρ̂(·;X)
corresponding to each fixed point in moment space as well as the density ρ(τ). The stable fixed
points of the second-order map are the metastable measures centered in each well. Specifically,
the Gaussian measures ρ̂(x; x̄, σ) corresponding to the stable fixed points are indistinguishable
from the evolved densities ρ(τ). As we shall show this is independent of τ over a very large
range of τ . Intuitively this is because on any time scale, up to the very long time scale needed
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Figure 9. Densities ρ̂(·;X), shown with bold blue curves, corresponding to fixed points for the first-order
(left) and second-order (right) moment maps shown in Figure 7. Thin green curves show the evolved density
ρ(τ) for each case. (For the two stable fixed points of the second-order moment map the evolved density ρ(τ) is
indistinguishable from ρ̂(·;X).) The potential V (x) is shown as a dashed curve.

to reach the equilibrium distribution, these Gaussian measures are approximately invariant.
The stable fixed points of the first-order map are not invariant measures. However, starting
from initial condition ρ̂(x; x̄) = δ(x̄), where x̄ is indistinguishable from the potential minimum,
the density simply fills out (symmetrically), the (locally quadratic) well bottom. Note that
τ = 0.1 is close to, but not quite, the time necessary to reach the metastable density starting
from the Dirac measure.

The unstable fixed points for the maps are understood as follows. For the first-order map,
the unstable fixed point is at the local maximum of the potential. Starting from a Dirac delta
ρ̂(x; x̄) = δ(x̄), the density spreads symmetrically, since the maximum is locally quadratic
and hence symmetric. Hence after time τ = 0.1 the mean is still at local maximum of the
potential. Only for times τ long enough for the density to fill the two wells, and hence have
a mean different from the local maximum, would the fixed point be different from the local
maximum. For such times the fixed point would approximately be the mean of the equilibrium
density. For the second-order map, the saddle fixed point corresponds to a Gaussian ρ̂(x; x̄, σ),
which is quite broad. The evolved density ρ(τ) is far from Gaussian; it simply has the property
that its first two moment agree with those of the initial Gaussian. The saddle fixed point is
quantitatively sensitive to the map time τ (see below). Qualitatively, however, for any value



418 D. BARKLEY, I. G. KEVREKIDIS, AND A. M. STUART

Figure 10. Bifurcation diagram for first-order (left) and second-order (right) moment maps for the one-
variable SDE in the case of a slightly asymmetric potential. Lines show local extrema of the potential. Param-
eters are ν = 0.3 and τ = 0.1.

of τ the saddle fixed points are broad Gaussians.
The stable fixed points of both maps correspond to metastable states (measures) of the

underlying process. The metastable states are very nearly Gaussian measures, because the
wells are locally quadratic, and they are thus well captured by the low-dimensional moment
maps: the densities corresponding to the stable fixed points of the second-order map are
virtually indistinguishable from the metastable states. The fixed points of the first-order map
capture the means of the metastable distributions. The stable fixed points are insensitive to
the value of τ over a large range of τ . (See Figure 12 below.) This lack of sensitivity to τ
suggests that these fixed points are meaningful characteristics of the observed dynamics over a
range of observation time scales. The unstable (saddle) fixed point for the first-order moment
map is also insensitive to the value of τ , but the unstable fixed point for the second-order map
is sensitive to τ . This suggests that the fixed points of the first-order moment map provide
a useful description of the dynamics (for relatively short times) close to both the saddle and
the well bottoms; the second-order map fixed points provide a meaningful description of the
effective dynamics close to the bottoms of the two wells, but not in the neighborhood of the
saddle; this is essentially because a reduced equation in terms of the second-order moments
does not appear to successfully close in the neighborhood of the saddle.

We now turn to the behavior of the fixed points as a function of well depth. Figure 10
shows bifurcation diagrams for each moment map as functions of μ, including μ for which the
potential has a single well (basically μ < 0). Local extrema of the potential are shown for
comparison. The right-most end of each bifurcation diagram (μ = 6) corresponds to the phase
portraits just considered. The fixed points for the first-order map follow the extrema of the
potential closely for all μ, including near the saddle-node bifurcation. The second-order fixed
points do not. In Figure 11 we show fixed points in cases where the potential is far from locally
quadratic. One case is μ = 0, and the other is μ = 2.4, very near the value corresponding to
the saddle-node bifurcation of the second-order map. In both cases the first-order fixed point
is at the potential minimum, while the mean of the second-order fixed point is noticeably
different from the minimum, as can also be seen in Figure 10.

We show in Figure 12 how steady states for the second-order moment map are affected
by the choice of the map time τ . To understand what the figure shows, it is helpful to first
consider the fixed points for μ < 0. Neither x̄ nor σ varies significantly with τ , and σ is
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Figure 11. Densities, shown with bold blue curves, corresponding to fixed points for first-order (left) and
second-order (right) moment maps at two values of μ where the nonquadratic aspect of the potential is apparent.
Thin green curves show the evolved density ρ(τ) for each case. The top case is μ = 0. The bottom is μ = 2.4,
very near the saddle-node bifurcation for the second-order map in Figure 10. The potential V (x) is shown as
a dashed curve.

not large. While not as easy to see, the stable fixed points for μ � 2 behave similarly. The
stable fixed points correspond to the uppermost and lowermost branches in the x̄-plot and the
bottom branch in the σ-plot. Both stable fixed points have approximately the same, relatively
small, value of σ. The intermediate, generally unstable, fixed points have larger values of σ;
these vary quantitatively and qualitatively with τ . The number of unstable fixed points can
change with τ ; e.g., at μ = 6, τ = 0.1 there is one saddle fixed point between the two stable
fixed points (Figure 7), whereas at μ = 6, τ = 1.0 there are three fixed points between the two
stable points (similar to Figure 14 below). The conclusion is that the stable fixed points of
the second-order moment map which correspond to stable or metastable measures of the SDE
are largely insensitive to the time τ used to define the map. The other fixed points typically
correspond to broad distributions and depend quantitatively on τ . This dependence of the
fixed points of the moment map on τ suggests that they are not useful features of the effective
dynamics—which in turn suggests that the effective behavior does not usefully close at the
second moment level in the neighborhood of these fixed points.

A further way to quantify the effective closure at a given level is to examine how closely
two successive iterates of the moment map agree with one iterate using twice the map time.
Specifically, one can consider whether Φτ (Φτ (X)) 
 Φ2τ (X) for some particular point X in
moment space and some chosen map time τ . If the two are nearly equal, then the system is
effectively closed with the given number of moments in the vicinity of point X. We illustrate
this in Figure 13 for the second-order moment map. We have computed ||Φτ (Φτ (x̄, σ)) −
Φ2τ (x̄, σ)||2 for a large number of points in moment space with τ = 0.1. The norm of the
difference is shown in greyscale. Everywhere in the white region the norm is very small.
Starting from any point in the white region, two map iterations over time τ and one iteration
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Figure 12. Bifurcation diagram for a second-order moment map for the one-variable SDE for a variety of
values of τ : τ = 0.05 blue, τ = 0.1 red, τ = 0.2 yellow, τ = 0.5 green, τ = 1.0 black. Other parameters are
μ = 6 and ν = 0.3.

Figure 13. Effective closure for second-order moment maps for the one-variable SDE in the case of a
slightly asymmetric potential. Shown in greyscale is ||Φτ (Φτ (x̄, σ)) − Φ2τ (x̄, σ)||2 as a function of x̄, σ, for
τ = 0.1. White corresponds to a norm less than 0.01, while dark grey corresponds to a norm greater than 0.1.
For reference, two ellipses are plotted (at x̄ = 3.2): a very small one in the white region corresponds to a
neighborhood of size 0.01, and one in the grey region corresponds to a neighborhood of size 0.1. The phase
portrait from Figure 7 is also shown. Parameters are μ = 6, ν = 0.3, τ = 0.1.

over time 2τ lie within a neighborhood of size shown. As expected, the white region includes
the two stable fixed points. In the grey region the norm is quite large. Here two map iterations
over time τ and one iteration over time 2τ lie further apart than the neighborhood shown in the
grey region. This indicates that is the system does not close in the Gaussian approximation.

Finally we consider the moment maps for the symmetric double-well potential. Figure 14
shows phase portraits, similar to Figure 7 for the asymmetric case, while Figure 15 shows fixed
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Figure 14. Phase portrait for first-order (left) and second-order (right) moment maps for the one-variable
SDE in the case of a symmetric potential. Fixed points are indicated by crosses. The stable (for second-order
map) and unstable manifolds of the saddle fixed point are shown. Parameters are μ = 6, ν = 0, τ = 0.1.

Figure 15. Fixed points for first-order (left) and second-order (right) moment maps shown in Figure 14.
Same conventions as in Figure 9. Top plots show the right stable fixed point. The middle plot shows the right
saddle for the second-order map. The bottom plot shows the middle fixed point (saddle for the first-order map
and stable fixed point for the second-order map). The other points in Figure 14 are obtained by symmetry.

points, similar to Figure 9 for the asymmetric case. Figure 16 shows a bifurcation diagram
as a function of μ. An important observation from the data presented in the symmetric case
is that the moment map produces stable equilibria that are far from metastable states. The
Gaussian measures corresponding to these fixed points are very broad.
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Figure 16. Bifurcation diagram for first-order (left) and second-order (right) moment maps for the case of
the symmetric potential. Lines show local extrema of the potential. Parameters are ν = 0 and τ = 0.1.

4.3. Metastability and the double well potential. We now present some analysis of the
nonlinear map. Consider the SDE (4.6). The adjoint of the generator for this process is

L∗φ(x) =
d

dx
{V ′(x)φ(x)} +

1

2

d2φ

dx2
(x).

The equation has a unique invariant density ρ∞, in the null-space of L∗, given explicitly by

ρ∞(x) = Z−1 exp{−2V (x)}, Z =

∫
R

exp{−2V (x)}dx.(4.8)

The operator ρ
− 1

2∞ L∗ρ
1
2∞ is self-adjoint in the space L2(R) (see Proposition 2.2 of [21]). We let

〈·, ·〉 denote the weighted L2(R) inner product

〈θ, ψ〉 =

∫
R

θ(x)ψ(x)

ρ∞(x)
dx,

and we write the eigenvalue problem

L∗φj(x) = λjφj(x)

with eigenvalues ordered so that

0 = λ0 ≥ λ1 ≥ λ2 ≥ · · · .

We may choose the normalization

〈φj , φk〉 = δij .

Since φ0(x) = ρ∞(x), we have∫
R

φ0(x)dx = 1,

∫
R

φj(x)dx = 0, j ≥ 1.
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Now, the solution ρ(x, t) of the Fokker–Planck equation can be expanded in the eigen-
functions φj as

ρ(x, τ) =

∞∑
j=0

aj(t)φj(x),

where

aj(t) = aj(0)eλjt.

Notice that a0(0) = 1 in all cases, because ρ(x, 0) is a probability density function.
Assume that V (x) in (4.6) is a double-well potential with deep wells relative to the noise.

Then the analysis and numerical evidence in [2, 21, 32] suggest that it is reasonable to assume
that

ε := λ1/λ2 � 1.(4.9)

Thus there exists a spectral gap and, noting that λ0 = 0, this suggests that after times τ of
order −1/λ2 the density ρ(x, t) can be well approximated by only the first two eigenfunctions
φ0 and φ1.

Assuming that V ′′ �= 0 at the two well bottoms, then ρ∞(x) is well approximated as the
weighted sum of two Gaussians g±(x); this may be verified from (4.8). We may assume that
the Gaussians are normalized to be probability densities, and then define their means and
standard deviations by∫

R

g±(x)dx = 1,

∫
R

xg±(x)dx = ḡ±,

∫
R

[x− ḡ±]2g±(x)dx = σ̄2
±.

We then write

φ0(x) = ρ∞(x) ≈ αg+(x) + (1 − α)g−(x),(4.10)

where α determines the relative weight of the two Gaussian contributions. Furthermore, by
orthonormality, it may be shown that

φ1(x) ≈
√
{α(1 − α)}[g+(x) − g−(x)].(4.11)

We can now use the approximations (4.10), (4.11) to understand the nonlinearity in the
moment map for the case of the double-well potential. We focus on the second-order map.
In this case ρ(x, 0) = ρ̂(x; x̄, σ) will be Gaussian. For a sufficiently large spectral gap, (4.9),
we can choose a map time τ long on the scale of 1/λ2, while short on the scale of 1/λ1.
Specifically, letting T = −λ2τ , we have

ρ(x, τ) = φ0(x) + a1(0)e−εTφ1(x) + O(e−T ).

Given small ε � 1, we can choose T sufficiently large that e−T � 1 while εT � 1. Then
letting

β = a1(0)
√

{α(1 − α)},
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Figure 17. Iterates of the moment map as seen in a1, χ coordinates. Red dots show points with Gaussian
densities ρ̂(x; x̄, σ). The Gaussian densities corresponding to points labeled 1 and 3 are shown to the right.
The evolution of the density over time τ is shown by bold curves (actually fine series of bold points) with
green crosses indicating the final time. The density corresponding to point 2 is shown to the right. Dashed
lines indicate the projections back to Gaussian density, which preserve the mean and standard deviation of the
distribution. Parameters are μ = 6, ν = 0, and τ = 1.0.

we have

ρ(x, τ) ≈ (α + β)g+(x) + (1 − α− β)g−(x)

= γg+(x) + (1 − γ)g−(x),(4.12)

where γ = α + β.

The key to the dynamics of the moment map is manifest in the formula (4.12). Given
any Gaussian with mean and standard deviation (x̄0, σ0), we project the density ρ(x, 0) =
ρ̂(x; x̄0, σ0) onto the basis {φj(x)}∞j=1. Then the evolution over appropriate time τ results in
ρ(x, τ) containing only φ0 and φ1 and is given by (4.12), so that

x̄1 = γḡ+ + (1 − γ)ḡ−,(4.13)

σ2
1 = βσ̄2

+ + (1 − β)σ̄2
− + (1 − β)β(ḡ+ − ḡ−)2.(4.14)

Since β, γ depend nonlinearly on (x̄0, σ0), through α and a1(0), we have a nonlinear map
(x̄0, σ0) → (x̄1, σ1). In principle this map can be computed explicitly, though this requires
knowing the eigenfunctions φ1 and φ0 accurately.

This analysis can be applied to our computational studies of the double-well potential to
gain further insight into the moment map. We employ the symmetric double-well potential
considered at the end of section 4.2. In this case the eigenfunctions φ1 and φ0 are accurately
approximated by (4.10) and (4.11) with α = 1/2. We use τ = 1 in the computations that
follow. (We shall see that λ2 
 −5, so that τλ2 
 −5.)

Figure 17 shows the moment map in the coordinates suggested by the preceding analysis.
The corresponding evolution of the density is shown for one iterate of the map. We wish to
view the evolution of the density ρ(x, t) in terms of the amplitudes aj(t) of projections onto the
eigenfunctions φj . We know that a0(t) ≡ 1, so there is no need to show this amplitude. The
essential amplitude is a1. The effect of all the higher amplitudes aj , j > 1, can be summarized
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Figure 18. Exponential decay of higher modes. Dashed curve has slope −4.8.

by a single scalar χ defined as

χ ≡
∥∥∥∥∥

∞∑
j=2

ajφj

∥∥∥∥∥
2

= ‖ρ− a0φ0 − a1φ1‖2,

with ρ = ρ(·, τ).

Consider point 1 in Figure 17. To the right is shown the Gaussian density ρ(0) =
ρ̂(x; x̄0, σ0) determined by a point (x̄0, σ0) in moment space. This density has a significant
projection onto the higher modes φj , j > 1, and χ is significantly greater than zero. From the
analysis we expect the density to evolve such that χ decays to zero on a time scale faster than
the dynamics of a1. The thick black curves in Figure 17 show this evolution. There is little
change in a1 as the system evolves toward χ = 0. The decay to χ = 0 is ultimately exponential,
as is shown in Figure 18. From this we estimate that λ2 
 −5 and thus exp(λ2τ) 
 0.007.

After time τ = 1 the system is at point 2 with corresponding density shown at the
right. The resulting density is no longer Gaussian as expected from (4.12). The second-
order moment map is obtained by determining (x̄1, σ1), the mean and standard deviation of
density 2. For the next iteration of the map one constructs a Gaussian density with this
mean and standard deviation (point 3 in Figure 17) and repeats. The dashed line connecting
points 2 and 3 illustrates this. Thus the moment map takes Gaussian ρ̂(x; x̄0, σ0) determined
by (x̄0, σ0) (point 1) to ρ̂(x; x̄1, σ1) determined by (x̄1, σ1) (point 3) where the map can be
again be iterated. Note that the evolution from point 1 to point 2 is due to linear flow of the
Fokker–Planck equation. Nonlinearity results from the projection of density at point 2 back
to (x̄1, σ1); i.e., going from point 2 to point 3 introduces nonlinearity into the map. Further
note that the mean has moved slightly to the right after one iteration of the map. Hence, on
the next iteration less of the mass will move into the left well (as in point 2). In this way
the map stabilizes the metastable states corresponding to localization of density into a single
well.

Now consider exactly the same evolution seen in the moment-map coordinates (x̄, σ) in
Figure 19. The green curve is that generated by a0 = 1, −1 ≤ a1 ≤ 1, aj = 0, j > 1. This
curve is also shown as green in Figure 17. This is the slow manifold for the system. Starting
from point (x̄0, σ0), point 1, the evolution of (x̄, σ) as ρ(x, t) evolves is shown in bold. This
is the decay of the modes φj , j > 1. After time τ the system reaches (x̄1, σ1), point 2. Even
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Figure 19. Iterates of the moment map seen in (x̄, σ) coordinates. The points correspond to exactly the
same points as in Figure 17. The bold curves (actually a fine series of bold points) show the evolution of (x̄, σ)
as the density evolves between iterates of the map. The green curve is the slow manifold (χ = 0), also shown
in Figure 17.

Figure 20. Iterates of the moment map seen in (x̄, ζ) coordinates. The points correspond to exactly the
same points as in Figures 17 and 19. The bold curves (actually a fine series of bold points) show the evolution
of (x̄, ζ) as the density evolves between iterates of the map. The green curve is the slow manifold.

though the transient dynamics is such as to move initially away from the slow manifold, the
evolution brings the system back, as it must. The projection back to Gaussian density does
not change x̄ and σ, so points 2 and 3 appear the same in Figure 19.

We know that as the system evolves from point 1 to point 2 the density became non-
Gaussian. We show this in Figure 20 by showing the dynamics out of the (x̄, σ)-plane. Here
ζ is given by

ζ ≡ ‖ρ− ρ̂(·, x̄, σ)‖2,

with ρ = ρ(·, τ), and is similar in spirit to χ. ζ is a measure of how far the density is from
Gaussian, whereas χ is a measure of how far the density is from the slow manifold. However,
these have opposite roles and behavior. Gaussian densities correspond to ζ = 0, but since
such densities are not in general on the slow manifold they correspond to χ �= 0.

Starting from point 1 in Figure 20, ζ is necessarily zero since the density (Figure 17 point 1)
is Gaussian. As the system evolves toward the slow manifold and becomes non-Gaussian, ζ
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Figure 21. Iterates of the moment map seen in (x̄, σ) coordinates. Same as Figure 19 except over a larger
range of coordinates, and same as Figure 14 except that here τ = 1.

increases (point 2). Projection back to Gaussian moves the system vertically downward to
ζ = 0 (point 3).

Now consider the case a1 
 1, near the local minima of the potential wells (we consider
only the right well; the left is the same). One sees in Figures 17 and 20 that points on the slow
manifold correspond to nearly Gaussian densities. This can be most clearly seen in Figure 20,
where the slow manifold falls to near ζ = 0. The end point of the green curve is a1 = 1. In
Figure 17 we see that the red points (the Gaussian densities in a coordinates) fall very nearly
to χ = 0, meaning that these densities are almost exactly represented by a sum of φ0 and φ1.
The small gap between the slow manifold and the Gaussian density (seen in both Figures 17
and 20) reflects the fact that the metastable density is not exactly Gaussian.

In Figure 21 we show the dynamics in (x̄, σ) coordinates, showing all the fixed points
of the moment map. This is similar to Figure 14(right), except that here τ = 1. The figure
shows trajectories starting from four initial conditions. Note that the slow manifold accurately
captures the unstable manifold of the saddle fixed points.

4.4. Two-dimensional SDE. In this section we consider moment maps for the two-
dimensional SDE (2.4) presented in section 2.2. The dynamics are potentially richer than for
the one-dimensional SDE considered up to now. Nevertheless, the stabilization of metastable
states is the same as for the one-dimensional SDE.

As before, we examine maps for both first-order and second-order moments. The first-
order map can be written as Φ(x̄1, x̄2), where x̄1 and x̄2 are means of Q and P , respectively.
The second-order map can be written as Φ(x̄1, x̄2, σ1, σ2, c), where σ1 and σ2 are the standard
deviations of Q and P , respectively, and c is the cross correlation. Other coordinates could be
used for the five-dimensional phase space. We again consider the slightly asymmetric double-
well potential (2.3) for parameters similar to those used for the one-dimensional SDE. All
results have been obtained numerically from simulations of (2.4) for the case M = 1, γ = 1,
β = 2.

Figure 22 shows typical phase portraits for the first-order and second-order moment maps.
The first-order map exhibits the dynamics typical of bistable damped oscillators. Similar to
the one-dimensional case, the fixed points are located at, or very close to, (x̄c, 0), where x̄c
is a local extremum of the potential. The second-order map has five fixed points, similar to
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Figure 22. Phase portrait for first-order (left) and second-order (right) moment maps for the two-variable
SDE with a slightly asymmetric double-well potential. Fixed points are indicated by crosses. For the first-order
map, stable and unstable manifolds of the saddle fixed point are shown. For the second-order map, unstable
manifolds of the saddle fixed point are shown. The stable manifolds are four-dimensional. Points show some
representative trajectories. Parameters are μ = 6, ν = 0.3, τ = 0.1.

those seen in Figure 14, including a stable fixed point with a very broad Gaussian measure.
Typically trajectories of interest approach either one or the other of the stable fixed points
corresponding to the potential minima. The moment maps for the two-dimensional SDE
stabilize metastable states in a very similar way to that found for the one-dimensional SDE.

Figure 23 provides a better view of the dynamics of the second-order moment map and
shows how trajectories approach the stable fixed points. A Gaussian measure in two variables
can be visualized as an ellipse in the plane specified by five numbers: the center, the semimajor
and semiminor axes, and the orientation. Thus for each point in the five-dimensional phase
space of the moment map we plot an ellipse in the plane. One can think of each ellipse as
corresponding to a level set of a Gaussian density.

Two trajectories are shown, one with the ellipse at every iteration of the map plotted,
and the other with only a few representative ellipses plotted. One can see how densities
evolve under the map toward stable equilibria. Trajectories from almost all initial condition
distributions that are not too broad (i.e., initialized within one of the two metastable wells,
as discussed above) evolve to one or the other of the two fixed points, similarly to what is
shown in Figure 23.

For completeness we show in Figure 24 bifurcation diagrams for the moment maps for the
two-dimensional SDE. These bifurcation diagrams reveal much the same features as for the
one-dimensional SDE. Fixed points of the first-order moment map track the potential minima.
For the second-order map, stable fixed points corresponding to metastable states exist except
in regions near where the potential bifurcates from single- to double-well. Clearly, close to
such parameter values, the separation of time scales between equilibration in one well and
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Figure 23. Dynamics of the second-order moment map for the two-variable SDE. Two trajectories are
visualized by plotting ellipses corresponding to points in the five-dimensional phase space. One trajectory starts
at (x̄1, x̄2, σ1, σ2, c) = (0, 3, 0.01, 0.01, 0). Only a few representative ellipses are shown. The curve shows the
path of the center of the ellipses. The other trajectory starts at (x̄1, x̄2, σ1, σ2, c) = (0,−1, 0.1, 0.5, 0). In this
case every point on the trajectory is shown. Two stable fixed points of the map are shown as bold blue ellipses.
Parameters are μ = 6, ν = 0.3, τ = 0.1. See also the accompanying animations (63866 04.gif [3.8MB] and
63866 05.gif [7.5MB]).

Figure 24. Bifurcation diagrams for the first-order (left) and second-order (right) moment maps for the
two-variable SDE. Parameters are ν = 0.3, τ = 0.1.

transition to the other is no longer present, and the fixed points that we find depend on the
map reporting horizon τ . Fixed points, both stable and unstable, corresponding to broad
distributions, separate the stable fixed points. While not shown, we find that the fixed points
corresponding to the stabilized metastable states are essentially independent of the time τ
over which the map is defined; this suggests that the map is a good effective description in
their neighborhood, but not a useful one close to the τ -dependent fixed points. The ability to
test the sensitivity of the map dynamics and fixed points to the parameter τ, as well as the
ability to use maps of different orders, grants us potential tools with which to “test online”
the validity of a given map as an effective model of the detailed dynamics.

4.5. Heat bath. Finally, we consider the dynamics of a particle in a heat bath as described
in section 2.1. Moment maps for this example are of the type defined for ODE systems in
section 3.2. Nevertheless we expect the moment map for the ODE system to behave very much

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/63866_04.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/63866_05.gif
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like that of the two-dimensional SDE, since the SDE is known to capture the dynamics of the
heat-bath model in the limit of a large bath. From a computational viewpoint, in fact, there is
not much distinction between the stochastic (SDE) and the deterministic (ODE) cases, since
in both cases we numerically compute the moment maps using Monte Carlo simulations to
evolve densities over time interval τ .

There are two related new issues, however. The first is that N , the number of particles in
the heat bath, is now a parameter which could potentially affect the dynamics of the system.
The other related issue is that there is a minimum time interval over which we should define the
moment map. For any given bath size N there is a maximum frequency ωm of the oscillators
in the bath, where ωm 
 N1/3. We therefore should take the map time τ to be at least of the
same order as the 1/ωm. We always use τ > 2π/ωm.

Other than the preceding two points, the only significant difference between the heat bath
and the two-dimensional SDE is that the heat bath requires significantly more computation to
evolve densities forward in time. Hence the moment map is much more expensive to compute
for the heat bath than for the SDE. For this reason, we have limited our studies to a fixed
potential: (2.3) with μ = 4, ν = 0.3. This is the potential used for the simulations shown in
the introduction.

Figure 25 shows phase portraits of the moment map for the heat-bath model. The first-
order map shows the expected three fixed points at the local extrema of the potential and
exhibits the dynamics of bistable damped oscillators. The map has indeed stabilized the
metastable states with a well-defined boundary (the stable manifold of the saddle) separating
the basins of attraction. The location of the fixed points does not depend in any significant
way on the number of particles in the bath or on the map time τ . The stable and unstable
manifolds do vary somewhat, primarily with the map time τ , but are always qualitatively as
seen in Figure 25.

For the second-order map we show phase portraits in the style of Figure 23 for the two-
dimensional SDE system. We show two trajectories for each of three cases. The middle case
is for N = 8000, the value used for the simulations shown in the introduction. The maximum
oscillator frequency in the bath is ωm 
 20, and so we use a map time of τ = 0.4 > π/10.

We show a map starting at (x̄1, x̄2, σ1, σ2, c) = (0, 3, 0.01, 0.01, 0). This initial condition
corresponds exactly to the initial density used Figure 3. One sees the similarity between the
trajectory for the moment map and the evolution of the density in Figure 3. However, the
“leaking” of mass into the left potential well observed in Figure 3 is prevented by the moment
map via the mechanism illustrated in Figure 17. The moment map is nonlinear and has the
two stable fixed points where the density is only metastable. Most trajectories evolve to one
or the other of these fixed points.

For the same potential we have investigated the effect of N , the number of particles in
the heat bath, on the moment map. We find that the map is quite insensitive to N , at least
for N ≥ 1000. For large N one can use a smaller map time τ , and the dynamics do depend
weakly on τ . Specifically, the fixed points for the three cases in Figure 25 are very slightly
different, though this cannot be seen on the scale of the figure. This difference is not due
directly to N but to the value of τ .

5. Conclusions. In this paper we have introduced a mathematical framework intended to
outline and clarify some aspects of the coarse-grained approach to analyzing stochastic and
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Figure 25. Phase portraits showing the dynamics of moment maps for the heat bath model. First-order
(left) and second-order (right) maps are shown. For the first-order map N = 8000 particles is used. For the
second-order map the following are used: (top) N = 256000, τ = 0.1; (middle) N = 8000, τ = 0.4; (bottom)
N = 1000, τ = 0.8. Other parameters are μ = 4 and ν = 0.3.

deterministic systems. In particular, we have given a precise definition of the moment map.
These are maps on the (low-dimensional) space of low-order moments of probability measures.
We have considered these maps both for stochastic systems and for deterministic systems with
random initial data. While the underlying evolution of densities in both systems is linear, the
moment maps are typically nonlinear. Our main focus has been understanding the origins of
this nonlinearity.

In this paper we sought to establish a connection between the dynamics of coarse-grained
observables (such as moments of evolving realization ensembles) and the nonlinear dynamics
one expects at the deterministic limit. Contemporary estimation techniques would allow us
to recover both the deterministic and the stochastic components of an effective stochastic
model (e.g., [1]). Then, instead of using integral changes of coarse-grained observables, we
could directly seek the extrema of an underlying effective potential, or even the extrema of
the corresponding equilibrium density (see, e.g., [18, 27, 39]).

We have presented results for a number of model systems. We have first considered the
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simple OU process, for which a full analysis is possible. Then, using a combination of numerical
studies and analysis, we have considered in most detail a one-dimensional SDE with a double-
well potential. This system provides the simplest example of a nonlinear moment map. In
particular, this example shows how the moment map can stabilize metastable densities of the
underlying linear flow. We have additionally presented numerical results for moment maps
computed for two other systems with double-well potentials—a two-dimensional SDE and a
deterministic ODE system with many degrees of freedom. Maps for both of these systems
show the basic features found for the one-dimensional SDE, namely, nonlinearity and the
stabilization of metastable densities.

One of the important issue that arises naturally in this computational framework is the
importance of the observer. How long does a physical observer have to wait before declar-
ing that an observed quantity is at steady state? This is clearly related to our testing the
dependence of the map fixed points on the map reporting horizon. We also saw that the
initialization of computational experiments (whether within or outside a well) can be vital in
the existence of an effective reduced model (this is related, as we mentioned, to conditional
averaging techniques).
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Abstract. The bifurcation theory and numerics of periodic orbits of general dynamical systems is well devel-
oped, and in recent years there has been rapid progress in the development of a bifurcation theory
for symmetric dynamical systems. However, there are hardly any results on the numerical compu-
tation of those bifurcations yet. In this paper we show how spatio-temporal symmetries of periodic
orbits can be exploited numerically. We describe methods for the computation of symmetry break-
ing bifurcations of periodic orbits for free group actions and show how bifurcations increasing the
spatio-temporal symmetry of periodic orbits (including period halving bifurcations and equivariant
Hopf bifurcations) can be detected and computed numerically. Our pathfollowing algorithm is based
on a multiple shooting algorithm for the numerical computation of periodic orbits via an adaptive
Poincaré section and a tangential continuation method with implicit reparametrization.
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1. Introduction. The bifurcation theory and numerics of periodic orbits of general dynam-
ical systems is well developed; see, e.g., [1, 8, 13, 16, 17]. Frequently the considered problems
possess certain symmetries. Symmetries change the generic behavior of a dynamical system
dramatically, and in recent years there has been rapid progress in the development of a bifur-
cation theory for periodic orbits of symmetric dynamical systems; see, e.g., [9, 11, 18, 19, 24].
However, there are hardly any results on the numerical computation of those bifurcations
yet. Gatermann and Hohmann [10] developed numerical methods for the exploitation of sym-
metry and the computation of symmetry breaking and symmetry increasing bifurcations of
stationary solutions, and implemented those methods in the mixed symbolic numerical code
SYMCON. They treat finite symmetry groups. Cliffe, Spence, and Tavener [2] developed
numerical methods for the computation of bifurcations of stationary solutions in the case of
continuous rotational symmetries.

In this paper we start a systematic theory on numerical bifurcation of symmetric periodic
orbits by extending the methods of Gatermann and Hohmann [10] to periodic solutions. We
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consider a parameter dependent dynamical system

ẋ = f(x, λ), f : R
n × R → R

n,(1.1)

which is equivariant with respect to a finite symmetry group Γ ⊂ GL(n), i.e.,

γf(x, λ) = f(γx, λ) ∀ γ ∈ Γ, x ∈ R
n, λ ∈ R.

In most parts of this paper we assume that Γ acts freely; i.e., γx �= x for all γ �= id and x ∈ R
n.

We numerically continue periodic solutions with respect to the parameter λ, exploiting possible
symmetries and computing symmetry breaking and symmetry increasing bifurcations of those
periodic orbits. For the computation of periodic orbits we employ the multiple shooting
algorithm presented by Deuflhard [5], which we briefly recall in section 2.1. Section 2.2 is
concerned with the exploitation of spatial and spatio-temporal symmetries of periodic orbits
in the multiple shooting context. In section 2.4 the aspect of continuation is added, and the
pathfollowing method of Deuflhard, Fiedler, and Kunkel [7] is used for the continuation of
periodic solutions in the single and multiple shooting approach. A different method for the
numerical continuation of periodic solutions with symmetry based on Fourier expansions has
been presented by Dellnitz [4].

In sections 3 and 4 bifurcations of symmetric periodic orbits are treated. First, symmetry
breaking and symmetry increasing bifurcations of periodic orbits are considered (section 3),
and then equivariant Hopf bifurcations along periodic orbits (section 4). In these sections
numerical techniques of Gatermann and Hohmann [10] are extended from stationary solutions
to periodic solutions.

Generic symmetry breaking bifurcations of periodic orbits of free group actions correspond
to period doubling bifurcations in the space of group orbits, or equivalently, to period doubling
bifurcations of the symmetry reduced Poincaré map [18]. In section 3.4 we show how such
symmetry breaking bifurcations can be detected and computed numerically by extending the
corresponding methods for nonsymmetric systems; cf. section 3.1.

We have also developed methods for the computation of bifurcations which increase the
spatio-temporal symmetry of the periodic solution, in particular an algorithm for the compu-
tation of period halving points, which is based on the methods for computing period doubling
bifurcation points; see sections 3.2 and 3.5.

In section 4 we derive methods for the detection of equivariant Hopf points along branches
of symmetric periodic orbits and present an extended system for the computation of equiv-
ariant Hopf points. The main problem is how to deal with multiple Hopf eigenvalues forced
by symmetry. The issue of numerically dealing with multiple critical eigenvalues was treated
by Cliffe, Spence, and Tavener [2] in the case of continuation of stationary solutions with
continuous rotation symmetry.

The numerical methods we present have been implemented in the C code SYMPERCON
[20]. In section 5, examples are presented to illustrate the performance of the developed
algorithmic tools. In subsection 5.1 we use SYMPERCON, AUTO [8], and CONTENT [17]
for the computation of the period doubling cascade of the Lorenz equations to demonstrate
the better performance of SYMPERCON. In section 5.2 we compute symmetry breaking
bifurcations of periodic orbits of four coupled cells. In section 5.3 we show how oscillations of
an electric circuit can be computed efficiently by exploiting their spatio-temporal symmetry.
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We partly follow the unpublished manuscripts [20, 22, 23]. For a description of the program
SYMPERCON see [22, 20].

2. Continuation of symmetric periodic orbits. In this section we review the multiple
shooting method of Deuflhard [5] for the computation of periodic orbits, show how symmetries
of periodic orbits can be exploited within the multiple shooting approach, and present a
continuation method for symmetric periodic orbits based on the Gauss–Newton method.

2.1. Computation of single periodic orbits—Single shooting method. In this subsection
we briefly recollect the algorithm for the computation of periodic orbits of an autonomous
ordinary differential equation (ODE)

ẋ = f(x), f : R
n → R

n,(2.1)

which was introduced in [5].
Let Φt(·) be the flow of (2.1), and let x(t) = Φt(x

∗) be a periodic solution of (2.1) of
period T ∗, i.e., x(T ∗) = x∗. Then any time shifted solution x(t+ t0), t0 ∈ R, is also a periodic
solution, because the system (2.1) is autonomous. All these solutions determine the same
periodic orbit

P = Px(·) = {x(t), t ∈ R}.

In order to avoid this nonuniqueness a well-known analytical technique is to fix a Poincaré
section S = Sx∗ , which is an (n− 1)-dimensional affine hyperplane transversal to the periodic
orbit P at the point x∗; see, e.g., [16]. Let us use the Poincaré section orthogonal to the orbit

S = Sx∗ = x∗ + S′
x∗ , where S′

x∗ = span(f(x∗))⊥.

Then x∗ is a fixed point of the Poincaré map (first return map) Π : S → S.
Definition 2.1. We say that a periodic orbit P with period T ∗ is nondegenerate if

DxΠ(x)|x=x∗ − id

is regular for x∗ ∈ P.
In this case x∗ is a locally unique fixed point of the Poincaré map Π and a locally unique

root of the equation

F(x) := Π(x) − x = 0, where F : S → S.

Numerically one can either fix the phase by an additional phase condition, as described, e.g.,
in [1, 16], or solve an underdetermined equation, as in [5]. We follow the latter approach and
compute a point x = x∗ on the periodic solution together with its period T = T ∗ by solving
the underdetermined equation F (y) = 0. Here F : R

n × R → R
n is given by

F (x, T ) = ΦT (x) − x = 0, where y = (x, T ).(2.2)

We solve (2.2) by an underdetermined Gauss–Newton method:

Δyk = −DF (yk)+F (yk),

yk+1 = yk + Δyk,
(2.3)
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where DF (yk)+ denotes the Moore–Penrose pseudoinverse of DF (yk). Remember that for
A ∈ Mat(m,n), m ≤ n, rank A = m, x ∈ R

n, b ∈ R
m, x = A+b is defined by

Ax = b, x⊥ ker(A),

where ker(A) is the kernel of A. Thus x = A+b is the smallest in norm solution of Ax = b,
and hence the Newton correction Δyk is the smallest solution of the underdetermined linear
system in (2.3).

The Jacobian DF (x, T ) of (2.2) in the solution (x∗, T ∗) is given by

DF (x∗, T ∗) = [− id +DxΦT ∗(x∗), f(ΦT ∗(x∗))] = [− id +DxΦT ∗(x∗), f(x∗)].(2.4)

Therefore a kernel vector tf of DF (y∗) at the solution point y∗ = (x∗, T ∗) is the tangent
tf = (f(x∗), 0) to the trajectory.

Remark 2.2. This approach can be interpreted as computing periodic orbits in an adaptive
Poincaré section, which is approximately orthogonal to the periodic orbit. Since for the kernel
vectors tk = (tkx, t

k
T ) of DF (yk) we have tk → tf as k → ∞, the Gauss–Newton iterate xk+1 =

xk + Δxk lies in the adaptive Poincaré section Sxk = xk + span(tkx)⊥ ≈ x∗ + span(f(x∗))⊥.
If x∗ lies on a nondegenerate periodic orbit, i.e., if DxΠ(x∗) − id is regular, then by (2.4)

the Jacobian DF (x∗, T ∗) is regular. Since this condition does not depend on the chosen point
x∗ on P we get the following convergence result.

Proposition 2.3. If the periodic orbit P through x∗ = ΦT ∗(x∗) is nondegenerate, then there
is a tubular neighborhood U of the periodic orbit P where there is no other periodic solution
with period near T ∗ and which is such that the Gauss–Newton method (2.3) applied to (2.2)
converges for initial data x̂ ∈ U and T̂ ≈ T ∗.

Before we review the extension of this basic shooting method to the multiple shooting
context we show how symmetries of periodic orbits can be exploited numerically.

2.2. Symmetries of periodic orbits and how to exploit them. Let Γ ⊆ GL(n) be a finite
group, and let f be Γ-equivariant [11], i.e.,

f(γx) = γf(x) ∀ x ∈ R
n, γ ∈ Γ.(2.5)

This condition on the vectorfield (2.1) implies that if x(t) is a solution of the dynamical
system (2.1), then γ x(t) is also a solution. Hence the flow Φt(·) of (2.1) is also Γ-equivariant:
γΦt(x0) = Φt(γx0) for every γ ∈ Γ, x0 ∈ R

n.
For any x ∈ R

n the element γ x is called conjugate to x [11]. An element γ ∈ Γ is called a
symmetry of x ∈ R

n if γx = x; the set of all symmetries of x (isotropy subgroup of x) is given
by K = Γx = {γ ∈ Γ | γx = x}. It can be seen easily that the vectorfield f of (2.1) maps the
fixed point space of K

Fix(K) = {x ∈ R
n | γx = x ∀ γ ∈ K}

into itself. Thus we can restrict the ODE (2.1) to the fixed point space Fix(K) � R
nred ,

which has a lower dimension nred ≤ n. In this way we obtain a symmetry reduced system
fred : R

nred → R
nred which can be computed symbolically (see Gatermann and Hohmann [10]).

The symmetry group acting on Fix(K) is N(K)/K, where N(K) is the normalizer of K.
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Remark 2.4 (see [11]). If a finite group (or, more generally, a compact group) Γ acts lin-
early on the phase space X = R

n, i.e., if

γx := ϑ(γ)x, γ ∈ Γ, x ∈ X,

where ϑ : Γ → GL(n) is a homomorphism, then the phase space X = R
n can be decomposed

into a sum R
n = X1⊕X2⊕· · ·⊕Xl, where the Xi are Γ-invariant vector spaces and cannot be

decomposed into smaller Γ-invariant subspaces. Such vectorspaces Xi are called Γ-irreducible,
and their corresponding reduced group actions ϑi := ϑ|Xi are called irreducible representations
of the action of Γ on R

n. If a Γ-irreducible subspace X is also irreducible as a vectorspace over
C, then its irreducible representation ϑ|X is called an absolutely irreducible representation. If
it is reducible over C, it is called a complex irreducible representation. We will encounter the
concept of irreducible representations in the computation of bifurcations; cf. section 4.2.

The spatial symmetries K of periodic solutions x(t) are those group elements γ ∈ Γ which
leave each point on the periodic orbit invariant:

K := Γx(t) = {γ ∈ Γ | γx(t) = x(t) ∀ t}.

Since the flow Φt is Γ-equivariant the set of spatial symmetries K of a periodic solution x(t)
does not depend on the time t. In addition to spatial symmetries there are also spatio-temporal
symmetries which leave the periodic orbit P := Px(·) invariant as a whole but not pointwise;
i.e., the spatio-temporal symmetries of a periodic orbit P are given by

L := {γ ∈ Γ | γP = P}.

Each γ ∈ L corresponds to a phase shift Θ(γ)T ∗ of the T ∗-periodic solution x(t):

γ ∈ L ⇒ x(t) = γx(t + Θ(γ)T ∗), where Θ(γ) ∈ S1 � R/Z.(2.6)

So spatio-temporal symmetries come in pairs (γ,Θ(γ)) ∈ Γ × S1. We define an action of the
spatio-temporal symmetry group Γ × S1, where S1 = R/Z, on T ∗-periodic solutions x(t) of
(2.1) as follows:

((γ, θ)x)(t) := γx(t + θT ∗), (γ, θ) ∈ Γ × S1.(2.7)

Note that Θ : L → R/Z is a group homomorphism with the spatial symmetries K as kernel
and that

L/K ≡ Z�, � ∈ N;(2.8)

see [11]. The spatial symmetries of periodic solutions can be exploited by restriction onto the
fixed point space Fix(K), i.e., by using a symmetry reduced system fred : Fix(K) → Fix(K).

From now on we assume that the spatial symmetry K of the periodic orbit is trivial. Then
the spatio-temporal symmetries of the periodic orbit form a finite cyclic group L = Z�. In
bifurcation theory the spatio-temporal symmetries of periodic orbits are taken into account
by studying the reduced Poincaré map. It was first introduced by Fiedler [9] and later used by
Lamb and Melbourne [18] and Lamb, Melbourne, and Wulff [19] in order to classify symmetry
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breaking bifurcations of periodic orbits; see also section 3. Let α ∈ L = Z� be that element in
L that corresponds to the smallest possible nonzero phase shift T ∗/�:

αx

(
t +

T ∗

�

)
= x(t) ∀ t.(2.9)

We call this spatio-temporal symmetry the drift symmetry of the periodic orbit [25]. For
x∗ ∈ P define the Poincaré section as usual by S = x∗ + span(f(x∗))⊥. Then the reduced
Poincaré map is defined as

Πred = αΠ̂, Π̂ : S → α−1 S,(2.10)

where α is the drift symmetry of the periodic orbit, i.e., satisfies (2.9), and Π̂ maps x ∈ S into
the point where the positive semiflow through x first hits α−1 S [9]. The fixed point equation
Πred(x) = x or, equivalently, the equation

F(x) = Πred(x) − x = 0, where F : S → S,

then determines periodic orbits with spatio-temporal symmetry L. Note that in the case of
trivial symmetry � = 1, α = id, the reduced Poincaré map Πred becomes the standard Poincaré
map Π introduced in section 2.1. In order to numerically exploit spatio-temporal symmetries
we proceed as in section 2.1: Each point x on a T -periodic orbit with drift symmetry α satisfies
the underdetermined equation

F : R
n × R → R

n, F (x, T ) = αΦT
�
(x) − x = 0.(2.11)

This system is analogous to the corresponding underdetermined system (2.2) in the case of
trivial symmetry and reduces to it in the case α = id, � = 1. It can also be solved by a Gauss–
Newton method. Note that it suffices to compute the flow Φt(·) and the Wronskian matrix
DxΦt(·) only up to time T

� instead of T , which is a remarkable reduction of the computational
cost in the case of high spatio-temporal symmetry. In a solution point (x∗, T ∗) we have

DF (x∗, T ∗) =

[
αDxΦT∗

�
(x∗) − id,

1

�
f(αΦT∗

�
(x∗))

]
=

[
αDxΦT∗

�
(x∗) − id,

1

�
f(x∗)

]
,(2.12)

analogous to the case of trivial symmetry; cf. (2.4). In particular, DF (x∗, T ∗) is closely related
to DxF(x∗) = DxΠred(x)|x=x∗ − id. We extend the definition of nondegeneracy to symmetric
periodic orbits as follows.

Definition 2.5. We say that a symmetric periodic orbit P with drift symmetry α is nonde-
generate if DΠred(x

∗) − id is regular for x∗ ∈ P, where Πred is from (2.10).
From (2.12) we conclude that DF (x∗, T ∗) in the periodic orbit is regular if and only if the

periodic orbit is nondegenerate, and so we get the following proposition, which is analogous
to Proposition 2.3.

Proposition 2.6. If the symmetric periodic orbit through x∗ = αΦT∗
�

(x∗) is nondegenerate

in the sense of Definition 2.5, then there is a tubular neighborhood U about the periodic orbit
P through x∗ with the property that there is no other periodic orbit with symmetry L and
period near T ∗ in U and which is such that the Gauss–Newton method (2.3) applied to (2.11)
converges for initial values x̂ ∈ U , T̂ ≈ T ∗.
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2.3. Multiple shooting approach. In order to numerically compute unstable symmetric
periodic solutions we use the just described algorithm in the multiple shooting context (cf. [5]):
We compute k points on a periodic orbit with spatio-temporal symmetry L = Z�, trivial
isotropy, and drift symmetry α by solving the underdetermined equation

F (x1, . . . , xk, T ) = 0, F : R
N → R

M ,(2.13)

where N = M + 1 = kn + 1, 0 = s1 < · · · < sk+1 = 1 is a partition of the unit interval,
Δsi = si+1 − si for i = 1, . . . k, and

Fi(x1, . . . , xk, T ) =

{
ΦΔsiT

�

(xi) − xi+1 for i = 1, . . . , k − 1,

αΦΔskT

�

(xk) − x1 for i = k.
(2.14)

The linear systems which arise in the Gauss–Newton method are of the form Jy = b, where
y = (x, T ) ∈ R

nk+1, x = (x1, . . . , xk), b = (b1, . . . , bk),

J = DF (x, T ) =

⎛
⎜⎜⎜⎜⎜⎝

G1 − id g1

G2 − id g2

. . .
. . .

...
Gk−1 − id gk−1

− id Gk gk

⎞
⎟⎟⎟⎟⎟⎠ = [G, g],(2.15)

where G is an (nk, nk)-matrix, g an nk-vector, and

Gi = DxΦΔsiT

�

(xi), i = 1, 2, . . . , k − 1,

Gk = αDxΦΔskT

�

(xk),

gi = DTFi(x, T ) = DTΦΔsiT

�

(xi) = Δsi
� f(ΦΔsiT

�

(xi)), i = 1, . . . , k − 1,

gk = Δsk
� αf(ΦΔskT

�

(xk)).

We have

Jy = b ⇔ [G, g]

(
x

T

)
= b ⇔ Gx = b− gT,

so we can apply Gaussian block elimination to G to solve these linear systems. This yields
the following algorithm:

1. Compute the condensed right-hand side

bc := C(G, b, k) = bk + Gkbk−1 + · · · + Gk · · ·G2b1.

2. Compute the condensed matrix [Gc, gc] with

Gc := Gk · · ·G1, gc := C(G, g, k).(2.16)
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3. Compute a solution of the condensed system [Gc − id, gc]
(
x1

T

)
= bc, e.g.,(

x1

T

)
= [Gc − id, gc]

+ bc,

using QR-decomposition.
4. Compute x via the explicit recursion

xi = Gi−1xi−1 − bi−1 + gi−1T for i = 2, . . . , k.(2.17)

We have now obtained a solution y = J−b, where y = (x, T ) and J− is an outer inverse of J .
In order to compute the solution J+b, where J+ is the Moore–Penrose pseudoinverse of J , we
have to add one more step:

5. Compute the kernel vector t = (tx, tT ) of J , where tx = (t1, t2, . . . , tk). Starting from
a tangent of the condensed system

(
t1
tT

)
,

[Gc − id, gc]

(
t1
tT

)
= 0,

we obtain a tangent t of the whole system by

ti = Gi−1ti−1 + gi−1tT for i = 2, . . . , k.

In the end we project y → y − 〈y,t〉
〈t,t〉 t.

An easy computation shows that in a solution point y∗ = (x∗, T ∗) we have

[Gc − id, gc] =

[
αDxΦT∗

�
(x∗1) − id,

1

�
f(x∗1)

]
,(2.18)

and so the condensed matrix Ec := [Gc − id, gc] equals the Jacobian (2.12) of the single
shooting approach in the point x∗1. The Jacobian J is regular if and only if [Gc − id, gc] is
regular. Hence we get the following result, which is analogous to Proposition 2.6.

Theorem 2.7. The Jacobian J of the multiple shooting system (2.13) is regular at the sym-
metric periodic orbit if and only if the periodic orbit is nondegenerate in the sense of Def-
inition 2.5. In this case the Gauss–Newton method (2.3) applied to (2.13) converges for
sufficiently good initial data.

Remarks 2.8.
(a) The approach for symmetry exploitation in the multiple shooting approach can be

transferred to collocation methods (used in AUTO and CONTENT [8, 17]) since col-
location can be viewed as a special case of a multiple shooting method where the
number of grid points corresponds to the number of multiple shooting points k and
the initial value problem solver consists of only one integration step of a collocation
method. The advantage of the multiple shooting approach is that it allows the use of
adaptive order and stepsize initial value problem solvers for the computation of the
flow Φt(x) and the Wronskians DxΦt(x), which we use for the evaluation of F and
DF , respectively, like the extrapolation codes of Deufhard [6]. These techniques have
been implemented in the code SYMPERCON [22, 20]; see section 5.1 for a comparison
with AUTO and CONTENT.
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(b) Note that in the program packages AUTO and CONTENT [8, 17] a phase condi-
tion is used to obtain a unique periodic orbit, whereas we solve an underdetermined
equation for the periodic orbit. Since we use the Moore–Penrose pseudoinverse to
compute the corrections of the Gauss–Newton method Δyk = −DF (yk)+F (yk), we
have Δyk⊥ ker(DF (yk)). Here

ker(DF (yk)) ≈ ker(DF (y∗)) = span(tf ),

where

tf = (f(x∗1), . . . , f(x∗k), 0, 0).(2.19)

The condition Δyk⊥ ker(DF (yk)) is therefore an “adaptive phase condition” which is
such that the correction Δyk is the smallest solution of the equation for the Newton
corrections DF (yk)Δyk = −F (yk); cf. Remark 2.2.

(c) Dellnitz [3, 4] computes symmetric periodic orbits by a Galerkin ansatz based on
Fourier modes. This method is effective near Hopf bifurcations, since in this situation
periodic orbits can be approximated by few Fourier modes.

2.4. Continuation of nondegenerate periodic orbits. In this section we show how the
pathfollowing method for stationary solutions described in [7] can be extended to the case of
symmetric periodic solutions. We consider the parameter dependent Γ-equivariant dynamical
system ẋ = f(x, λ) from (1.1) again and first look at stationary solutions of (1.1),

f(y) = 0, f : R
n+1 → R

n, y = (x, λ).(2.20)

If y∗ = (x∗, λ∗) is a stationary solution and Dyf(y) is regular at y∗, then (2.20) locally
defines a solution branch. We apply the tangential continuation method based on implicit
reparametrization presented in [7] to compute this solution branch. By writing y = (x, λ) we
want to express that the parameter λ does not play any extraordinary role, so that turning
points can be treated easily. The pathfollowing algorithm works as follows: If a solution y∗

is given, a new guess ŷ is computed by setting ŷ = y∗ + ε t(y∗), where t(y) is the normalized
kernel vector of Dyf(y) and hence the continuation tangent, and ε is a suitably chosen stepsize.
Then an underdetermined Gauss–Newton method as in (2.3) is used for the iteration from the
guess ŷ back to the solution path. The stepsize control is described in [7]. We now show how
to apply this continuation method to symmetric periodic orbits.

2.4.1. Single shooting method. In the case of symmetric periodic solutions we want to
compute fixed points of the parameter dependent reduced Poincaré map Πred : S × R → S,

Πred(x, λ) = x ⇔ F(x, λ) := Πred(x, λ) − x = 0,(2.21)

or, equivalently, solutions of the parameter dependent nonlinear equation

F(x, λ) = 0, F : S × R → S.

We can in principle apply the above described continuation method to this equation. The
continuation tangent in a solution point (x∗, λ∗) is simply the kernel vector t∗F of DF(x∗, λ∗).
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However, in the numerical realization of this idea we want to use the method of adaptive
Poincaré sections of sections 2.1 and 2.2; cf. Remark 2.2. So we again introduce the period as
a new variable and solve (in the single shooting approach) the underdetermined equation

F : R
n+2 → R

n, F (x, T, λ) = αΦT
�
(x, λ) − x = 0(2.22)

by a Gauss–Newton procedure. Now the kernel ker(DF ) of DF is two-dimensional. In a
solution point (x∗, λ∗) one kernel vector of DF is the tangent to the periodic orbit

tf = (f(x∗, λ∗), 0, 0) ∈ ker(DF (x∗, T ∗, λ∗)).

We want to determine the continuation tangent t∗ in such a way that it corresponds to the
theoretical tangent vector t∗F . First the continuation tangent has to be in the kernel of DF ,
and second the continuation tangent should lie in the Poincaré section S. Since we choose the
Poincaré section orthogonal to the orbit, this leads to the conditions

t∗ ∈ ker(DF ), t∗⊥ tf .(2.23)

The Jacobian in the solution point (x∗, T ∗, λ∗) is given by

DF (x∗, T ∗, λ∗) =

[
αDxΦT∗

�
(x∗, λ∗) − id,

1

�
f(x∗, λ∗), αDλΦT∗

�
(x∗, λ∗)

]
,(2.24)

and therefore we get the following proposition, analogous to Proposition 2.6.
Proposition 2.9. Let x∗ lie on a T ∗-periodic orbit P of (1.1) with symmetry L = Z� and

drift symmetry α. Then the Jacobian DF (x∗, T ∗, λ∗) is regular if and only if

DF(x∗, λ∗) = [DxF(x∗, λ∗),DλF(x∗, λ∗)] = [DxΠred(x
∗) − id,DλΠred(x

∗)](2.25)

is regular. In this case the path of periodic solutions given by (2.21) is locally unique in the
following sense: There is a tubular neighborhood U of the periodic orbit P such that every
periodic solution x̂(t) in this neighborhood with period T̂ close to T ∗, parameter λ̂ close to λ∗,
and drift symmetry α lies on the path of periodic solutions defined by (2.21). Moreover, the
Gauss–Newton method (2.3) applied to (2.22) converges to a periodic solution on this path for
initial data x̂ ∈ U , T̂ ≈ T ∗, λ̂ ≈ λ∗.

Note that for nondegenerate periodic orbits the condition of Proposition 2.9 is always
satisfied, but it also holds in a turning point bifurcation; see section 2.5.

2.4.2. Multiple shooting ansatz. In the multiple shooting approach we solve the param-
eter dependent equation

F (x1, . . . , xk, T, λ) = 0, F : R
nk × R × R → R

nk,(2.26)

where F is as in (2.14). Nearly everything carries over from section 2.3; we just have one more
column in the Jacobian consisting of the parameter derivatives

Pi = DλΦΔsiT

�

(xi, λ), i = 1, . . . , k − 1, Pk = αDλΦΔskT

�

(xk, λ).
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Therefore, to solve the linear equations Jy = b, y = (x1, . . . , xk, T, λ), we have to compute an
additional condensed vector (step 1 in the Gaussian block elimination algorithm), namely

pc := C(P ) = Pk + GkPk−1 + · · · + Gk · · ·G2P1.

The condensed matrix in steps 2 and 3 is of the form [Gc − id, gc, pc], the recursion (step 4)
has to be modified to

xi = Gi−1xi−1 − bi−1 + gi−1T + Pi−1λ for i = 2, . . . , k,

and in step 5 we compute an orthonormal basis of the two-dimensional kernel of J and project
the preliminary solutions y = J−b onto the orthogonal complement of this kernel.

As can be seen from the Gaussian block elimination, J has full rank if the condensed
matrix Ec := [Gc − id, gc, pc] has full rank. A simple computation shows that the matrix Ec

equals the Jacobian of the single shooting approach (2.24). Thus the Gauss–Newton method
(2.3) applied to the multiple shooting system of equations (2.26) converges to a solution under
the same conditions as the Gauss–Newton method of the single shooting method, namely if
the assumptions of Proposition 2.9 are satisfied.

As in the case of the single shooting method, we choose the continuation tangent t∗ as the
kernel vector of DF (y∗) (with F from (2.26)), which is orthogonal to tf from (2.19).

2.5. Turning points. Before we come to the detection and computation of bifurcations
of symmetric periodic orbits in sections 3 and 4 we first consider turning points of symmetric
periodic orbits. We saw that periodic orbits are solutions of the equation F(x, λ) = 0, where
F is as in (2.21). Turning points are characterized by the condition that DxF(x∗, λ∗) from
(2.25) is singular, but that DF(x∗, λ∗) has full rank. In this case the solution path (x(s), λ(s)),
of (2.21), s ∈ R, x(0) = x∗, λ(0) = λ∗, satisfies λ′(0) = 0. Generically λ′′(0) �= 0 so that the
solution path has a turning point in λ. Turning points can be detected by a change of sign
of the λ-component t∗λ of the continuation tangent t∗ of the periodic solution, provided that
this test is done after the tests of other bifurcations. This ordering of the monitoring tests
for bifurcations is important, because, as we will see in sections 3.2, 3.5, and 4, a change of
sign of the λ-component t∗λ of the continuation tangent t∗ also occurs at flip up bifurcations
and Hopf points along periodic orbits.

A turning point between two points y(0) = (x(0), T (0), λ(0)) and y(1) = (x(1), T (1), λ(1))
with continuation tangents t(0) and t(1), respectively, is detected if

t
(0)
λ t

(1)
λ < 0.

The λ-component of the turning point is then computed by Hermite interpolation in exactly
the same way as in the case of stationary solutions; see [7]. We construct a cubic polynomial
y(τ) = (x(τ), T (τ), λ(τ)), where y : [0, 1] → R

N , over the line y(0) + τ(y(1) − y(0)), τ ∈ [0, 1],
such that

y(0) = y(0), y′(0) = ‖y(1)−y(0)‖2

〈y(1)−y(0),t(0)〉 t
(0),

y(1) = y(1), y′(1) = ‖y(1)−y(0)‖2

〈y(1)−y(0),t(1)〉 t
(1),

(2.27)
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and we solve the quadratic equation dλ
dτ (τ) = 0 for its unique root τ̂ ∈ [0, 1]. We then take the

value ŷ = y(τ̂) of the Hermite polynomial at τ̂ as initial guess for a Gauss–Newton iteration.
The periodic solution y∗ obtained in this way is accepted as turning point if

|t∗λ| < tol,

where t∗ is the continuation tangent at y∗ and tol is the required accuracy of the computation.

Otherwise we replace y(0) or y(1) by y∗ so that t
(0)
λ t

(1)
λ < 0 and repeat the procedure.

3. Computation of flip down and flip up bifurcations. In this section we show how
generic bifurcations of symmetric periodic orbits to other periodic orbits can be computed
numerically. This involves the detection and numerical computation of bifurcation points and
the computation of the start off directions for the bifurcating branches. We only have to follow
nonconjugate branches and distinguish between two types of symmetry changing bifurcations:
There are symmetry increasing bifurcations, which lead to a super group of the symmetry
group of the original solution, i.e., the bifurcating solutions possess more symmetry, and there
are symmetry breaking bifurcations, which lead to a subgroup of the symmetry group of the
original solution.

In this section we treat only bifurcations from periodic orbits to periodic orbits, not Hopf
bifurcations (from periodic orbits to stationary solutions)—we will treat these in the next
section. Such bifurcations have been classified by Fiedler [9] in the case of cyclic symmetry
groups. Bifurcations of periodic orbits in systems with arbitrary finite symmetry group were
classified by Lamb and Melbourne [18]; see also [19].

In this paper we assume that the symmetry group of the dynamical system is discrete
and that the isotropy K of the periodic orbit is trivial; i.e., we restrict the dynamical system
to the corresponding fixed point space Fix(K). In other words, we do not treat bifurcations
to periodic orbits with smaller or bigger isotropy group K. The methods we present extend
the techniques of Gatermann and Hohmann [10] for the numerical computation of symmetry
changing bifurcations of stationary solutions to the case of periodic solutions. In particular,
the symmetry monitoring functions which are used for the detection of symmetry changing
bifurcations are related to those used in [10].

Generic bifurcations of periodic orbits with trivial isotropy to other periodic orbits are
caused by a period doubling (flip down) or period halving (flip up) bifurcation of the reduced
Poincaré map [18, 19]. We start with generic bifurcations without symmetry where the ODE
(1.1) is not assumed to be equivariant.

3.1. Detection and computation of period doubling bifurcations. A point (x∗, λ∗) char-
acterizing a periodic solution with period T ∗ is a period doubling bifurcation point (flip down
point) if the Jacobian DxΠ of the Poincaré map has a single eigenvalue −1 in (x∗, λ∗) with
eigenvector v∗S ∈ S and if this is the only eigenvalue on the complex unit circle; see, e.g.,
[13, 16]. Let x(λ) be the solution branch of Π(x, λ) = x with x(λ∗) = x∗. Then we, moreover,
require that the path μ(λ) of eigenvalues of DxΠ(x(λ), λ) with μ(λ∗) = −1 satisfy the generic
transversality condition

∂μ

∂λ
(λ∗) �= 0.(3.1)
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t̃x

Figure 1. Period doubling bifurcation in phase space. The bifurcating periodic orbit lies on a Mobius strip.
Dashed line: original periodic orbit; solid line: bifurcating periodic orbit with twice the period; t̃x: x-component
of the continuation tangent for the bifurcating branch.

Under these assumptions (x∗, λ∗) is a pitchfork bifurcation point of the map

F̃(x, λ) = Π(Π(x, λ), λ) − x = 0;(3.2)

see [13, 16]. The normal form of this bifurcation is

f̃(z, λ) = z3 − λz.(3.3)

By a Lyapunov–Schmidt reduction, (3.2) can be reduced to a scalar equation in z = 〈x−x∗, v∗S〉.
After a suitable change of coordinates this scalar equation takes the form (3.3), up to order 3;
see [13, 16]. The vector t̃F̃ = (v∗S , 0) is the tangent vector of the bifurcating branch in (x∗, λ∗).
The bifurcating periodic orbits correspond to fixed points of Π2 and hence have approxi-
mately twice the period of the original periodic solution. They lie on a Mobius strip around
the original periodic orbit; see Figure 1. The map F̃ is Z2-equivariant where the nonlinear
Z2-action is given by the Poincaré map (x, λ) → (Π(x), λ) (in the normal form (3.3) this
Z2-symmetry becomes z → −z). So a period doubling bifurcation is a Z2-symmetry breaking

bifurcation of equilibria of F̃ . If we consider the T -periodic solutions on the original branch
as T̃ -periodic, where T̃ := 2T , the original branch has temporal Z2-symmetry for the action
of the spatio-temporal symmetry group Γ × R given by (2.7):

(id, θ)x(t) = x(t + θT̃ ) = x(t) for θ = 1/2,

and the branching solutions are not Z2-symmetric. Thus we see that even in the case of a trivial
symmetry group Γ = {id} the period doubling bifurcation corresponds to a Z2-symmetry
breaking bifurcation as the phase shift symmetry (temporal symmetry) of the periodic orbit
is broken.

In the following we briefly describe how to numerically detect and compute period doubling
bifurcations in nonsymmetric systems. We adapt standard techniques used in the context of
collocation methods [1, 8, 17] to our approach for the computation of periodic orbits as
solutions of underdetermined systems, as described in section 2. In section 3.5 we show how
to adapt these methods to the numerical computation of symmetry breaking bifurcations of
symmetric periodic orbits.
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3.1.1. Numerical detection of period doubling bifurcations. Period doublings can be
detected by a change of sign of

d(λ) := det(DxΦT ∗(x∗, λ∗) + id),

which occurs due to the transversality condition (3.1). The matrix DxΦT ∗(x∗, λ∗) is computed
in the single shooting approach to obtain DF (x∗, T ∗, λ∗)—see (2.4)—and also in the multiple
shooting approach in the computation of the condensed matrix Gc—see (2.18) with � = 1 and
α = id.

3.1.2. Computation of period doubling bifurcation points. If a period doubling point
has been detected, it can be computed by use of linear interpolation and a Gauss–Newton
procedure to iterate back to the solution path: If there is a period doubling point between
two consecutively computed periodic solutions y(0) and y(1), then

d(λ(0))d(λ(1)) < 0.

By linear interpolation of the two points (λ(0), d(λ(0))) and (λ(1), d(λ(1))) we obtain a point
(λ̂, 0) which gives us an approximation for the parameter value λ̂ of the bifurcation point.
Linear interpolation between the points y(0) and y(1) provides a first guess ŷ with parameter
λ̂ for the period doubling point. This guess is then iterated back to a point y∗ on the solution
path by a Gauss–Newton procedure. If

‖y∗ − ŷ‖ ≤ tol,

y∗ is accepted as the period doubling point. If not, then either y(0) or y(1) is replaced by y∗,
such that the condition d(λ(0))d(λ(1)) < 0 is satisfied, and the procedure is repeated.

Doubling the number of multiple shooting points for the bifurcating branch. If we fix the
number of multiple shooting points on the bifurcating branch of 2T -periodic solutions, then
after some period doubling bifurcations the multiple shooting method is likely to diverge
because the initial number of multiple shooting points will not be appropriate for a periodic
solution with a much higher period than the original period. Therefore it is preferable to
compute the bifurcating branch of periodic orbits with twice as many multiple shooting points,
i.e., to set k̃ = 2k as the number of multiple shooting points of the bifurcating branch. The
bifurcation point ỹ = (x̃1, . . . , x̃k̃, T̃ , λ̃) on the bifurcating branch is given by

x̃i = x∗i , x̃i+k = x∗i for i = 1, . . . , k, T̃ = 2T ∗, λ̃ = λ∗,

and the multiple shooting nodes s̃i, i = 0, 1, . . . , k̃, of the bifurcating branch are set to

s̃i =
si
2
, s̃i+k =

1 + si
2

, i = 1, . . . , k.

3.1.3. Computation of start off directions for the bifurcating branch. After a period
doubling bifurcation point has been found, the start off direction for the bifurcating branch
has to be computed. The continuation tangent of the original periodic branch is just the
usual continuation tangent. The start off direction for the bifurcating branch is computed as
follows.
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Single shooting ansatz. We first consider the single shooting approach: We want the start
off direction for the bifurcating branch of periodic orbits to be orthogonal to the T ∗-periodic
orbit, so that it lies in the Poincaré section S. In S ×R the tangent of the bifurcating branch
in the bifurcation point should be the vector t̃F̃ = (v∗S , 0), where v∗S is the eigenvector of
DxΠ(x∗) to the eigenvalue −1; see above. It can be computed by projecting the kernel vector
v∗ of DxΦT (x∗, λ∗) + id onto the orthogonal complement of the tangent f(x∗) to the periodic
orbit through x∗: Let

t̃x = v∗ − 〈v∗, f(x∗)〉
〈f(x∗), f(x∗)〉f(x∗).(3.4)

Then we take

t̃ = (t̃x, t̃T , t̃λ) = (t̃x, 0, 0)

as the start off direction for the bifurcating periodic solutions. In phase space the bifurcating
periodic solutions lie on a Moebius band in the middle of which is the original T ∗-periodic
solution. The start off direction is tangential to the Moebius band and orthogonal to the
original solution (see Figure 1).

Multiple shooting ansatz. As preliminary tangent vector v∗1 of the bifurcating branch for the
first multiple shooting point we choose the eigenvector of Gc+id to −1, where Gc ≈ DxΦT ∗(x∗)
is the condensed matrix; see (2.16), (2.18). As preliminary tangent start off directions at the
multiple shooting points x∗2, . . . , x

∗
k we take

v∗j = Gjv
∗
j−1, j = 2, . . . , k.

The first nk components of the start off tangent t̃ of the bifurcating branch in the multi-
ple shooting approach are then obtained by projecting v∗ = (v∗1, . . . , v

∗
k) to the orthogonal

complement of the vector tf = (f(x∗1), . . . , f(x∗k)).
Since the number of multiple shooting points is doubled on the bifurcating branch (see

section 3.1.2), this gives us only the first half of the x-component

t̃x = (t̃1, t̃2, . . . , t̃k, t̃k+1, . . . , t̃2k)

of the start off tangent t̃ = (t̃x, 0, 0) of the bifurcating branch. The whole x-component of t̃ is
obtained by copying the first half into the second half and multiplying it by −1, i.e.,

t̃k+i = −t̃i, i = 1, . . . , k.(3.5)

As in the single shooting approach, we have t̃T = t̃λ = 0.

3.2. Detection and computation of period halving bifurcations. In this section we de-
scribe an algorithm for the detection and computation of period halving bifurcations (flip up
points) along branches of periodic orbits. Again, we assume that the symmetry group Γ of
the dynamical system (1.1) is trivial.
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branch of periodic orbits

branch of periodic orbits
with halved period

u(0)

x(0)

u(1)

x(1)

Figure 2. Detection of period halvings using (3.6). Solid curve: branch of periodic orbits before passing
the flip up point; dashed curve: branch of periodic orbits after passing the flip up point. See text for more
explanations.

3.2.1. Detection of period halving bifurcations. Period halvings can be detected as
follows: For a solution point y = (x1, . . . , xk, T, λ) of (2.26) we compute

u(y) := ΦT
2
(x1, λ) − x1 = xj − x1.

Here one multiple shooting node sj is set to sj = 1/2 so that no additional initial value
problem has to be solved.

If there is a period halving point y∗ = (x∗, T ∗, λ∗) between two consecutively computed
periodic solutions y(0) and y(1), the vector u goes through zero. As we saw before, a flip
bifurcation corresponds to a pitchfork bifurcation of (3.2). Figure 2 shows the normal form
(3.3) of the pitchfork bifurcation and points x(0) and x(1) corresponding to periodic orbits
before and after passing the bifurcation. For each parameter value λ, the corresponding
points on the solid and dashed curves belong to the same periodic orbit and are conjugate
points with respect to the Z2-symmetry action, which, for (3.2), is given by x → Π(x, λ); see
above. For the points x(0) and x(1) we denote the difference between x(ν) and its conjugate
Π(x(ν), λ(ν)) by u(ν) = Π(x(ν), λ(ν)) − x(ν), ν = 0, 1. From Figure 2 we see that the vectors
u(0) and u(1) are approximately parallel with opposite sign. At the numerically computed
solutions y(0) and y(1) the vectors u(y(0)) and u(y(1)) are good approximations for u(0) and
u(1). Therefore a period halving point can be detected by the following condition on the angle
between u(y(0)) and u(y(1)):

〈u(y(0)), u(y(1))〉
‖u(y(0))‖‖u(y(1))‖

< 0.(3.6)

3.2.2. Computation of period halving bifurcation points and start off directions. As-
sume that a period halving bifurcation has been detected between two consecutively computed
periodic solutions y(0) and y(1). We now describe a method for the computation of period
halving points which is based on existing methods for detecting period doubling points. The
algorithm consists of the following steps:

1. We obtain a first guess for the location of the flip up point by approximating the
solution branch by a Hermite interpolating polynomial; cf. Figure 2. We compute
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a Hermite polynomial y(τ) of degree 3 through the two points y(0) = y(0), y(1) =
y(1) of the bifurcation diagram, between which a period halving has been detected.
This is analogous to the Hermite interpolation used to locate turning points; see
section 2.5. By computing the extremum λ(τ̂) of the polynomial λ(τ), where y(τ) =
(x(τ), T (τ), λ(τ)), we obtain a first guess ŷ = y(τ̂) = (x̂1, . . . , x̂k, T̂ , λ̂) for the flip up
point. We now halve the period T̂ := T̂ /2. Again, as in the case of period doubling
bifurcations, the number of multiple shooting points is adapted with respect to changes
of the period. In this case the number of multiple shooting points is k̃ = j, where
j is such that sj = 1

2 . Decreasing the number of multiple shooting points at flip up
bifurcations obviously speeds up the calculation time.

2. Now we use this first guess as starting value for a flip down point computation. We
look for a flip down point in the parameter scope [λmin, λmax], where

λmin = λ̂− ε, λmax = λ̂ + ε, ε = max(tol,min(|λ(0) − λ̂|, |λ(1) − λ̂|)),

and tol is the prescribed accuracy. The period doubling bifurcation point on this
branch is then accepted as a period halving point for the original branch.

Remarks 3.1.
(a) In AUTO and CONTENT period halving bifurcations are not properly detected: The

programs detect bifurcation points of “unknown type” but do not compute the bifur-
cating branch of periodic solutions with halved period.

(b) Note that period halving bifurcations cannot be detected by a change of sign of a
determinant, in contrast to transcritical and saddle node bifurcations of equilibria. The
monitoring function that we use is inspired by the monitoring functions for symmetry
increasing bifurcations of equilibria developed by Gatermann and Hohmann [10].

(c) In the computation of bifurcations of equilibria numerical methods based on extended
systems are frequently employed (see, e.g., [1, 16]). One could of course also use such
a method to locate period halving bifurcations. A period halving point could, for
example, be computed by solving the system

0 = F (x, T, λ, v) :=

⎛
⎝ ΦT/2(x;λ) − x

DxΦT/2(x;λ)v + v

‖v‖2 − 1

⎞
⎠

using a Newton-type method. However, since this requires the approximation of the
second derivative of the flow map, it would be more expensive than the method that
we suggest.

3.3. Bifurcations of periodic orbits with Zp-symmetry. In this section we deal with
generic symmetry changing but isotropy preserving secondary bifurcations of symmetric pe-
riodic orbits. The right-hand side f of the ODE (1.1) is assumed to be Γ-equivariant under
a finite group Γ ⊂ GL(n), as in section 2.2. We assume that the spatial symmetry K of the
periodic orbit is trivial (or restrict the dynamics to Fix(K)). This implies that the spatio-
temporal symmetry of the periodic orbits is cyclic: L � Z�. We can then, without loss of
generality, restrict to the case Γ � Zp for p a multiple of �; see [18]. We describe how the
generic secondary bifurcations of periodic orbits with Zp-symmetry, which have been classified
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by Fiedler [9], can be treated numerically. In this section we deal only with bifurcations of
periodic orbits into other periodic orbits (not Hopf bifurcations along branches of periodic
orbits).

Let x∗ lie on a periodic orbit P with period T ∗, trivial isotropy K, spatio-temporal
symmetry L = Z�, and drift symmetry α. Define the Poincaré section as usual by S =
x∗+span(f(x∗))⊥. To examine bifurcations of symmetric periodic orbits the reduced Poincaré
map

Πred = αΠ̂, Π̂ : S → α−1S

from (2.10) is used, where Π̂ maps points of S into the points where the positive semiflow
through x first hits α−1 S. In the case of trivial isotropy K the relationship between the full
Poincaré map Π and the reduced Poincaré map Πred is given by

Π = α−�Π�
red = Π�

red.(3.7)

Here we used that α� = id. Generic bifurcations of symmetric periodic orbits are bifurcations
of the reduced Poincaré map Πred, which arise from an eigenvalue ±1 of the Jacobian DxΠred;
see [9, 18].

Generic bifurcations of Πred without breaking of the spatial symmetry are turning points
and period doublings/halvings (flip down and flip up bifurcations); turning points of Πred lead
to turning points of the full Poincaré map Π. They can be detected and computed in the same
way as in the case of no symmetry; see section 2.5.

Flip down bifurcations of the reduced Poincaré map Πred lead to pitchfork bifurcations or
period doubling bifurcations of Π, depending on whether � is odd or even; see [9]. If � is odd,
in particular if the symmetry is trivial (i.e., � = 1), we have a flip doubling (period doubling)
bifurcation. If � is even, then a flip pitchfork bifurcation takes place, where the period is
preserved but the spatio-temporal symmetry halved.

3.3.1. Flip pitchfork bifurcation. First we consider the flip pitchfork bifurcation. Let
� be even. Assume that the reduced Poincaré map Πred undergoes a flip down bifurcation.
Then the bifurcating solutions x̃(s), s ∈ R, x̃(0) = x∗, are fixed points of Π2

red. By (3.7),

Π(x̃(s)) =
(
Π2

red

)�/2
(x̃(s)) = x̃(s),

and so the Poincaré map Π undergoes a pitchfork bifurcation. Hence the branching solutions
have approximately the same period, but their spatio-temporal symmetry L̃ = Z�/2, �̃ = �/2,
has been halved. The drift symmetry of the bifurcating periodic orbits is α̃ = α2.

3.3.2. Flip doubling bifurcation. Next we consider the flip doubling bifurcation, i.e., let
� be odd. Since Π2

red(x̃(s)) = x̃(s) and � is odd the following can be concluded:

Π2(x̃(s)) = Π2�
red(x̃(s)) = x̃(s) and Π(x̃(s)) = Π�

red(x̃(s)) = Πred(x̃(s)) �= x̃(s).

So the Poincaré map Π undergoes a period doubling bifurcation without breaking the sym-
metry Z�: The spatio-temporal symmetry group of the bifurcating branch is L̃ = Z�̃, where

�̃ = �, and is generated by the order � element α̃ = α. Note that the flip doubling bifurcation
reduces to the period doubling bifurcation of nonsymmetric systems (see section 3.1), with
� = 1, α = id, whereas the flip pitchfork bifurcation does not occur for nonsymmetric systems.
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3.4. Numerical computation of symmetry breaking bifurcations. Since the generic bi-
furcations of periodic orbits with underlying symmetry group Zp described above are gen-
erated by periodic doubling bifurcations of the reduced Poincaré map, they can be treated
numerically with the methods for the period doubling bifurcation described in section 3.1.

3.4.1. Detection and computation of flip down bifurcations. Flip down bifurcations are
detected by a sign change of

d(λ) = det(αDxΦT∗
�

(x∗) + id), where αDxΦT∗
�

(x∗) = Gc,

analogously to the case of no symmetry; see section 3.1.1. Once a flip down bifurcation has
been detected it can be computed analogously as in the case of nonsymmetric systems; see
section 3.1.2.

3.4.2. Initialization of the bifurcating branch. Once a flip down point (x∗, T ∗, λ∗) on
the original branch has been found, the starting point ỹ = (x̃, T̃ , λ̃) for the bifurcating branch
has to be computed. We set T̃ = T ∗ for a flip pitchfork bifurcation and T̃ = 2T ∗ otherwise,
and λ̃ = λ∗. Since the number of multiple shooting points is doubled, the second half of
x̃ = (x̃1, . . . , x̃2k) will be computed by applying the symmetry matrix to the first points:

x̃i = x∗i for i = 1, . . . , k,

x̃i+k = α−1x∗i for i = 1, . . . , k.

The tangent vector t̃ = (t̃x, 0, 0) of the bifurcating branch is computed in a similar way: The
first nk components (t̃1, . . . , t̃k) of the x-component t̃x of the tangent t̃ of the bifurcating
branch are computed as in section 3.1.3, with DxΦT ∗(x∗) replaced by αDxΦT∗

�
(x∗). Then the

second half of t̃x = (t̃1, . . . , t̃2k) is computed by applying the symmetry matrix to the first half
and multiplying it by −1:

t̃i+k = −α−1t̃i for i = 1, . . . , k.(3.8)

3.5. Numerical computation of symmetry increasing bifurcations. In this section we
extend the algorithms for the detection and computation of period halving points for non-
symmetric systems (section 3.2) to systems with symmetry. The main issue here is the iden-
tification of the possible spatio-temporal symmetries of the bifurcating solutions, which are
needed for both the detection of bifurcations and the computation of the bifurcating branch.

3.5.1. Detection of flip up bifurcations. As in the nonsymmetric case (see section 3.2),
flip up points on a branch of periodic orbits with spatio-temporal symmetry L = Z�, trivial
isotropy, and drift symmetry α are detected by the angle condition (3.6)

〈u(y(0)), u(y(1))〉
‖u(y(1))‖‖u(y(1))‖

< 0,

where y(0) and y(1) are two consecutive points on a branch of periodic solutions and

u(x) := α̃Φ T
2�

(x1, λ) − x1 = α̃xj − x1.
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Here the multiple shooting node sj is set to sj = 1
2 , and α̃ is a group element α̃ which satisfies

α̃2 = α.(3.9)

We now need to classify the possible choices of α̃ and decide whether a flip up doubling or a
flip up pitchfork bifurcation occurs.

Theorem 3.2. Let i be such that α = γip, where γp generates the symmetry group Γ = Zp

of (1.1). Similarly, write α̃ = γ ĩp. Then we have the following:

(a) Either ĩ = i
2 or ĩ = i+p

2 . Both of these values for ĩ are possible if p and i are even;

ĩ = i
2 is a possible solution for p odd, i even; and ĩ = i+p

2 for p and i odd.
(b) (i) If

�̃i = 0 mod p,

then a flip up doubling bifurcation takes place. The order �̃ of the drift symmetry
α̃ of the bifurcating branch and its period T̃ in the bifurcation point then satisfy

�̃ = �, T̃ =
T ∗

2
,

where T ∗ is the period of the original periodic orbit at the bifurcation point.
(ii) If

�̃i �= 0 mod p,

then a flip up pitchfork bifurcation takes place. The order �̃ of the drift symmetry
α̃ of the bifurcating branch and its period T̃ in the bifurcation point then satisfy

�̃ = 2�, T̃ = T ∗.

Proof. From (3.9) we get

2̃i = i mod p,

and so

ĩ = (i + jp)/2, j ∈ N.(3.10)

Possible solutions to (3.10) which are different modulo p are

ĩ = i/2, ĩ = (i + p)/2.

This proves part (a) of the theorem. The rest follows from the definitions of flip pitchfork and
flip doubling bifurcations; see sections 3.3.1 and 3.3.2.

Remark 3.3. Consider a periodic orbit with trivial spatio-temporal symmetry, i.e., α = id,
i = 0. Then, if the order p of the symmetry group Γ = Zp is odd and the Γ-action is free,
every flip up bifurcation is a period halving bifurcation. If p is even, then a flip up bifurcation

of Πred can be a period halving bifurcation or a flip up pitchfork bifurcation with α̃ = γ
p
2
p .
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3.5.2. Computation of flip up points and start off tangents. Once the spatio-temporal
symmetry of the bifurcating periodic orbit is identified the flip up point and the start off
directions for the bifurcating branch can be computed in the same way as for nonsymmetric
systems; see section 3.2.

4. Computation of equivariant Hopf points. In this section we show how equivariant
Hopf points along branches of periodic orbits can be detected and computed. For the sake of
simplicity, we first consider the case of a trivial symmetry group Γ = {id}.

4.1. Hopf bifurcations for nonsymmetric systems. A Hopf bifurcation point is a sta-
tionary solution (x∗, λ∗), for which the Jacobian Dxf(x∗, λ∗) has a pair of purely imaginary
eigenvalues ±ω∗i, ω∗ �= 0. We make the generic assumptions that these eigenvalues are sim-
ple and that there is no resonance; i.e., no multiple iω∗j, j ∈ N0 \ {1}, is an eigenvalue of
Dxf(x∗, λ∗). Denote by x(λ) the path of equilibria of (1.1) with parameter λ, so that in par-
ticular x(λ∗) = x∗. Let μ(λ) be the path of eigenvalues of Dxf(x(λ), λ) such that μ(λ∗) = iω∗

and assume that the generic transversality condition

Re

(
∂μ

∂λ
(λ∗)

)
�= 0(4.1)

is satisfied. Then (see, e.g., [13, 16]) a unique branch x(t; ε) of periodic solutions emanates from
the stationary solution with small amplitude O(ε) and period T (ε) ≈ T (0) = 2π/ω∗. This sur-
face of periodic solutions is tangential to the real eigenspace Nω∗ of ±ω∗i, i.e., Dεx(t; 0) ∈ Nω∗ ,
and generically agrees (after a smooth coordinate change) to second order with a paraboloid
λ − λ∗ = C(z2

1 + z2
2); see, e.g., [13, 16]. We can consider the Hopf point (x∗, λ∗) as an S1-

invariant 2π/ω∗-periodic solution with respect to the action (2.7) of the temporal symmetry
group on the periodic solutions x(t) of (1.1):

x∗(t) ≡ x∗ ∀ t =⇒ (id, θ)x∗(t) = x∗(t) ∀ t.

Hence the Hopf bifurcation is an S1-symmetry breaking bifurcation.

4.1.1. Detection of Hopf points along branches of periodic orbits. If a pathfollowing
algorithm for periodic solutions runs through a Hopf point, the continuation direction changes
its sign and the same path of periodic orbits is computed again. Therefore Hopf points which
occur during the pathfollowing of periodic orbits should be detected so that the pathfollowing
routine can be stopped at the Hopf point. If there is a Hopf point between two consecutively
computed periodic orbits y(0) and y(1), where y = (x, T, λ), x = (x1, . . . , xk), then the vectors
f(xi), which are the infinitesimal generators of the S1-symmetry in the point xi, go through
zero. Thus f(xi) is a symmetry monitoring function in this case. If the angle between the
vectors f(xi) of two consecutively computed periodic orbits is greater than 90 degrees, i.e., if
for some i ∈ {1, . . . , k}

〈f(x
(0)
i ), f(x

(1)
i )〉

‖f(x
(0)
i )‖‖f(x

(1)
i )‖

< 0,

then there is a Hopf point on the branch of periodic orbits between the y(0) and y(1); cf. Fig-
ure 3.
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x2

x1

λ

x∗

f (0)

t(1)
f (1)

x(1)

f (0) = f(x(0))

f (1) = f(x(1))

Figure 3. Detection of Hopf points between two periodic orbits y(0) = (x(0), T (0), λ(0)) and y(1) =
(x(1), T (1), λ(1)) (single shooting method). Here t(1) is the continuation tangent at the point y(1).

Remark 4.1. Note that in the program packages AUTO [8] and CONTENT [17], the nu-
merical part of which is based on AUTO, Hopf points along periodic orbits are not detected
properly. They are detected as general cycle branching points, but when switching to the
bifurcating branch of stationary solutions, an error occurs.

4.1.2. Computation of Hopf bifurcations of nonsymmetric systems. If a Hopf point
along a path of periodic orbits is detected, it can be computed by an extended system [12, 14];
see also the review in [1]. We use a slightly different form of extended system which is
underdetermined and does not fix the phase of the Hopf eigenvector to be computed. We
present this extended system briefly in this subsection.

Let x∗ be a Hopf point, i.e., an equilibrium f(x∗, λ∗) = 0, the Jacobian Dxf(x∗, λ∗) of
which has a pair of purely imaginary eigenvalues ±iω∗. Hence

Dxf(x∗, λ∗)(v∗ + iw∗) = iω∗(v∗ + iw∗).

So we get

Dxf(x∗, λ∗)v∗ = −ω∗w∗, Dxf(x∗, λ∗)w∗ = ω∗v∗, ‖w∗‖2 + ‖v∗‖2 = 1.

Define F : R
3n+2 → R

3n+1, where

F (x, λ, v, w, ω) =

⎛
⎜⎜⎝

f(x, λ)
Dxf(x, λ)v + ωw
Dxf(x, λ)w − ωv
〈v, v〉 + 〈w,w〉 − 1

⎞
⎟⎟⎠ .(4.2)

Then F = 0 yields the Hopf point and its imaginary eigenvalue and corresponding eigenvector.
Moreover we have the following result.

Theorem 4.2. If the eigenvalue ±iω∗ is simple, if Dxf(x∗, λ∗) is invertible, and if the
transversality condition (4.1) holds, then the Gauss–Newton method applied to (4.2) converges
for sufficiently good initial data.
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The proof of this theorem is basically contained in [1, 12, 14]. As shown there, the
transversality condition Reμ′(λ∗) �= 0 implies that any kernel vector t = (tx, tλ, tv, tw, tω) of
the derivative DF (x∗, λ∗, v∗, w∗, ω∗) of F in the Hopf point satisfies tω = 0, tλ = 0, and tx = 0,
and hence (tv, tw) satisfies the equations

0 = Dxf(x∗, λ∗)tv + ω∗tw,(4.3)

0 = Dxf(x∗, λ∗)tw − ω∗tv,(4.4)

0 = 2〈v∗, tv〉 + 2〈w∗, tw〉.(4.5)

Therefore tv +itw is a Hopf eigenvector. Equation (4.5) and the fact that the Hopf eigenvalue
iω∗ is a simple eigenvalue of Dxf(x∗, λ∗) imply that the kernel of DF in the Hopf point is
one-dimensional. Hence DF has full rank in the Hopf point, and the Gauss–Newton method
applied to (4.2) converges for sufficiently good initial data. As we will see later (see sections
4.2.1 and 5.2), symmetry often enforces multiple Hopf eigenvalues, so that the extended system
(4.2) has to be modified in the case of equivariant Hopf points.

Initial guess for the Gauss–Newton iteration. An initial guess for a Hopf point detected
between two periodic orbits y(0) = (x(0), T (0), λ(0)) and y(1) = (x(1), T (1), λ(1)), where x =
(x1, . . . , xk), can be obtained by Hermite interpolation y(τ) between those points over the line
y(0) + τ(y(1) − y(0)), τ ∈ [0, 1], such that y(0) = y(0), y(1) = y(1), and by computing the point
ŷ = y(τ̂) = (x(τ̂), T (τ̂), λ(τ̂)) such that λ′(τ̂) = 0, analogously to the computation of initial
guesses for a turning point; see section 2.5. We then set

x̂ := x1(τ̂),

define an approximation for the Hopf frequency ω̂ as

ω̂ =
2π

T̂
, where T̂ = T (τ̂),

and define an approximation for the parameter value of the Hopf point as

λ̂ = λ(τ̂).

We moreover define initial guesses v̂ + iŵ for the Hopf eigenvector as

v̂ = c
d

dτ
x1(τ̂), ŵ = − 1

ω̂
Dxf(x̂, λ̂)v̂

with c such that

‖v̂‖2 + ‖ŵ‖2 = 1.

The point (x̂, λ̂, v̂, ŵ, ω̂) is then used as an initial guess for the Newton iteration applied to
(4.2).

4.2. Detection and computation of equivariant Hopf points. In this section we extend
the methods for the computation of Hopf points of nonsymmetric systems from section 4.1 to
systems with symmetry. The main issue here is how to deal with multiple Hopf eigenvalues
forced by symmetry which lead to convergence failure of the extended system (4.2) for the
computation of Hopf points of nonsymmetric systems.
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4.2.1. Equivariant Hopf points. We are starting from a Γ-invariant stationary solution
(x∗, λ∗), i.e., Γx∗ = Γ. We assume that the Jacobian Dxf(x∗, λ∗) has a pair ±ω∗i of purely
imaginary eigenvalues, ω∗ �= 0, and that there are no resonances; i.e., ±jiω∗, j = 0, 2, 3, 4, . . . ,
is not an eigenvalue of Dxf(∗, λ∗). As before, let Nω∗ be the real eigenspace of Dxf(x∗, λ∗).

Lemma 4.3 (see [11]). If γ ∈ Γx, then γDxf(x, λ) = Dxf(x, λ)γ. Moreover, every eigen-
space of Dxf(x, λ) is Γx-invariant.

Proof. The first statement follows from the Γ-equivariance of f and the γ-invariance of x.
For the second statement let u be a complex eigenvector of A = Dxf(x, λ) to the eigenvalue
μ. Since γA = Aγ we have Aγu = γAu = γμu, so that γu is an eigenvector of A to the
eigenvalue μ as well.

As a consequence, Dxf(x∗, λ∗) is Γ-equivariant and Nω∗ is Γ-invariant. Hence Nω∗ can be
decomposed into irreducible Γ-invariant subspaces; see Remark 2.4.

Definition 4.4 (see [11]). We call an eigenvalue μ of a Γ-equivariant matrix A a Γ-simple
eigenvalue of A if the real eigenspace N of A to the eigenvalue μ is irreducible.

We make the generic assumption that iω∗ is a Γ-simple eigenvalue of Dxf(x∗, λ∗). This
means that iω∗ has the lowest multiplicity allowed by the symmetry group Γ.

Since Dxf(x∗, λ∗) is invertible, by the implicit function theorem applied to Fix(Γ) = R
nred

there is a path x(λ) of Γ-invariant equilibria of (1.1) with x(λ∗) = x∗. As in the case of the
standard Hopf bifurcation, we assume that the transversality condition (4.1) holds for the
path μ(λ) of the pair of eigenvalues of Dxf(x(λ), λ) with μ(λ∗) = iω∗.

We define the operation of Γ × S1 on a T -periodic solution x(t) as in (2.7)

(γ, θ)x(t) = γx(t + θ T ) for (γ, θ) ∈ Γ × S1,

and the operation of Γ × S1 on the real eigenspace Nω∗ of ±ω∗i of Dxf(x∗, λ∗) by

(γ, θ)u = γeθDxf(x∗,λ∗)T ∗
u, (γ, θ) ∈ Γ × S1, u ∈ Nω∗ ,(4.6)

where T ∗ = 2π
ω∗ .

Theorem 4.5 (equivariant Hopf theorem [11]). Let the above conditions be satisfied. If then
for a subgroup L ⊂ Γ × S1 the fixed point space

NL
ω∗ := {u ∈ Nω∗ : (γ, θ)u = u ∀ (γ, θ) ∈ L}(4.7)

satisfies the condition

dimNL
ω∗ = 2,(4.8)

then there is a unique branch x(t; ε) of periodic solutions with amplitude O(ε) bifurcating from
(x∗, λ∗) with Dεx(t; 0) ∈ NL

ω∗, with parameter λ(ε) such that λ(0) = λ∗, with minimal periods
T (ε) such that T (0) = 2π/ω∗, and with L as spatio-temporal symmetry group.

As in the nonsymmetric case, the bifurcating periodic orbits generically lie on a paraboloid;
see Figure 3.

Remark 4.6. The equivariant Hopf theorem provides the spatio-temporal symmetries L
of the bifurcating periodic orbits and the planes NL

ω∗ from which the start off directions for
the emanating periodic orbits can be chosen: We define the phase space for the bifurcating
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periodic orbit with symmetry L as Fix(K), where K, the group of spatial symmetries of the
periodic orbit, is the kernel of the homomorphism Θ of the periodic orbit (see (2.6)), and thus

K = {γ ∈ Γ, (γ, 0) ∈ L}.

We compute the integer � such that L/K � Z� (see (2.8)), and the drift symmetry α of the
periodic orbit by determining the element (α, θ∗) in L with the smallest nonzero phase shift
θ∗ = 1

� ; cf. (2.9). We identify the Hopf point (x∗, λ∗) with a periodic orbit which has period

T ∗ = 2π
ω∗ , multiple shooting points x∗i = x∗ for i = 1, . . . k, and the parameter λ∗. Similarly as

in the nonsymmetric case (cf. [1]), we then define the continuation tangent t∗ = (t∗x, t
∗
T , t

∗
λ) at

this Hopf periodic orbit as follows:

t∗T = 0, t∗λ = 0, t∗x = (t∗1, . . . , t
∗
k),

where

t∗i = cos(siT
∗/�)v∗ + sin(siT

∗/�)w∗, i = 1, . . . , k.

Here v∗ + iw∗ is the eigenvector to the purely imaginary eigenvalue ω∗i of Dxf(x∗, λ∗) which
is determined by the condition v∗, w∗ ∈ NL

ω∗ . See sections 5.2 and 5.3 for applications.

4.2.2. Detection of equivariant Hopf points. Equivariant Hopf points along branches
of periodic orbits are detected in the same way as Hopf points of nonsymmetric systems; see
section 4.1.1.

4.2.3. Computation of equivariant Hopf bifurcations. As mentioned in section 4.1.2,
the extended system (4.2) for the computation of Hopf points of nonsymmetric systems con-
verges only if the Hopf eigenvalue iω∗ is simple. In the case of symmetric dynamical systems
this assumption can be satisfied only if the corresponding irreducible representation is one-
dimensional. In general the symmetry might enforce multiple eigenvalues (see section 5.2 for
an example). Therefore the numerical method for computing Hopf points from section 4.1.2
has to be modified in the case of symmetric dynamical systems. In this section we present an
efficient algorithm for computing equivariant Hopf points, which applies to Hopf points that
satisfy the conditions of the equivariant Hopf theorem.

Assume that an equivariant Hopf point (x∗, λ∗) with Hopf eigenvalue ±iω∗, ω∗ > 0, has
been detected numerically along a branch of periodic orbits of the Γ-equivariant ODE (1.1)
with drift symmetry α of order � and, for simplicity, trivial isotropy K (restrict the dynamics
to Fix(K) and replace Γ by N(K)/K otherwise). As before we denote by L � Z� the spatio-
temporal symmetry of the branch of periodic orbits. Then the Hopf point x∗ is L-invariant:
L ⊆ Γx∗ . We make the assumptions of the equivariant Hopf Theorem 4.5, replacing Γ by Γx∗ ,
and denote the plane tangent to the branch of periodic orbits at the Hopf point by NL

ω∗ , as in
(4.7).

We will now formulate an algorithm for the computation of the equivariant Hopf point
(x∗, λ∗) along with the Hopf frequency ω∗ and the corresponding Hopf eigenvector v∗ + iw∗

satisfying v∗, w∗ ∈ NL
ω∗ .
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Note that the condition of the equivariant Hopf Theorem 4.5, that NL
ω∗ is two-dimensional,

is equivalent to requiring that there be only one eigenvector v∗ + iw∗ of Dxf(x∗, λ∗) to the
eigenvalue ±iω∗ satisfying

v∗ + iw∗ = αe
2π
ω∗�Dxf(x∗,λ∗)(v∗ + iw∗).(4.9)

Solving the nonlinear equation (4.9) numerically using an extended system would involve
the computation of the exponential exp(2π

ω�Dxf(x∗, λ∗)) of Dxf(x∗, λ∗), which is in general
expensive. An extended system involving Dxf(x∗, λ∗) rather than its exponential, like the
system (4.2) in the case of nonsymmetric systems, is therefore preferable. To derive such a
system we use the following approach. Note that

Dxf(x∗, λ∗)(v∗ + iw∗) = iω∗(v∗ + iw∗),

and so

exp

(
2π

ω∗�
Dxf(x∗, λ∗)

)
(v∗ + iw∗) = e

2πi
� (v∗ + iw∗),

and hence

α(v∗ + iw∗) = e−
2πi
� (v∗ + iw∗).(4.10)

Thus v∗ + iw∗ lies in the the complex eigenspace of α to the eigenvalue e−2πi/�, which we
denote by Xc

� ⊂ Xc = C
n, and v∗ and w∗ lie in the real eigenspace of α to the eigenvalue

e−2πi/�, which we denote by X�. So X� is the L-invariant subspace of X = R
n, where α, the

generator of L � Z�, acts as a rotation by −2π/�.
The following lemma is crucial for the numerical computation of equivariant Hopf points.
Lemma 4.7. Let the assumptions of the equivariant Hopf Theorem 4.5 hold. If v+iw ∈ Xc

�

is an eigenvector of Dxf(x∗, λ∗) to the eigenvalue iω∗, then v + iw = c(v∗ + iw∗) for some
c ∈ C, where v∗ + iw∗ is a Hopf eigenvector with v∗, w∗ ∈ NL

ω∗.
Proof. The vector v + iw satisfies (4.9), and by the assumption of the equivariant Hopf

Theorem 4.5 there is only one such eigenvector (over C), namely v∗ + iw∗. This proves the
lemma.

Due to this lemma, we can solve (4.9) as follows: We first compute the space X�
c . Then

we compute the L-invariant Hopf point together with a Hopf eigenvector which lies in X� by
an extended system.

First step of the algorithm. We compute an orthonormal basis of Xc
� and store it as row

vectors of a matrix E�. We assume that � > 1, i.e., that the branch of periodic orbits along
which a Hopf bifurcation has been detected has nontrivial spatio-temporal symmetry L = Z�.
We consider the following two cases.

Case 1: � = 2. We compute the kernel X2 = ker(B2) of B2 = α + idn and store an
orthonormal basis of it in the row vectors of the (d, n)-matrix E2. Here d = dimX2, and X2

is the L-invariant subspace of R
n where the action of the symmetry group L = Z2 generated

by α is given by α|X2 = −1. Hence,

ET
2 E2 = id |X2 .(4.11)
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Case 2: � > 2. In this case we compute the null space of the (2n, 2n)-matrix

B� :=

(
α− cos(2π/�) idn − sin(2π/�) idn

sin(2π/�) idn α− cos(2π/�) idn

)
.(4.12)

We store an orthonormal basis of ker(B�) in the row vectors of the matrix E� = [EV , EW ] ∈
Mat(d, 2n), where EV , EW ∈ Mat(d, n).

Before we continue with the description of the algorithm we present the following lemma.

Lemma 4.8. Let � > 2. Then the following hold true:

(a) If (v, w) ∈ kerB�, v, w ∈ R
n, we have v + iw ∈ Xc

� .

(b) If (v, w) ∈ kerB�, then so is (−w, v). In particular, kerB� has even dimension d = 2d̂,
d̂ ∈ N, the eigenvalue e−2πi/� of α has geometric multiplicity d̂, and d = dimX�.

(c) For any x ∈ R
d we have ET

V x + iET
Wx ∈ Xc

� .
(d) Both ET

V and ET
W have X� as range.

Proof.

(a) By definition, v + iw ∈ Xc
� if and only if v + iw satisfies (4.10). Taking real and

imaginary parts of the left- and right-hand sides of (4.10), we see that v + iw satisfies (4.10)
if and only if (v, w) ∈ kerB�.

(b) follows from (a) and the fact that (v, w) � v + iw and i(v + iw) ∼ (−w, v) are linearly
independent over R.

(c) follows from the definition of E�.

(d) follows from (a) and (b).

Second step of the algorithm. Again we consider two cases: � = 2, � > 2.

Case 1: � = 2. We solve an extended system

F (xred, λ, vred, wred, ω) = 0,

similarly to (4.2), where now

vred, wred ∈ X� � R
d, xred ∈ Fix(L) � R

nred

and

F : R
nred+2d+2 → R

nred+2d+1.

Let fred := f |Fix(L) and let Q : R
n → R

nred be the matrix which contains an orthonormal basis
of Fix(L), dim Fix(L) = nred, as row vectors. Then we define F as

F (xred, λ, vred, wred, ω) =

⎛
⎜⎜⎝

fred(xred, λ)
E2Dxf(x, λ)|x=QT xred

ET
2 vred + ωwred

−ωvred + E2Dxf(x, λ)|x=QT xred
ET

2 wred

〈vred, vred〉 + 〈wred, wred〉 − 1

⎞
⎟⎟⎠ .(4.13)

Case 2: � > 2. In this case the real part v∗ of the Hopf eigenvector v∗ + iw∗ and
the knowledge of the drift symmetry α of the branch of periodic orbits along which a Hopf
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bifurcation was detected determine the Hopf eigenvector uniquely since v∗+iw∗ satisfies (4.10)
and so

w∗ =
1

sin(2π/�)

(
αv∗ − cos

(
2π

�

)
v∗
)
.

Therefore only the real part of the Hopf eigenvector, the Hopf point, its parameter, and the
Hopf frequency need to be computed by an extended system. We define F : R

nred+d+2 →
R
nred+d+1 by

F (xred, λ, vred, ω) =

⎛
⎝ fred(xred, λ)

EV (Dxf(x, λ)|x=QT xred
ET

V vred + ωET
W vred)

〈vred, vred〉 − 1

⎞
⎠ .(4.14)

Proposition 4.9.
(a) If � = 2 and (x∗red, λ

∗, v∗red, w
∗
red, ω

∗) is a solution to F = 0 as defined in (4.13), then
x∗ = QTx∗red is an equivariant Hopf point with Hopf frequency ω∗. Moreover, a Hopf
eigenvector v∗ + iw∗ with v∗, w∗ ∈ NL

ω∗ is given by v∗ = ET
2 v

∗
red, w

∗ = ET
2 w

∗
red.

(b) Similarly, if � > 2 and (x∗red, λ
∗, v∗red, ω

∗) is a solution to F = 0 as defined in (4.14),
then x∗ = QTx∗red is an equivariant Hopf point with Hopf frequency ω∗. Moreover, a
Hopf eigenvector v∗ + iw∗ with v∗, w∗ ∈ NL

ω∗ is given by v∗ = ET
V v

∗
red, w

∗ = ET
W v∗red.

For the proof we need the following lemma.
Lemma 4.10. Let A be an (n, n)-matrix which is equivariant with respect to a linear Z�-

action on R
n. Let α generate Z� and define X� as before. Then X� is A-invariant.

Proof. Let v ∈ X�. Then there is some w ∈ X� such that v + iw is an eigenvector of α to
the eigenvalue exp(−2πi/�). By the Z�-equivariance of A, also A(v + iw) is an eigenvector of
α to the eigenvalue exp(−2πi/�), and so both Av and Aw lie in X�.

Note that X� is an isotypic component of the Z�-action on R
n, and that generally isotypic

components for a linear action of a group Γ are invariant under Γ-equivariant matrices [11].
Proof of Proposition 4.9.
(a) Case � = 2. The first equation fred(x, λ) = 0 of F = 0 implies that x∗red is an

equilibrium of fred(·, λ∗). Hence x∗ = QTx∗red is an L-invariant equilibrium of f(·, λ∗). From
the other equations in F = 0 we conclude that v∗red+iw∗

red is an eigenvector of E2Dxf(x∗, λ∗)ET
2

to the eigenvalue iω∗. Since x∗ ∈ Fix(L) the derivative Dxf(x∗, λ∗) is L-equivariant by
Lemma 4.3 and therefore, by Lemma 4.10, maps X2 into itself. Let v∗ = ET

2 v
∗
red, w

∗ = ET
2 w

∗
red.

Because of (4.11), v∗ +iw∗ ∈ Xc
2 is an eigenvector of Dxf(x∗, λ∗) to the eigenvalue iω∗. Hence

(x∗ = QTx∗red, λ
∗) is a Hopf point. Lemma 4.7 now implies that v∗, w∗ ∈ NL

ω∗ .
(b) Case � > 2. As in the case � = 2, the first equation of F = 0 implies that x∗ = QTx∗red

is an L-invariant equilibrium of f(·, λ∗). Let v∗ = ET
V v

∗
red and w∗ = ET

Ww∗
red. From Lemma

4.8(c) we conclude that v∗+iw∗ ∈ Xc
� . Since Dxf(QTxred(λ), λ) is L-equivariant by Lemma 4.3

and hence maps X� into itself by Lemma 4.10, and since EV |X�
is an isomorphism by Lemma

4.8(d), the other equations in F = 0 imply that

Dxf(x∗, λ∗)v∗ + ω∗w∗ = 0,(4.15)

and so

Re(Dxf(x∗, λ∗)(v∗ + iw∗) − iω∗(v∗ + iw∗)) = 0.
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Multiplying (4.15) by α and using the L-equivariance of Dxf(x∗, λ∗), we obtain

Dxf(x∗, λ∗)αv∗ + ω∗αw∗ = 0.

From the fact that v∗ + iw∗ ∈ Xc
� we conclude

Re
(
e−2πi/�(Dxf(x∗, λ∗)(v∗ + iw∗) − iω∗(v∗ + iw∗))

)
= 0.

Since e2πi/� /∈ R this implies that

Dxf(x∗, λ∗)(v∗ + iw∗) = iω∗(v∗ + iw∗)

and therefore (x∗, λ∗) is a Hopf point and v∗ + iw∗ ∈ Xc
� a Hopf eigenvector. By Lemma 4.7

we then get v∗, w∗ ∈ NL
ω∗ .

Analogously to Theorem 4.2 we have the following.
Theorem 4.11. If the assumptions of the equivariant Hopf Theorem 4.5 hold and if the

initial guess is good enough, then the Gauss–Newton method applied to (4.13) for � = 2 and
applied to (4.14) for � > 2 converges.

Proof. As in the nonsymmetric case (Theorem 4.2; see [1, 12, 14]) we show that DF , with
F from (4.13) for � = 2 and from (4.14) for � > 2, has full rank in the Hopf point. As before
we consider the cases � = 2 and � > 2 separately.

Case � = 2. The assumptions of the equivariant Hopf theorem imply that iω∗ is a simple
eigenvalue of Dxf(x∗, λ∗)|X2 and hence, due to (4.11), also of E2Dxf(x∗, λ∗)ET

2 . The proof
that DF has full rank in the Hopf point is therefore very similar to the nonsymmetric case:
The only difference is that we require v, w ∈ X2 and x ∈ Fix(L). We omit the details.

Case � > 2. In this case we have

D(xred,λ,vred,ω)F (xred, λ, vred, ω)

=

⎛
⎝ Dxred

fred(xred, λ) Dλfred(xred, λ) 0 0
EV D2

xfE
T
V vredQ

T EV DxDλfE
T
V vred EV (DxfE

T
V + ωET

W ) EV E
T
W vred

0 0 2vTred 0

⎞
⎠ ,

where f is short for f(QTxred, λ). Let t = (txred
, tλ, tvred

, tω) be a kernel vector of DF in the
equivariant Hopf point:

0 = Dxred
fred(x

∗
red, λ

∗)txred
+ Dλfred(x

∗
red, λ

∗)tλ,

0 = EV D2
xfE

T
V v

∗
redQ

T txred
+ EV DxDλfE

T
V v

∗
redtλ

+ EV (DxfE
T
V + ω∗ET

W )tvred
+ EV E

T
W v∗redtω,

0 = 2〈v∗red, tvred
〉.

(4.16)

We need to show that ker(DF ) is one-dimensional. Similarly, as in the proof of convergence
for the nonsymmetric case, Theorem 4.2 (see, e.g., [1, 12, 14]), we conclude from the first
equation of (4.16) that

(txred
, tλ) = tλ(x

′
red(λ

∗), 1).
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Since

D2
xf(x∗, λ∗)x′(λ∗) + DxDλf(x∗, λ∗) =

d

dλ
Dxf(x(λ), λ)

∣∣∣∣
λ=λ∗

,

where x(λ) = QTxred(λ), we deduce from the second equation of (4.16) that

EV

(
tλ

d

dλ
Dxf(x(λ), λ)

∣∣∣∣
λ=λ∗

ET
V v

∗
red + (Dxf(x∗, λ∗)ET

V + ω∗ET
W )tvred

+ tωE
T
W v∗red

)
= 0.

(4.17)

Since ET
V v

∗
red, E

T
V tv, E

T
W v∗red, E

T
W tv ∈ X� and EV |X�

is an isomorphism by Lemma 4.8(d) and
since Dxf(x(λ), λ) maps X� into itself by Lemmata 4.3 and 4.10, (4.17) implies that

tλ
d

dλ
Dxf(x(λ), λ)

∣∣∣∣
λ=λ∗

ET
V v

∗
red + Dxf(x∗, λ∗)ET

V tv + ω∗ET
W tv + tωE

T
W v∗red = 0.

Let tv = ET
V tvred

and tw = ET
W tvred

. By Lemma 4.8(c) we have tv + itw ∈ Xc
� , which we will

need later on. Denote v∗ = ET
V v

∗
red, w

∗ = ET
W v∗red such that, by Proposition 4.9(b), v∗ + iw∗

is a Hopf eigenvector. Then we get

0 = tλ
d

dλ
Dxf(x(λ), λ)

∣∣∣∣
λ=λ∗

v∗ + Dxf(x∗, λ∗)tv + ω∗tw + tωw
∗

= Re

(
tλ

d

dλ
Dxf(x(λ), λ)

∣∣∣∣
λ=λ∗

(v∗ + iw∗) + Dxf(x∗, λ∗)(tv + itw)

)
− Re (iω∗(tv + itw) + itω(v∗ + iw∗)) .

By Lemma 4.8(c), v∗ + iw∗ ∈ Xc
� . Therefore

0 = αtλ
d
dλ Dxf(x(λ), λ)|λ=λ∗v∗ + αDxf(x∗, λ∗)tv + ω∗αtw + tωαw

∗

= tλ
d
dλ Dxf(x(λ), λ)|λ=λ∗αv∗ + Dxf(x∗, λ∗)αtv + ω∗αtw + tωαw

∗

= Re
(
e−2πi/�(tλ

d
dλ Dxf(x(λ), λ)|λ=λ∗(v∗ + iw∗) + Dxf(x∗, λ∗)(tv + itw))

)
− Re

(
e−2πi/�(iω∗(tv + itw) − itω(v∗ + iw∗))

)
,

where we used the L-equivariance of Dxf(x(λ), λ) (Lemma 4.3) in the second line. Since
e−2πi/� /∈ R for � > 2 these last two equations imply that

0 = tλ
d
dλ Dxf(x(λ), λ)|λ=λ∗(v∗ + iw∗)

+ Dxf(x∗, λ∗)(tv + itw) − iω∗(tv + itw) − itω(v∗ + iw∗).
(4.18)

Let v(λ) + iw(λ), v(λ∗) = v∗, w(λ∗) = w∗, v(λ), w(λ) ∈ X�, be the path of eigenvectors of
Dxf(x(λ), λ) to the eigenvalues μ(λ) with ‖v(λ)‖ = 1. Let u∗ = v∗ + iw∗, and let u∗L ∈ Xc

� be
the uniquely determined left eigenvector of Dxf(x∗, λ∗) to the eigenvalue iω∗ with 〈u∗L, u∗〉 = 1.
As in the nonsymmetric case (see [1, 14, 12]), (4.18) then implies that

tλu
∗
L

d

dλ
Dxf(x(λ), λ)λ=λ∗u∗ = itω.
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This combined with 〈
u∗L,

d

dλ
Dxf(x(λ), λ)λ=λ∗u∗

〉
= μ′(λ∗)

and the assumption that Reμ′(λ∗) �= 0 gives tλ = 0. Hence tx = 0 and tω = 0. As in the
proof of Theorem 4.2, (4.18) reduces to

Dxf(x∗, λ∗)(tv + itw) − iω∗(tv + itw) = 0

so that tv + itw is a Hopf eigenvector. Since tv + itw ∈ Xc
� we deduce from Lemma 4.7 that

tv + itw = c(v∗ + iw∗) for some c ∈ C. By the definition of v∗, w∗ and tv, tw this is equivalent
to

ET
V tvred

+ iET
W tvred

= c(ET
V v

∗
red + iET

W v∗red).(4.19)

By Lemma 4.8 the map EV E
T
V ∈ Mat(d) is invertible. Therefore we conclude from (4.19) that

tvred
∈ span(v∗red, w

∗
red), where w∗

red := (EV E
T
V )−1EV E

T
W v∗red. From the last row of DF we get

the additional condition 〈v∗red, tvred
〉 = 0 on tvred

. Hence the kernel of DF is one-dimensional
and DF has full rank in the Hopf point.

Initial guess for the Gauss–Newton iteration. As in the nonsymmetric case (see section 4.1.2),
we use Hermite interpolation between two consecutive periodic orbits y(0) and y(1), between
which a Hopf bifurcation was detected, and determine the point τ̂ on the interpolating poly-
nomial y(τ) = (x(τ), T (τ), λ(τ)) with λ′(τ̂) = 0. This way we obtain an initial approximation
x̂ = x(τ̂) for the Hopf point, an initial approximation λ̂ = λ(τ̂) for its parameter, and an
initial approximation ω̂ = 2π

T̂
for its frequency, where T̂ = T (τ̂). If � = 2, we let

v̂ = cE2
d

dτ
x1(τ̂), ŵ = −c

1

ω̂
Dxf(x̂, λ̂)

d

dτ
x1(τ̂),

where c is such that 〈v̂, v̂〉 + 〈ŵ, ŵ〉 = 1, and take the point (x̂red = Qx̂, λ̂, v̂, ŵ, ω̂) as initial
guess for the Gauss–Newton iteration applied to (4.13). If � > 2, we define

v̂ = cEV
d

dτ
x1(τ̂)

with c ∈ R such that 〈v̂, v̂〉 = 1 and use (x̂red, λ̂, v̂, ω̂) as initial guess for the Gauss–Newton
iteration applied to (4.14).

5. Applications. In this section we illustrate with some examples the numerical methods
for the continuation of symmetric periodic orbits which we presented in the preceding sections
and implemented in the code SYMPERCON [20].

5.1. The Lorenz model—Comparison with AUTO and CONTENT. There are many
programs for the numerical continuation of periodic orbits of nonsymmetric systems. Two
of the most well known and widely used programs are AUTO [8] and CONTENT [17], the
numerical part of which is based on AUTO. In both programs collocation is used to find
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periodic solutions. This approach is equivalent to the multiple shooting ansatz with the
multiple shooting points being the grid points and the IVP solver having only one step.

One of the key new features of SYMPERCON compared to those program packages is
the exploitation of symmetries of periodic orbits and the computation of symmetry breaking
and symmetry increasing bifurcations, and we present some applications of these methods
in the next sections. In this section we give numerical evidence that the program package
SYMPERCON is also competitive when applied to continuation of nonsymmetric periodic
orbits. We compare the programs AUTO, CONTENT, and SYMPERCON using an example
which is taken from the CONTENT Tutorial (ver 1.4) [17] “ODEs: Lorenz system: Continu-
ation of limit cycles and branch switching.” Starting with the Lorenz system

x′1 = −σx1 + σx2,

x′2 = −x1x3 + λx1 − x2,

x′3 = x1x2 − bx3,

where

σ = 10, b = 8/3,

all programs find a periodic solution for the initial guess

(x∗, T ∗, λ∗) = ((16.2, 57.4, 250.8), 0.411, 312)

from [17]. We continue this limit cycle with respect to the parameter λ with required relative
error tol = 10−5. The Lorenz system has the Z2-symmetry (x1, x2, x3) → (−x1,−x2, x3), and
the above periodic orbit is Z2-symmetric. All programs detect a bifurcation of this periodic
orbit at λ = 312.97. This is a symmetry breaking flip pitchfork bifurcation, so the bifur-
cating periodic orbits are nonsymmetric. The bifurcating branch of nonsymmetric periodic
orbits, which we take as the primary branch in this comparison, subsequently undergoes a
period doubling cascade, and we compared AUTO, CONTENT, and SYMPERCON in their
performance computing this bifurcation cascade.

While SYMPERCON automatically doubles the number of multiple shooting points at
each flip bifurcation up to a given maximum, in AUTO and CONTENT the entered number
of grid points has to be set by the user. Since this number of grid points has to be increased at
period doubling bifurcations—otherwise the Newton method fails to converge—we doubled the
number manually. However, after the fourth period doubling we did not manage to configure
CONTENT in such a way that it would find any more period doubling points. With AUTO
we found a fifth period doubling bifurcation. In comparison, SYMPERCON found periodic
orbits of 26 times the original period, with period doubling bifurcations starting from the
primary branch at parameters λ = 229.41, λ = 218.21, λ = 215.97, λ = 215.49, λ = 215.39,
and λ = 215.37 (see Figure 4), and (when run with the compiler gcc under linux) even a
seventh period doubling point at λ = 215.36. All programs were very sensitive to changes
of the parameters of the computation (like the number of initial grid points m, the initial
continuation steplength, etc.) and the choice of C compiler used.
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λ

x2

λ

x2

Figure 4. Feigenbaum cascade in the Lorenz model as computed by SYMPERCON. The right figure is a
zoom of the lower-left corner of the left figure.

5.2. Symmetry breaking bifurcations in coupled cells. In this section we apply our
methods to compute equivariant Hopf points and symmetry breaking flip pitchfork bifurcations
in the Brusselator model of coupled cells, with parameters as in [3]. We consider four identical
cells in which the same reaction takes place and which are coupled by diffusion. The equations
for the 4-cell Brusselator are the following (j = 1, 3, 5, 7, xi := xi−8 for i > 8):

x′j = A− (B + 1)xj + x2
jxj+1 + λ(−3xj + xj+2 + xj+4 + xj+6)/1000,

x′j+1 = Bxj − x2
jxj+1 + λ(−3xj+1 + xj+3 + xj+5 + xj+7)/1000,

where A = 2.0, B = 5.9. The problem is invariant with respect to permutations of the cells,
and thus the equations are S4-equivariant. We denote the elements of Γ = S4 by γijkl, e.g.,

γ2314 =

⎛
⎜⎜⎝

0 0 id 0
id 0 0 0
0 id 0 0
0 0 0 id

⎞
⎟⎟⎠ , id ∈ Mat(2, 2).

From [3] we took the following equivariant Hopf point:

(x∗, λ∗) = (2.0, 2.95, 2.0, 2.95, 2.0, 2.95, 2.0, 2.95, 20.45).

The corresponding imaginary eigenvalue ω∗i has the value ω∗ = 0.62058 and belongs to an
absolutely irreducible three-dimensional representation; cf. Remark 2.4. The real eigenspace
Nω∗ of ω∗i is of the form Nω∗ = V ⊕W with

V = {(v1, 0, v2, 0, v3, 0,−v1 − v2 − v3, 0) | v1, v2, v3 ∈ R},
W = {(0, w1, 0, w2, 0, w3, 0,−w1 − w2 − w3) | w1, w2, w3 ∈ R}.

Let eVj , eWj be the jth unit vectors of V and W , respectively. Then the vectors eVj + ieWj ,
j = 1, 2, 3, are eigenvectors to the Hopf eigenvalues iω∗:

Dxf(x∗, λ∗)(eVj + ieWj ) = iω∗(eVj + ieWj ), j = 1, . . . , 3.(5.1)
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Figure 5. Equivariant Hopf bifurcation of Z4-symmetric periodic orbits of the Brusselator.
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Figure 6. Z4-symmetric periodic orbits near an equivariant Hopf point of the Brusselator. The bold parts
of the trajectories are computed numerically.

Using the equivariant Hopf theorem (Theorem 4.5), we can now compute the symmetries
and initial planes of the emanating periodic solutions, as in [3]. As an example we consider
periodic orbits with spatio-temporal symmetry group

L =

{
id,

(
γ3142,

3

4

)
,

(
γ4321,

1

2

)
,

(
γ2413,

1

4

)}
,

which means

L = Z4, K = {id}.

In order to compute the starting plane NL
ω∗ we need to know how S1 acts on Nω∗ . Let

u = (v, w) ∈ Nω∗ = V ⊕W . Due to (5.1) and (4.6) we have for θ ∈ S1 � R/Z

(id, θ)u =

(
cos(2πθ)v − sin(2πθ)w
sin(2πθ)v + cos(2πθ)w

)
.

By the equivariant Hopf Theorem 4.5 the starting plane NL
ω∗ is determined by the condition

NL
ω∗ = {u ∈ Nω∗ | (γ, θ)u = u ∀ (γ, θ) ∈ L} =

{
u ∈ Nω∗ |

(
γ2413,

π

2

)
u = u

}
.
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Figure 7. Symmetric periodic orbits of the 4-cell Brusselator before and after a flip pitchfork bifurcation
from Z4-symmetry to Z2-symmetry. The bold parts of the trajectories are computed numerically.
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Figure 8. Flip pitchfork bifurcation from Z4- to Z2-symmetry in the 4-cell Brusselator.

Here we used that L = Z4 is generated by γ2413. After a short computation we obtain

NL
ω∗ = {(u1, u2,−u2, u1, u2,−u1,−u1,−u2) | u1, u2 ∈ R}.

The Z4-symmetric periodic orbits bifurcating from the equivariant Hopf point are shown in
Figures 5 and 6. These solutions have already been computed in [3] by a Galerkin method
based on Fourier modes.

Using the methods of section 3, SYMPERCON finds that this branch of Z4-symmetric
periodic orbits undergoes a flip pitchfork bifurcation at λ∗ = 2.6738. A point x∗ on the
periodic orbit at the symmetry breaking bifurcation point is given by

x∗ = (1.7041, 3.0132, 0.86523, 4.8152, 3.6590, 1.5591, 0.92057, 6.0440),

and the period of this periodic solution is T ∗ = 5.0410. The Z4-periodic solution close to
the symmetry breaking bifurcation (at the parameter λ = 2.7904) and a Z2-symmetric peri-
odic orbit after the bifurcation (at the parameter λ = 2.6734) can be seen in Figure 7; the
bifurcation diagram is shown in Figure 8.
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Figure 9. Circuit of ring oscillator.

5.3. Electronic ring oscillator. In this section we simulate an electrical circuit consisting
of n MOSFET-inverters, taken from Kampowsky, Rentrop, and Schmidt [15]; see Figure 9.
Such a circuit can be modeled in the following way: Let Ui be the voltage at the ith node;
then using Kirchhoff’s law, we get the differential equations

f , f̃ : R
n → R

n, U̇ = f(U), f(U) = −C−1f̃(U)

for the vector U = (U1, . . . , Un) of the voltages. Here C is the capacity matrix

C =

⎛
⎜⎜⎜⎝

2Cp + C −Cp −Cp

−Cp 2Cp + C −Cp

. . .
. . .

−Cp −Cp 2Cp + C

⎞
⎟⎟⎟⎠ ,

and the function f is given by

f̃(U) =

⎛
⎜⎜⎜⎝

1/R(U1 − Uop) + g(Un, U1, U0)
1/R(U2 − Uop) + g(U1, U2, U0)

...
1/R(Un − Uop) + g(Un−1, Un, U0)

⎞
⎟⎟⎟⎠ ,

where

g(UG, UD, US) = K max{(UG − US − UT ), 0}2 −K max{(UG − UD − UT ), 0}2.

The constants K,UT , U0, Uop, R and the capacities C and Cp are technical parameters, which
have (after appropriate scaling) the values K = 0.2, UT = 1, U0 = 0, Uop = 5, R = 5,
C = 0.21, Cp = 5 · 10−3; see [15]. From [15] we took the initial values of a periodic solution,
namely U1 = 4.2087, U2 = 0.917, U3 = 2.6534, U4 = 4.2762, U5 = 0.6928, T = 6.298. This
periodic solution is shown in Figure 10. Furthermore there is a stationary solution given by
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Figure 10. Periodic solution for 5 inverters.

Ui(t) ≡ 2.56155, i = 1, . . . , 5. Our aim is now the numerical simulation of oscillations of large
electrical circuits, i.e., the computation of periodic orbits for large n.

The function f : R
n → R

n is Zn-equivariant where the generating element γn of

Zn = {id, γn, . . . , γn−1
n }

is acting on R
n by shifting the components to the right:

γn(x1, . . . , xn) = (x2, . . . , xn, x1).

This representation of Zn is called the regular representation of Zn; see [21]. Using
SYMPERCON, we checked that the above periodic solution (with n = 5) has spatio-temporal
symmetry L = Z5. Since the stationary solution is Zn-invariant the periodic solution might
have branched from the stationary solution via an equivariant Hopf bifurcation. So we in-
troduce Uop as a continuation parameter and examine the stationary Zn-invariant solutions
U = (u, . . . , u) ∈ R

n, u ∈ R, which are given by the equation

1/R(u− Uop) + g(u, u, U0) = 0

⇐⇒ 1/R(u− Uop) + K(max(u− UT , 0))2 = 0.

In U = (u, . . . , u) the Jacobian DUf(U) is Zn-symmetric:

γ DUf(U) = DUf(U) γ ∀ γ ∈ Γ = Zn.(5.2)

From elementary representation theory it is known that in a regular representation each irre-
ducible representation ϑi is contained ni times, where ni is the dimension of the representation
ϑi; see [21]. Finite cyclic groups Zn have only two-dimensional complex irreducible represen-
tations (as defined in Remark 2.4). Over C they are given by

ϑj(γn) = e
2πij
n , j = 0, . . . , n− 1;(5.3)
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see [21]. Let Xj denote the Γ-irreducible subspace of R
n belonging to ϑj . Then Xj , j =

0, . . . , n− 1, is spanned by the real part vj and imaginary part wj of the vector

vj + iwj = (1, e
2πij
n , e

2πi2j
n , . . . , e

2πi(n−1)j
n ).

Using (5.2), we conclude that the Jacobian DUf(U) can be diagonalized over C. Here vj +iwj

is an eigenvector to the eigenvalue

λj =
1/R + 2K max(u− UT , 0)e

2πi(n−1)j
n

C + (2 − 2 cos 2πj
n )Cp

,(5.4)

as can be computed easily. Setting Re(λj) = 0, we get simple expressions for the stationary

solution u = u(j) and the corresponding parameter U
(j)
op , for which an equivariant Hopf bifur-

cation can occur, and also for the Hopf frequency ωj . Using the equivariant Hopf Theorem 4.5,
we conclude that every bifurcating periodic solution has the symmetry L = Zn. However, we
also have to determine the homomorphism Θ of the bifurcating periodic orbits and thereby
their isotropy K and drift symmetry α. For this we have to know the operation of Γ× S1 on
the Hopf eigenspace Nω∗ = Xj ; see (4.6). We compute that Γ×S1 operates on the irreducible
subspace Xj = span(vj , wj) in the following way:

(γ, θ)(vj + iwj) = ϑj(γ)e2πiθ(vj + iwj),(5.5)

where γ ∈ Γ, θ ∈ S1 ≡ R/Z. We can characterize the homomorphism Θj of the bifurcating
periodic orbits tangential to Nω∗ = Xj by the homomorphism Θj(γn) applied to the generating
element γn of Zn. From (5.5) and (5.3) we get

Θj(γn) = −j/n.

Let r be the greatest common divisor of n and j and nred := n/r. Then K is generated by
γnred
n , and the fixed point space Fix(K) contains all vectors in R

n which consist of r equal
sections of length nred. Therefore nred is the dimension of the reduced system.

After restriction onto the fixed point space Fix(K) = R
nred we obtain L = Znred

, K = {id}.
Then γnred

≡ γnK is a generating element of Znred
. The group Znred

also acts on R
nred

by cyclically permuting the components of every x ∈ R
nred . The representation ϑjred with

jred := j/r is the irreducible representation of Znred
on R

nred , which corresponds to ϑj . Thus,

N red
ω∗ = 〈Vjred ,Wjred〉 ⊂ R

nred

is the initial plane for the periodic solutions in the reduced coordinates. Finally we have to
determine the element α ∈ Znred

with the smallest phase shift Θred(α). Let α = γknred
, where

k is an integer between 1 and nred −1. Then α is given by the equation Θred(α) = 1/nred, i.e.,

ϑjred(α)e2πi/nred = 1 ⇔ jred k ≡ 1 (mod nred).

By the method just described we can compute initial values for periodic solutions for arbitrary
n, and by exploiting symmetry we can reduce the amount of work effectively: If the considered
periodic solution has large spatial symmetry, then the ODE is reduced to a system with small
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Table 1
Amount of work for the computation of symmetric periodic orbits with trivial isotropy of the electrical

circuit depending on the number n of inverters.

With exploitation Without exploita-
of symmetry tion of symmetry

Flow Φt(x) O(n) Nstep ∗O(n)

Wronskian matrix DxΦt(x) O(n) Nstep ∗O(n2)

Linear algebra O(n) O(n3)

dimension nred. For example, in the case n = 1000, there is a periodic solution with K = Z200,
nred = 5, which corresponds to the above computed solution with n = 5.

If the periodic solution does not have any spatial symmetry, but only spatio-temporal
symmetry, then only the integration interval can be reduced by exploitation of symmetry. Let
Nstep be the number of integration steps for the full integration interval [0, T ]. If the symmetry
is not exploited, Nstep ∗O(n) multiplications and divisions are needed for the computation of
the flow; exploiting the symmetry, we can reduce the number of integration steps from Nstep

to Nstep/n, since the integration interval is only [0, T/n]. Hence for large n the number of
time steps is O(1), and so the number of multiplications and divisions for the computation
of the flow is O(n) when symmetry is exploited. Since the derivatives Dxf(x) are tridiagonal
matrices and hence contain only O(n) nonzero components, Nstep ∗ O(n2) multiplications
are needed for the computation of the Wronskian matrices DxΦt(x) by integration of the
variational equation if the symmetry is not exploited; if the symmetry is exploited, then for
large n only a few steps of integration are necessary for the computation of the Wronskian
matrices. Therefore the Wronskian matrices are sparse and contain only nonzero entries close
to the diagonal. Hence by exploitation of symmetry the amount of work for the computation
of the Wronskian reduces to O(n). For the solution of the linear equations which arise in the
Gauss–Newton method, O(n3) multiplications are needed if the symmetry is not exploited,
and the amount of work for the linear algebra reduces to O(n) due to the sparse structure of
the Wronskians if the symmetry is exploited. Altogether, we obtain a remarkable reduction
of the computational cost by exploitation of symmetry; cf. Table 1.

Conclusion and future directions. In this paper we have presented efficient algorithms for
the computation of generic symmetry changing but isotropy preserving bifurcations of periodic
orbits in systems where the symmetry group is discrete. These bifurcations were analyzed by
Golubitsky, Stewart, and Schaeffer (equivariant Hopf bifurcation; see, e.g., [11]) and Fiedler
(flip doubling and flip pitchfork bifurcations; see [9]). General symmetry breaking bifurcations
of periodic orbits in systems with discrete symmetry group were classified by Lamb and Mel-
bourne [18]; see also [19] and [24] for the case of continuous symmetry groups. In future work
we will extend our numerical results to compute symmetry changing bifurcations of periodic
orbits of arbitrary Lie group actions. In the paper [26] we extend the methods presented here
to Hamiltonian systems with continuous symmetries, building on the persistence results of [25].
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Symmetry and Automated Branch Following for
a Semilinear Elliptic PDE on a Fractal Region∗
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Abstract. We apply the gradient Newton–Galerkin algorithm (GNGA) of Neuberger and Swift to find solutions
to a semilinear elliptic Dirichlet problem on the region whose boundary is the Koch snowflake. In a
recent paper, we described an accurate and efficient method for generating a basis of eigenfunctions of
the Laplacian on this region. In that work, we used the symmetry of the snowflake region to analyze
and postprocess the basis, rendering it suitable for input to the GNGA. The GNGA uses Newton’s
method on the eigenfunction expansion coefficients to find solutions to the semilinear problem. This
article introduces the bifurcation digraph, an extension of the lattice of isotropy subgroups. For our
example, the bifurcation digraph shows the 23 possible symmetry types of solutions to the PDE, and
the 59 generic symmetry-breaking bifurcations among these symmetry types. Our numerical code
uses continuation methods and follows branches created at symmetry-breaking bifurcations, and so
the human user does not need to supply initial guesses for Newton’s method. Starting from the
known trivial solution, the code automatically finds at least one solution with each of the symmetry
types that we predict can exist. Such computationally intensive investigations necessitated the
writing of automated branch following code, whereby symmetry information was used to reduce the
number of computations per GNGA execution and to make intelligent branch following decisions at
bifurcation points.

Key words. snowflake, symmetry, bifurcation, semilinear elliptic PDE, GNGA
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1. Introduction. We seek numerical solutions to the semilinear elliptic boundary value
problem

Δu + fλ(u) = 0 in Ω,

u = 0 on ∂Ω,(1)

where Δ is the Laplacian operator, Ω ⊂ R
2 is the region whose boundary ∂Ω is the Koch

snowflake, u : Ω → R is the unknown function, and fλ : R → R is a one-parameter family of
odd functions. For convenience, we refer to Ω as the Koch snowflake region. This article is
one of the first to consider a nonlinear PDE on a region with fractal boundary. In this paper,
we choose the nonlinearity to be

fλ(u) = λu + u3(2)
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and treat λ ∈ R as the bifurcation parameter. When the parameter is fixed, we will sometimes
use f in place of fλ. Using this convention, note that λ = f ′(0).

This paper exploits the hexagonal symmetry of the Koch snowflake region and the fact
that f is odd. Our nonlinear code would work with any region with hexagonal symmetry and
any odd “superlinear” function f (see [4]), and with minor modification for other classes of
nonlinearities as well. We chose to work with odd f primarily because of the rich symmetry
structure. The explicit shape of Ω represents a considerable technological challenge for the
computation of the eigenfunctions [16, 27], which are required as input to the nonlinear code.

It is well known that the eigenvalues of the Laplacian under this boundary condition satisfy

0 < λ1 < λ2 ≤ λ3 ≤ · · · → ∞,(3)

and that the corresponding eigenfunctions {ψj}j∈N can be chosen to be an orthogonal basis

for the Sobolev space H = H1
0 (Ω) = W 1,2

0 (Ω), and an orthonormal basis for the larger Hilbert
space L2 = L2(Ω). The inner products are

〈u, v〉H =

∫
Ω
∇u · ∇v dx and 〈u, v〉2 =

∫
Ω
u v dx,

respectively (see [1, 9, 15, 17]). Theorem 8.37 and subsequent remarks in [9] imply that
the eigenfunctions are in C∞(Ω). In [17], properties of the gradients of eigenfunctions near
boundary points are explored in light of the lack of regularity of ∂Ω.

Using the gradient Newton–Galerkin algorithm (GNGA; see [26]), we seek approximate
solutions u =

∑M
j=1 ajψj to (1) by applying Newton’s method to the eigenfunction expansion

coefficients of the gradient ∇J(u) of a nonlinear functional J whose critical points are the
desired solutions. The definition of J , the required variational equations, a description of the
GNGA, and a brief history of the problem are the subjects of section 2.

The GNGA requires as input a basis spanning a sufficiently large but finite dimensional
subspace BM = span{ψ1, . . . , ψM}, corresponding to the first M eigenvalues {λj}Mj=1. As
described in [27], a grid GN of N carefully placed points is used to approximate the eigen-
functions. These are the same grid points used for the numerical integrations required by
Newton’s method. Section 3 briefly describes the process we use for generating the eigenfunc-
tions.

Section 4 concerns the effects of symmetry on automated branch following. The symmetry
theory for linear operators found in [27] is summarized, and then the extensions required for
nonlinear operators are described. Symmetry-breaking bifurcations are analyzed in a way that
allows an automated system to follow the branches created at the bifurcations. As we develop
the theory, we present specific examples applying the general theory to equation (1) on the
snowflake region. In particular, we find that there are 23 different symmetry types of solutions
to (1) and 59 generic symmetry-breaking bifurcations. The symmetry types and bifurcations
among them are summarized in a bifurcation digraph, which generalizes the well-known lattice
of isotropy subgroups (see [10]). As far as we know, the bifurcation digraph is a new way to
organize the information about the symmetry-breaking bifurcations.

Section 5 describes how understanding the symmetry allows remarkable increases in the
efficiency of the GNGA. Section 6 describes the automated branch following. We use repeated
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executions of the GNGA or a slightly modified algorithm (parameter-modified GNGA) to
follow solution branches of (1), (2). The GNGA uses Newton’s method, which is known to
work well if it has a good initial approximation. The main shortcoming of Newton’s method
is that it works poorly without a good initial approximation. We avoid this problem by
starting with the trivial solution (u = 0). The symmetry-breaking bifurcations of the trivial
solution are found by the algorithm, and the primary branches are started. The program
follows the branches by continuation methods, and then follows the new branches created at
symmetry-breaking bifurcations. To follow an existing branch, we vary λ slightly between
executions. To start new solution branches created at bifurcation points, we treat λ as a
variable and fix one of the null eigenfunctions of the Hessian evaluated at the bifurcation
point. The symmetry analysis tells us which null eigenfunction to use. In this way solutions
with all 23 symmetry types are found automatically, starting from u = 0, without having to
guess any approximations for Newton’s method.

In our experiments, many bifurcation diagrams were generated by applying the techniques
mentioned above. A selection of these diagrams is provided in section 7, along with contour
plots of solutions to (1) corresponding to each of the 23 symmetry types predicted to exist.
We include evidence of the convergence of our algorithm as the number of modes M and grid
points N increase.

Many extensions to our work are possible, including enforcing different boundary condi-
tions on the same region, solving similar semilinear equations on other fractal regions, and
applying the methodology to partial difference equations (PdE) on graphs [25]. Section 8 dis-
cusses some of these possible extensions. In particular, we are in the process of rewriting the
suite of programs. We plan to be able to solve larger problems using a parallel environment.
We will be able to solve problems with larger symmetry groups by automating the extensive
group theoretic calculations. This concluding section also has a discussion of the convergence
of the GNGA.

2. GNGA. We now present the variational machinery for studying (1) and follow with a
brief description of the general GNGA. Section 6 contains more details of the implementation
of the algorithm for our specific problem. Let Fλ(u) =

∫ u
0 fλ(s) ds for all u ∈ R define the

primitive of fλ. We then define the action functional J : R ×H → R by

J(λ, u) =

∫
Ω

{
1
2 |∇u|2 − Fλ(u)

}
dx.(4)

We will sometimes use J : H → R to denote J(λ, ·). The class of nonlinearities f found in
[2, 4, 5, 25, 28] implies that J is well defined and of class C2 on H. The choice (2) we make
in this paper belongs to that class. Critical points of J are by definition weak solutions of (1)
(see, for example, [4, 28, 9]), and clearly classical solutions are critical points. The usual
“bootstrap” argument of repeatedly applying Theorem 8.10 of [9] can be used in our case.
Specifically, Hk

0 is embedded in Lq for all q ≥ 2 when the space dimension n is 2, regardless
of the regularity of ∂Ω (due to the zero Dirichlet boundary condition; see [1]). Hence u ∈ Hk

implies f(u) ∈ Hk as well. As a result, if u is a critical point, then u ∈ C∞(Ω)∩C(Ω̄); hence
a classical solution. If one considered boundary conditions, space dimensions, and nonlinear
terms other than the choices made in this paper, it could happen that critical points would
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be weak, not classical, solutions. Regardless, our approximations lie in BM ⊂ C∞. Here, the
existence proofs for positive, negative, and sign-changing exactly once solutions from [4, 28]
immediately give at least three nontrivial (classical) solutions for our specific superlinear
boundary value problem; appealing to symmetry implies the existence of even more solutions
(see, for example, [25]).

The choice of H for the domain is crucial to the analysis of the PDE (see [4, 24] and refer-
ences therein), as well as for understanding the theoretical basis of effective steepest descent
algorithms (see [7, 22, 23], for example). We will work in the coefficient space R

M ∼= BM .
The coefficient vector of u ∈ BM is the vector a ∈ R

M satisfying u =
∑M

j=1 ajψj . Using the
corresponding eigenvalues (3) and integrating by parts, the quantities of interest are

gj = J ′(u)(ψj) =

∫
Ω
{∇u · ∇ψj − f(u)ψj} = ajλj −

∫
Ω
f(u)ψj , and(5)

hjk = J ′′(u)(ψj , ψk) =

∫
Ω
{∇ψj · ∇ψk − f ′(u)ψj ψk} = λjδjk −

∫
Ω
f ′(u)ψj ψk,(6)

where δjk is the Kronecker delta function. Note that there is no need for numerical differen-
tiation when forming gradient and Hessian coefficient vectors and matrices in implementing
Algorithm 2.1; this information is encoded in the eigenfunctions.

The vector g ∈ R
M and the M × M matrix h represent suitable projections of the L2

gradient and Hessian of J , restricted to the subspace BM , where all such quantities are
defined. For example, for u =

∑M
j=1 ajψj , v =

∑M
j=1 bjψj , and w =

∑M
j=1 cjψj , we have

PBM
∇2J(u) =

M∑
j=1

gjψj , J ′(u)(v) = g · b, and J ′′(u)(v, w) = hb · c = b · hc.

We can identify g with the approximation PBM
∇2J(u) of ∇2J(u) = Δu + f(u), which is

defined for u ∈ BM . The solution χ to the M -dimensional linear system hχ = g is then
identified with the (suitably projected) search direction (D2

2J(u))−1∇2J(u), which not only is
defined for u ∈ BM , but also is there equal to (D2

HJ(u))−1∇HJ(u). We use the least squares
solution of hχ = g. In practice, the algorithm works even near bifurcation points where the
Hessian is not invertible.

The heart of our code is Newton’s method in the space of eigenfunction coefficients.
Algorithm 2.1 (GNGA).
1. Choose initial coefficients a = {aj}Mj=1, and set u =

∑
ajψj .

2. Loop
(a) Calculate the gradient vector g = {J ′(u)(ψj)}Mj=1 from (5).

(b) Calculate the Hessian matrix h = {J ′′(u)(ψj , ψk)}Mj, k=1 from (6).
(c) Exit loop if ||g|| is sufficiently small.
(d) Solve hχ = g for the Newton search direction χ ∈ R

M .
(e) Replace a ← a− χ and update u =

∑
ajψj .

3. Calculate sig(h) and J for the approximate solution.
If Newton’s method converges, then we expect that u approximates a solution to the

PDE (1), provided that M is sufficiently large and the eigenfunctions and numerical integra-
tions are sufficiently accurate. See section 8.
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Our estimate for the Morse index (MI) of the critical point of J is the signature of h,
denoted sig(h), which is defined as the number of negative eigenvalues of h. This measures
the number of linearly independent directions away from u in which J decreases quadratically.

The basic Algorithm 2.1 is modified to take advantage of the symmetry of our problem.
The M integrations required in step (a) and the M(M + 1)/2 integrations in step (b) are
reduced to fewer integrations if the initial guess has nontrivial symmetry.

We often use a “parameter-modified” version of the GNGA (pmGNGA). In this modifi-
cation, λ is treated as an unknown variable, and one of the M coefficients ak is fixed. Along
a given branch, symmetry generally forces many coefficients to be zero. When a bifurcation
point is located by observing a change in MI, we can predict the symmetry of the bifurcating
branches using the symmetry of the null eigenfunctions of the Hessian. By forcing a small
nonzero component in the direction of a null eigenfunction (orthogonal to the old branch’s
smaller invariant subspace), we can assure that the pmGNGA will not converge to a solution
lying on the old branch. Another benefit of the pmGNGA is that it can handle a curve bi-
furcating to the right as well as one bifurcating to the left. In our system, the branches that
bifurcate to the right have saddle node bifurcations where they turn around and go to the
left. The pmGNGA can follow such branches, while the normal GNGA cannot.

The implementation of pmGNGA is not difficult. The M equations are still

gi = J ′(u)(ψi) = 0,

but the M unknowns are

ã = (a1, . . . , ak−1, λ, ak+1, . . . , aM ),

and the value of one coefficient, ak, is fixed. Consequently, we replace the Hessian matrix h
with a new matrix h̃, where the kth column is set to ∂gi/∂λ = −ai:

h̃ij =

{
hij if j �= k,
−ai if j = k.

The search direction χ̃ is the solution to the system h̃χ̃ = g. The pmGNGA step is

ã ← ã− χ̃,

and then u and λ are updated. After Newton’s method converges, the kth column of the
original hij is calculated, and the MI of the solution, sig(h), is computed.

We conclude this section with a very brief history of the analytical and numerical aspects of
the research into (1), given our type of nonlinearity f . Our introduction to this general subject
was [4], where a sign-changing existence result was proven. This theorem is extended in [5]; we
indicate briefly in section 7 where this so-called CCN solution (Castro–Cossio–Neuberger; see
[4, 5]) can be found on our bifurcation diagrams. The article [7] was our first success in using
symmetry to find higher MI solutions. The GNGA was developed in [26], wherein a much more
detailed description of the variational structure and numerical implementation can be found.
The first implementation of the GNGA for regions where the eigenfunctions are not known
in closed form is in [12], where the region is a Bunimovich stadium. The article [24] provides
a historical overview of the authors’ experimental results using variants of the mountain pass
algorithm (MPA, MMPA, HLA) and the GNGA, as well as recent analytical results and a list
of open problems; the references found therein are extensive.



SYMMETRY AND AUTOMATED BRANCH FOLLOWING 481

Figure 1. The Koch snowflake region Ω with the grids G13 and G133 at levels � = 2 and 3, respectively. A
generic grid point (which is not on any line of reflection symmetry) is indicated in the larger grid.

3. The basis of eigenfunctions. In [27], we describe theoretical and computational results
that lead to the generation of a basis of eigenfunctions solving

Δu + λu = 0 in Ω, u = 0 on ∂Ω.(7)

That paper details the grid technique and symmetry analysis that accompanied the effort; we
briefly summarize those results in this section.

The Koch snowflake is a well-known fractal, with Hausdorff dimension log3 4. Following

Lapidus et al. [16], we take our snowflake to be inscribed in a circle of radius
√

3
3 centered

about the origin. We use a triangular grid GN of N points to approximate the snowflake
region. Then, we identify u : GN → R with u ∈ R

N , that is,

u(xi) = ui(8)

at grid points xi ∈ GN . Our paper [27] differs from [16] in that we use a different placement of
the grid points and a different method of enforcing the boundary condition, resulting in more
accurate eigenvalue estimates with fewer points. Figure 1 depicts the level 2 and 3 grids in
the family of grids used in [27] to compute eigenfunctions; we used the first M eigenfunctions
computed at levels 4, 5, and 6 in our nonlinear experiments. The number of grid points at
level � is N = (9� − 4�)/5, and the spacing between grid points is h = 2/3�. We computed the
eigenvalues and eigenfunctions for (7) using the Arnoldi package (ARPACK; see [19]) and the
following approximation to the Laplacian with zero-Dirichlet boundary conditions:

−Δu(x) ≈ 2

3h2

(
(12 − number of neighbors)u(x) −

∑
{neighboring values of u}

)
.(9)

The ARPACK is based upon an algorithmic variant of the Arnoldi process called the
implicitly restarted Arnoldi method and is ideally suited for finding the eigenpairs of the large
sparse matrices associated with the discretization of the Laplacian.
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4. Symmetry: The lattice of isotropy subgroups and the bifurcation digraph. This
section describes equivariant bifurcation theory as it applies to the branching of solutions
to (1); see [6, 10, 11, 18]. We are able to describe the expected symmetry types of solutions
to (1), as traditionally arranged in a lattice of isotropy subgroups. We introduce the bifurcation
digraph, a refinement of the lattice, which shows every possible generic bifurcation from one
symmetry type to another as a directed edge which is labeled with information about the
bifurcation. The bifurcation digraph is of interest in its own right and summarizes the essential
information required by our automated branch following code. In this project, GAP (groups,
algorithms, and programming; see [8]) was used solely to verify the symmetry analysis we did
by hand. In our continuing projects GAP is a useful tool since it can perform the tedious
calculations and write the information in a format that can be read by the branch following
code. Matthews [21] has used GAP to do similar calculations. We apply this methodology to
the snowflake domain being considered in this paper. The analysis shows that solutions fall
into 23 symmetry types, and that there are 59 types of generic symmetry-breaking bifurcations.

Group actions and the lattice of isotropy subgroups. Let Γ be a finite group and V
be a real vector space. A representation of Γ is a homomorphism α : Γ → GL(V ). Where
convenient, we identify GL(V ) with the set of invertible matrices with real coefficients. Every
representation α corresponds to a unique group action of Γ on V by the rule γ · v := α(γ)(v)
for all γ ∈ Γ and v ∈ V . We will usually use the action rather than the representation. The
group orbit of v is Γ · v = {γ · v | γ ∈ Γ}.

Example 4.1. Let

D6 := 〈ρ, σ | ρ6 = σ2 = 1, ρ σ = σρ5〉

be the dihedral group with 12 elements. It is convenient to define τ = ρ3σ. It follows that
στ = τσ = ρ3. The group D6 is the symmetry of a regular hexagon, and of the Koch snowflake
region Ω. The standard D6 action on the plane is given by

ρ · (x, y) =
(

1
2x +

√
3

2 y,−
√

3
2 x + 1

2y
)
,

σ · (x, y) = (−x, y),

τ · (x, y) = (x,−y).

(10)

In this action, ρ is a rotation by 60◦, σ is a reflection across the y-axis, and τ is a reflection
across the x-axis. These group actions are depicted in Figure 13, near the end of the paper.

We will denote subgroups of D6 by listing the generators. While any given subgroup of
D6 can be defined using only ρ and σ, we find it geometrically descriptive to use τ in certain
cases. For example, we prefer 〈ρ2, τ〉 to the equivalent 〈ρ2, ρσ〉. In order to make relationships
among subgroups intuitive, we often include τ when its membership is implied by the other
generators (see, for example, Figure 2 below).

The standard D6 group action (10) is not the only action we consider. For a function
u ∈ L2(Ω) and group element γ ∈ D6, we define (γ · u)(x) = u(γ−1 · x). In this paper, a
vector u defined by ui = u(xi), for a given grid GN = {xi}Ni=1, is a discrete approximation
of a function on Ω. The D6 group action on u ∈ R

N is a permutation of the components:
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(γ · u)i = u(γ−1 · xi). Given a function u ∈ L2(Ω) or R
N , the group orbit D6 · u consists of

functions obtained from u by a reflection or rotation.
Example 4.2. The group D6 × Z2, where Z2 = {1,−1}, acts on L2(Ω) in a natural way.

For all (γ, z) ∈ D6 × Z2, define

(γ, z) · u = z(γ · u).

We will denote (γ, 1) ∈ D6×Z2 by γ and (γ,−1) ∈ D6×Z2 by −γ. With this natural notation,
(−γ) · u = −(γ · u), which we call simply −γ · u.

Let us recall some facts about group actions, following [6, 10, 11]. The isotropy subgroup
or stabilizer of v ∈ V in Γ is

Stab(v,Γ) := {γ ∈ Γ | γ · v = v}.

The isotropy subgroup measures the symmetry of v, and is sometimes called the little group
of v, or Γv. If the group Γ is understood, we may simply write Stab(v) in place of Stab(v,Γ).
The stabilizer of a subset W ⊆ V in Γ is Stab(W,Γ) := {γ ∈ Γ | γ ·W = W}. This must be
distinguished from the point stabilizer of a subset

pStab(W,Γ) := {γ ∈ Γ | γ · v = v for all v ∈ W} =
⋂

{Stab(v,Γ) | v ∈ W}.

Another commonly used notation is ΓW for the stabilizer and Γ(W ) for the point stabilizer.
Note that pStab(W,Γ) is always normal in Stab(W,Γ), and the effective symmetry group
acting on W is Stab(W,Γ)/pStab(W,Γ), which acts faithfully on W .

If Σ is a subgroup of Γ, then the fixed point subspace of Σ in V is

Fix(Σ, V ) := {v ∈ V | γ · v = v for all γ ∈ Σ}.

Another notation for the fixed point subspace is VΣ. We write Fix(Σ) when V is understood.
An isotropy subgroup of the Γ action on V is the stabilizer of some point v ∈ V . For some

group actions, not every subgroup of Γ is an isotropy subgroup.
Example 4.3. Consider the D6 action on the plane R

2 described in (10). It is well known
that 〈ρ〉 is not an isotropy subgroup of this action.

Now consider the D6 action on the function space L2(Ω). We give a standard argument
that every subgroup of D6 is an isotropy subgroup. Start with a function u∗ that is zero
everywhere except for a small region, and suppose that the region is distinct from each of its
nontrivial images under the D6 action. Then for any subgroup Σ ≤ D6, the average of the
function u∗ over Σ, defined as

PΣ(u∗) =
1

|Σ|
∑
γ∈Σ

γ · u∗,(11)

has isotropy subgroup Σ. Therefore every subgroup of the D6 action on L2(Ω) is an isotropy
subgroup. The average over the group is an example of a Haar operator, and PΣ : V →
Fix(Σ, V ) is an orthogonal projection operator [36].

Similarly, every subgroup of D6 is an isotropy subgroup of the D6 action on R
N , the space

of functions on the grid GN , provided � ≥ 3. This follows from averaging the function that is
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1 at a generic lattice point and 0 elsewhere. Recall that a generic point is one whose isotropy
subgroup is trivial. Figure 1 shows that the level two grid G13 does not have a generic point,
while the level three grid G133 does. Thus, the space of functions on G133 has the same isotropy
subgroups as L2(Ω), but a much smaller space has this same property. Start with any generic
point x1 ∈ Ω. Then D6 acts on the space of functions on the 12 points D6 ·x1. This D6 action
on R

12 has the same structure of isotropy subgroups as the D6 action on L2(Ω), and is the D6

action used in our GAP calculations. The corresponding 12-dimensional representation is the
well-known regular representation of D6 (see [29, 31, 34]).

The symmetry of functions is described by two related concepts. A function q : V → R is
Γ-invariant if q(γ · v) = q(v) for all γ ∈ Γ and all v ∈ V . Similarly, an operator T : V → V is
Γ-equivariant if T (γ · v) = γ · T (v) for all γ ∈ Γ and all v ∈ V .

Example 4.4. The energy functional J defined in (4) is D6 × Z2-invariant. The nonlinear
PDE (1) can be written as (Δ + f)(u) = 0, where Δ + f is a D6 × Z2-equivariant operator.
(There are subtleties concerning the domain and range of Δ. See [6, 7] for a careful treatment
of the function spaces.) In particular, Δ + f is D6-equivariant because the snowflake region
Ω has D6 symmetry, and (Δ + f)(−u) = −(Δ + f)(u), since f is odd. As a consequence, if u
is a solution to (1), then so is every element in its group orbit (D6 × Z2) · u.

The isotropy subgroups and fixed point subspaces are important because of the following
simple yet powerful results; see [6, 10, 11].

Proposition 4.5. Suppose that Γ acts linearly on V , T : V → V is Γ-equivariant, and Σ is
an isotropy subgroup of Γ.

(a) If v ∈ Fix(Σ), then T (v) ∈ Fix(Σ). Thus, T |Fix(Σ) : Fix(Σ) → Fix(Σ) is defined.
(b) Stab(Fix(Σ)) = NΓ(Σ), the normalizer of Σ in Γ, and pStab(Fix(Σ)) = Σ.
(c) T |Fix(Σ) is NΓ(Σ)-equivariant.
(d) T |Fix(Σ) is NΓ(Σ)/Σ-equivariant, and NΓ(Σ)/Σ acts faithfully on Fix(Σ).
If Σ is a subgroup of Γ, the normalizer of Σ in Γ is defined to be NΓ(Σ) := {γ ∈ Γ |

γΣ = Σγ}, which is the largest subgroup of Γ for which Σ is a normal subgroup. The presence
of the normalizer in Proposition 4.5(b) is interesting, since the normalizer is a property of the
abstract groups and is independent of the group action.

Example 4.6. As a consequence of Proposition 4.5, we can solve the PDE (1), written as
(Δ+f)(u) = 0, by restricting u to functions in Fix(Σ, L2(Ω)). This leads to a simpler problem
since the function space Fix(Σ, L2(Ω)) is simpler than L2(Ω). An example of this is in Costa,
Ding, and Neuberger [7]. The techniques of that paper, applied to our problem, would find
sign-changing solutions with MI 2 within the space Fix(D6, L

2(Ω)). This space consists of
all functions which are unchanged under all of the rotations and reflections of the snowflake
region.

Proposition 4.5 also applies to the GNGA, since the Newton method iteration mapping is
D6 ×Z2-equivariant. If the initial guess is in a particular fixed point subspace, all the iterates
will be in that fixed point subspace. This fact can be used to speed numerical calculations,
as described in section 5.

Two subgroups Σ1,Σ2 of Γ are conjugate (Σ1 ∼ Σ2) if Σ1 = γΣ2γ
−1 for some γ ∈ Γ.

The symmetry type of v ∈ V for the Γ action is the conjugacy class of Stab(v,Γ). Note that
Stab(γ · v) = γ Stab(v)γ−1. Thus, every element of a group orbit Γ · v has the same symmetry
type.
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Let S = {Si} denote the set of all symmetry types of a Γ action on V . The set S has a
natural partial order, with Si ≤ Sj if there exists Σi ∈ Si and Σj ∈ Sj such that Σi ≤ Σj .
The partially ordered set (S,≤) is called the lattice of isotropy subgroups of the Γ action on
V [10]. The diagram of the lattice of isotropy subgroups is a directed graph with vertices Si

and arrows Si ← Sj if and only if Si � Sj and there is no symmetry type between Si and Sj .
Example 4.7. The symmetry type of a solution u to our PDE (1) for the D6 ×Z2 action is

the conjugacy class of Stab(u,D6 × Z2); we refer to this as the symmetry type of u, without
reference to D6 × Z2. The discussion of D6 acting on L2(Ω) in Example 4.3 can easily be
extended to D6×Z2 acting on L2(Ω). Note that if −1 ∈ Σ ≤ D6×Z2, then the average of any
function over Σ is u = 0. Therefore the only isotropy subgroup of D6 ×Z2 which contains −1
is D6 × Z2 itself. On the other hand, the argument in Example 4.3 shows that any subgroup
of D6 × Z2 which does not contain −1 is an isotropy subgroup. Therefore, Σ ≤ D6 × Z2 is an
isotropy subgroup of this group action if and only if Σ = D6 × Z2 or −1 /∈ Σ.

This result allowed us to compute the isotropy subgroups by hand. We verified our cal-
culations using GAP. There are exactly 23 conjugacy classes of isotropy subgroups for the
D6 × Z2 action on L2(Ω), shown in condensed form in Figure 2. Thus, a solution to the
PDE (1) has one of 23 different symmetry types.

Irreducible representations and the isotypic decomposition. In order to understand the
symmetry-breaking bifurcations we need to first understand irreducible representations and
the isotypic decomposition of a group action. The information about the irreducible repre-
sentations is summarized in character tables [29, 31, 32, 34]. For our purposes, irreducible
representations over the field R are required; see [6, 10, 11]. The irreducible representations
of Γ are homomorphisms from Γ to the space of dj × dj real matrices γ �→ α(j)(γ), such that
no proper subspace of R

dj is invariant under α(j)(γ) for all γ ∈ Γ. The dimension of the irre-
ducible representation α(j) is dj . We call W ⊆ V a Γ-invariant subspace of V if Γ ·W ⊆ W .
An irreducible subspace of V is an invariant subspace with no proper invariant subspaces.
Every irreducible subspace of the Γ action on V corresponds to a unique (up to similarity)
irreducible representation of Γ. The dimension of the irreducible subspace is the same as the
dimension of the corresponding irreducible representation.

For each irreducible representation α(j) of Γ, the isotypic component of V for the Γ action,

denoted by V
(j)
Γ , is defined to be the direct sum of all of the irreducible subspaces corresponding

to the fixed α(j) [6, 10, 11, 27]. The isotypic decomposition of V is then

V =
⊕
j

V
(j)
Γ .(12)

It is possible that one or more of the isotypic components is the single point at the origin.
These can be left out of the isotypic decomposition. A description of the isotypic components
in terms of projection operators is given in [27].

For any group Γ, we denote the trivial representation by α(1). That is, α(1)(γ) = 1 for all
γ ∈ Γ. Thus, if Γ is an isotropy subgroup of a Γ0 action on V , then

V
(1)
Γ = Fix(Γ, V ).
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Figure 2. The condensed diagram of the isotropy lattice (see [10]) for the D6 × Z2 action on L2(Ω). The
vertices of this diagram are the symmetry types (equivalence classes of isotropy subgroups). We follow the
convention [6, 10, 11] that one element Γi of each symmetry type Si = [Γi] is listed. The representatives Γi

have the property that Γi ≤ Γj if and only if Si ≤ Sj. Contour plots of solutions to PDE (1) with each of
the 23 symmetry types are given in Figures 13 and 14. The diagram of the isotropy lattice is condensed as
in [32]. The small numbers on the edges give the number of connections emanating from each symmetry type
in a box. A missing small number means 1. For example, the two arrows representing [Γ21] ≤ [Γ13] and
[Γ21] ≤ [Γ14] in the full diagram are collapsed to a single arrow in the condensed diagram. For Γ0 through
Γ4, the τ generator is redundant since τ = ρ3σ, but its presence makes the subgroups manifest. For example,
Γ2 = 〈ρ,−σ,−τ〉 = 〈ρ,−σ〉, but the three generators make it clear that 〈−σ,−τ〉 ≤ 〈ρ,−σ,−τ〉.
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Example 4.8. Let us consider the D6 = 〈ρ, σ, τ〉 action on L2(Ω). We need to consider the
six irreducible representations of D6, which are listed in [27], to find the isotypic decomposition
of L2(Ω). Since these isotypic components are central to our problem, we drop the D6 and

define V (j) := V
(j)

D6
, j = 1, 2, . . . , 6, as follows:

V (1) = {u ∈ L2(Ω) | ρ · u = u, σ · u = u, τ · u = u},(13)

V (2) = {u ∈ L2(Ω) | ρ · u = u, σ · u = −u, τ · u = −u},
V (3) = {u ∈ L2(Ω) | ρ · u = −u, σ · u = u, τ · u = −u},
V (4) = {u ∈ L2(Ω) | ρ · u = −u, σ · u = −u, τ · u = u},
V (5) = {u ∈ L2(Ω) | ρ3 · u = u, u + ρ2 · u + ρ4 · u = 0},
V (6) = {u ∈ L2(Ω) | ρ3 · u = −u, u + ρ2 · u + ρ4 · u = 0}.

Example 4.9. The isotypic decomposition of Γ13 = 〈ρ〉 ∼= Z6 illustrates some features
of real representation theory. The irreducible representations of Z6 over C are all one-
dimensional. They are α(j)(ρ) = (eiπ/3)j−1 for j = 1, 2, . . . , 6. Over the field R, however,
the one-dimensional irreducible representations of Z6 are given by

α(1)(ρ) = 1, α(2)(ρ) = −1,(14)

and the two-dimensional irreducible representations of Z6, up to similarity transformations,
are given by

α(3)(ρ) =

(
−1

2

√
3

2

−
√

3
2 −1

2

)
, α(4)(ρ) =

(
1
2

√
3

2

−
√

3
2

1
2

)
.(15)

Note that α(3)(ρ) is matrix for a rotation by 120◦, and α(4)(ρ) is a 60◦ rotation matrix.
An irreducible representation over R is called absolutely irreducible if it is also irreducible

over C. For example, all of the irreducible representations of D6 listed in [27] are absolutely
irreducible, as are the one-dimensional irreducible representations of Z6 in (14). On the
other hand, the two-dimensional irreducible representations of Z6 in (15) are not absolutely
irreducible.

The four isotypic components of the 〈ρ〉 action on L2(Ω) are

V
(1)
〈ρ〉 = {u ∈ L2(Ω) | ρ · u = u} = V (1) ⊕ V (2),

V
(2)
〈ρ〉 = {u ∈ L2(Ω) | ρ · u = −u} = V (3) ⊕ V (4),

V
(3)
〈ρ〉 = V (5), and V

(4)
〈ρ〉 = V (6).

If we had used the complex irreducible representations, some of the corresponding isotypic
components would contain complex-valued functions. It is more natural to use real irreducible
representations and consider only real-valued functions. The price we pay is that most of the
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representation theory found in books, and built into GAP, is done for complex irreducible
representations.

The isotypic decomposition for each of the 23 isotropy subgroups, Γi, of D6 × Z2 can be

written as a direct sum of some subset of the eight spaces V (j), for j = 1, . . . , 4, and V
(j)
1

and V
(j)
2 for j = 5, 6 defined in (13) and [27]. The C++ program can easily check whether a

function is in any of the isotypic components V
(j)
Γi

of BM for each of the Γi, i = 0, 1, . . . , 22,
actions.

Symmetry-breaking bifurcations. The fact that there are 23 possible symmetry types of
solutions to the PDE (1) raises the question, do solutions with each of these symmetry types
exist? Clearly the trivial solution u = 0, with symmetry type S0, exists. Our procedure for
finding approximate solutions with each of these symmetry types is to start with the trivial
solution and recursively follow solution branches created at symmetry-breaking bifurcations.

Let us start by abstracting the PDE defined by (1), which depends on the real parameter
λ. Let V be an inner product space, and J : R× V → R be a family of Γ0-invariant functions
that depends on a parameter λ. That is, J(λ, γ · u) = J(λ, u) for all γ ∈ Γ0 and u ∈ V .
It is understood that Γ0 is the largest known group for which J is invariant; of course J
is also invariant under any subgroup of Γ0. We will use Γ, or Γi, to refer to an isotropy
subgroup of the “full” group Γ0. Consider the steady-state bifurcation problem g(λ, u) = 0,
where g(λ, u) = ∇J(λ, u). Throughout this paper, the gradient ∇ acts on the u component.
The solutions to g(λ, u) = 0 are critical points of J , and so we use the terms “solution” and
“critical point” interchangeably. Note that g : R × V → V is a family of Γ0-equivariant
gradient operators on V . That is, g(λ, γ · u) = γ · g(λ, u). For our PDE, Γ0 = D6 ×Z2. In the
numerical implementation, V = R

M ∼= BM and g is defined in (5).
We define a branch of solutions to be a connected component of {(λ, u) ∈ R × L2(Ω) |

g(λ, u) = 0, Stab(u) = Γ}, where Γ is called the isotropy subgroup, or symmetry, of the
branch. A branch of solutions B1 has a symmetry-breaking bifurcation at the bifurcation point
(λ∗, u∗) ∈ B1 if a branch of solutions, B2, with a different symmetry, has (λ∗, u∗) as a limit
point but (λ∗, u∗) /∈ B2. We say that branch B2 is created at this bifurcation, and often refer
to B1 as the mother branch and B2 as the daughter branch. The symmetry of the daughter
branch is always a proper subgroup of the symmetry of the mother branch. That is, the
daughter has less symmetry than the mother.

The main tool for finding bifurcation points is the Hessian of the energy functional, h.
If (λ∗, u∗) is a bifurcation point, then h(λ∗, u∗) is not invertible, since otherwise the implicit
function theorem would guarantee the existence of a unique local solution branch. The MI of a
critical point (λ, u) is defined to be the number of negative eigenvalues of h(λ, u) = D2J(λ, u),
provided that no eigenvalue is 0. The Hessian is symmetric, so all of its eigenvalues are real.
The MI on a branch of solutions typically changes at a bifurcation point.

Example 4.10. The trivial solution to (1), (2) is u = 0, and the trivial branch is {(λ, 0) |
λ ∈ R}. Since h(λ, 0)(v) = Δv + λv, the bifurcation points of the trivial branch are (λi, 0),
where λi, i ∈ N, are the eigenvalues (3). If λi < λ < λi+1, then the MI of the trivial solution
(λ, 0) is i. The ith primary branch is created at the bifurcation point (λi, 0) on the trivial
branch. In cases with double eigenvalues there are two branches created at the same point in
our problem. For example, the second and third primary branches are created at λ2 = λ3.
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Near (λi, 0), the solutions on the ith primary branch are approximately some constant times
the ith eigenfunction of the Laplacian, ψi.

We define a degenerate critical point, or a degenerate solution, to be a point (λ∗, u∗) that
satisfies g(λ∗, u∗) = 0 and deth(λ∗, u∗) = 0. Thus, every bifurcation point is a degenerate
critical point. Some degenerate critical points are not bifurcation points. For example, when a
branch folds over and is not monotonic in λ, the fold point is degenerate but is not a bifurcation
point as we have defined it. (Note that we avoid the term “saddle-node bifurcation” since
there is really no bifurcation.)

Let us develop some notation to talk about bifurcations. Suppose that (λ∗, u∗) is an
isolated degenerate critical point of a Γ0-equivariant system g(λ, u) = 0. Let Γ = Stab(u∗,Γ0),
and define L := h(λ∗, u∗). Note that Γ, not Γ0, is important as far as the bifurcation of (λ∗, u∗)
is concerned. Let E be the null space of the Γ-equivariant operator L. We call E the center
eigenspace. Let Γ′ be the point stabilizer of E. The definitions are repeated here for reference:

Γ := Stab(u∗,Γ0), L := h(λ∗, u∗), E := N(L), Γ′ := pStab(E,Γ).(16)

If e ∈ E, then L(e) = 0 by definition. For any γ ∈ Γ, γ · e ∈ E since the Γ-equivariance of
L implies that L(γ · e) = γ · L(e) = 0. Hence,

Stab(E,Γ) = Γ.

Note that Stab(E,Γ)/pStab(E,Γ) = Γ/Γ′ acts faithfully on E. In the usual case where (λ∗, u∗)
is a bifurcation point, not just a degenerate critical point, we say that Γ/Γ′ is the symmetry
group of the bifurcation, or that (λ∗, u∗) undergoes a bifurcation with Γ/Γ′ symmetry.

In the notation of (16), L sends each of the isotypic components V
(j)
Γ to itself [27, 31, 34].

Barring “accidental degeneracy,” the center eigenspace E is a Γ-irreducible subspace. Thus,

E is typically a subspace of exactly one isotypic component V
(j)
Γ , and dim(E) is the dimension

dj of the corresponding irreducible representation, α(j). Furthermore, the point stabilizer of
E is the kernel of α(j) and can be computed without knowing E. In summary, at a generic
bifurcation point there is some irreducible representation α(j) of Γ such that

E is Γ-irreducible, E ⊆ V
(j)
Γ , dim(E) = ΔMI = dj , Γ′ = {γ ∈ Γ | α(j)(γ) = I}.

Accidental degeneracy is discussed in [27, 31, 34]. We did not encounter any accidental
degeneracy in our numerical investigation of (1), (2), so we will not discuss it further here.

We finally have the background to describe the bifurcations which occur in equivariant
systems. The goal is to predict what solutions will be created at each of the symmetry-breaking
bifurcations, and to know what vectors in E to use to start these branches using the pmGNGA.
While such a prediction is impossible for some complicated groups, we can determine how to
follow all of the bifurcating branches in the system (1), (2). We follow the treatment and
notation of [10, 11]. At a symmetry-breaking bifurcation we can translate (λ∗, u∗) to the
origin, and we could, in principle, do an equivariant Liapunov–Schmidt reduction or center
manifold reduction to obtain reduced bifurcation equations g̃ : R×E → E, where g̃(0, 0) = 0,
Dg̃(0, 0) = 0, and g̃ is Γ := Stab(u∗)-equivariant. It is important to realize that we do not
actually need to perform the Liapunov–Schmidt reduction.
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Figure 3. Diagrams of the six isotropy lattices for the actions of D6 = 〈ρ, σ, τ〉 on each of the six isotypic
components V (j) of the D6 action on L2(Ω). This describes the six possibilities (barring accidental degeneracy)
for the D6 action on the center eigenspace E at a degenerate critical point.

The most powerful tool for understanding symmetry-breaking bifurcations is the equi-
variant branching lemma. Recall that absolutely irreducible representations were defined in
Example 4.9. See [6, 10, 11] for a thorough discussion of the equivariant branching lemma,
including further references.

Theorem 4.11 (equivariant branching lemma (EBL)). Suppose that Γ acts absolutely irre-
ducibly on the space E, and let g̃ : R × E → E be Γ-equivariant. Assume that Γ acts
nontrivially, so that g̃(λ, 0) = 0. Since Γ acts absolutely irreducibly, Dg̃(λ, 0) = c(λ)Id for
some function c : R → R, where Id is the identity matrix of size d = dim(E). Assume
that c(0) = 0 and c′(0) �= 0. Let Σ be an isotropy subgroup of the Γ action on E with
dim Fix(Σ, E) = 1. Then there are at least two solution branches of g̃(λ, u) = 0 with isotropy
subgroup Σ created at (0, 0).

The EBL, combined with Liapunov–Schmidt theory, implies that there are at least two
solution branches of the full problem g(λ, u) = 0 with isotropy subgroup Σ created at the
bifurcation point (λ∗, u∗). We call these newly created branches EBL branches since their
existence can be predicted by the EBL. Other branches created at a bifurcation are called
non-EBL branches.

Following [6, 10, 11], we define a maximal isotropy subgroup of a Γ action on V to be
an isotropy subgroup Σ �= Γ with the property that if Θ is an isotropy subgroup such that
Σ ≤ Θ, then Θ = Σ or Θ = Γ. In other words, a maximal isotropy subgroup is a maximal
proper isotropy subgroup. If dim(Fix(Σ, E)) = 1, then Σ is a maximal isotropy subgroup of
the Γ action on E. The converse, however, is not true.

In gradient systems, for example the PDE (1), more can be said. If Σ is any maximal
isotropy subgroup of the Γ action on E, then there is typically a solution branch created at
the bifurcation with isotropy subgroup Σ. If dim Fix(Σ, E) ≥ 2, the branch created is an
example of a non-EBL branch. See [30] for a discussion of bifurcations in gradient systems.

By Proposition 4.5, the effective symmetry group of g̃, restricted to Fix(Σ, E), is NΓ(Σ)/Σ.
This effective symmetry group determines how solutions with symmetry Σ bifurcate.

Example 4.12. Consider a degenerate critical point with isotropy subgroup Γ1 = D6 =
〈ρ, σ, τ〉. Barring accidental degeneracy, the center eigenspace E is a subspace of one of
the six isotypic components of the D6 action on L2(Ω) described in Example 4.8. Figure 3
shows the lattice of isotropy subgroups for D6 acting on each of these six isotypic components
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V (j). These six cases can be distinguished by determining which isotypic component an
arbitrary eigenfunction in E belongs to. We shall go through each of these six cases and
describe the resulting bifurcation. Recall that Γ = Γ1 = D6 for each of these six cases, and
Γ′ = pStab(E,Γ).

E ⊆ V (1) ⇒ Γ′ = Γ1 = 〈ρ, σ, τ〉, dimE = 1, Γ/Γ′ ∼= 〈1〉,
E ⊆ V (2) ⇒ Γ′ = Γ13 = 〈ρ〉, dimE = 1, Γ/Γ′ ∼= Z2,

E ⊆ V (3) ⇒ Γ′ = Γ9 = 〈ρ2, σ〉, dimE = 1, Γ/Γ′ ∼= Z2,

E ⊆ V (4) ⇒ Γ′ = Γ10 = 〈ρ2, τ〉, dimE = 1, Γ/Γ′ ∼= Z2,

E ⊆ V (5) ⇒ Γ′ = Γ19 = 〈ρ3〉, dimE = 2, Γ/Γ′ ∼= D3,

E ⊆ V (6) ⇒ Γ′ = Γ22 = 〈1〉, dimE = 2, Γ/Γ′ ∼= D6.

The first case, E ⊆ V (1) = Fix(Γ1, L
2(Ω)), does not lead to a symmetry-breaking bifurcation.

The D6 action on E is trivial, so the EBL does not apply. The degenerate critical point (u∗, λ∗)
is typically a fold point (or saddle-node), not a bifurcation point. In the neighborhood of the
fold point there is only one solution branch, with isotropy subgroup Γ1, and the branch lies
to one side of λ = λ∗ or the other.

The next three cases, with Γ/Γ′ ∼= Z2 symmetry, are called pitchfork bifurcations. Clearly,
the only maximal isotropy subgroup is Γ′ in each case, and the EBL applies. The effective
symmetry group acting on E is Z2, so there are two conjugate solution branches created at the
bifurcation. In the branch following code we follow one of these branches using the pmGNGA
starting with any eigenvector e ∈ E.

The next case, with E ⊆ V (5), is a bifurcation with D3 symmetry. The maximal isotropy
subgroup Γ5 = 〈σ, τ〉 satisfies

dim Fix(Γ5, E) = 1 and NΓ1(Γ5)/Γ5 = 〈1〉.

Our branch following code uses a projection operator to find an eigenvector e ∈ E with
Stab(e,Γ1) = Γ5. The pmGNGA using this eigenvector e will follow one of the solution
branches created at the bifurcation, and the pmGNGA using the negative eigenvector −e will
find a branch that is not conjugate to the first. Bifurcations with D3 symmetry are typically
transcritical, and two D3-orbits of branches are created at the bifurcation [10, 11].

The last case, with E ⊆ V (6), is a bifurcation with D6 symmetry. There are two maximal
symmetry types, the conjugacy classes of Γ15 and Γ16. A calculation shows that

dim Fix(Γ15, E) = dim Fix(Γ16, E) = 1 and NΓ1(Γ15)/Γ15 = NΓ1(Γ16)/Γ16 = Z2.

To follow one branch from each of the group orbits of solution branches created at this bi-
furcation, it suffices to use the pmGNGA twice, with the eigenvectors e1, e2 ∈ E, where
Stab(e1,Γ1) = Γ15 and Stab(e2,Γ1) = Γ16. It is well known that these EBL-branches are
typically the only branches created at a bifurcation with D6 symmetry [10, 11].

Example 4.13. Consider a degenerate critical point with isotropy subgroup Γ13 = 〈ρ〉 ∼= Z6.
Barring accidental degeneracy, the center eigenspace E is a subspace of one of the four isotypic
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Figure 4. The diagrams of the four isotropy lattices for the actions of Γ13 = 〈ρ〉 on each of the four

isotypic components V
(j)
〈ρ〉 of the Γ13 action on L2(Ω). This describes the four possibilities (barring accidental

degeneracy) for the Γ13 action on the center eigenspace E at a degenerate critical point.

components V
(j)
〈ρ〉 defined in Example 4.9. Figure 4 shows the lattice of isotropy subgroups

for Γ13 acting on each of these four isotypic components. Recall that Γ = Γ13 = 〈ρ〉 for each
of these cases, and the minimal isotropy subgroup is Γ′ = pStab(E,Γ). We shall go through
each of the four cases, and describe the resulting bifurcation:

E ⊆ V
(1)
〈ρ〉 = V (1) ⊕ V (2) ⇒ Γ′ = Γ13 = 〈ρ〉, dimE = 1, Γ/Γ′ ∼= 〈1〉,

E ⊆ V
(2)
〈ρ〉 = V (3) ⊕ V (4) ⇒ Γ′ = Γ21 = 〈ρ2〉, dimE = 1, Γ/Γ′ ∼= Z2,

E ⊆ V
(3)
〈ρ〉 = V (5) ⇒ Γ′ = Γ19 = 〈ρ3〉, dimE = 2, Γ/Γ′ ∼= Z3,

E ⊆ V
(4)
〈ρ〉 = V (6) ⇒ Γ′ = Γ22 = 〈1〉, dimE = 2, Γ/Γ′ ∼= Z6.

The first two cases are analogous to the first two cases in Example 4.12. When Γ/Γ′ ∼= 〈1〉 there
is a fold point, but no symmetry-breaking bifurcation. There is a pitchfork bifurcation when
Γ/Γ′ ∼= Z2. The next two cases are interesting because Γ13 does not act absolutely irreducibly
on E, and the EBL does not apply. In both cases Γ′ is a maximal isotropy subgroup.

In the third case, where E ⊆ V
(3)
〈ρ〉 = V (5), every eigenfunction in the two-dimensional E

has isotropy subgroup Γ19. Since we have a gradient system, we know that solution branches
with isotropy subgroup Γ19 are created at this bifurcation with Z3 symmetry. The bifurcation
is well understood, and it looks like a bifurcation with D3 symmetry, except that the “angle”
of the bifurcating solutions in the E plane is arbitrary. This means that trial and error is
needed, in general, to find eigenfunctions in E for which the pmGNGA will converge. If a
branch is found for a starting eigenfunction e, then the eigenfunction −e is used to find the
other solution branch.

In the fourth case, where E ⊆ V
(4)
〈ρ〉 = V (6), every eigenfunction in E has the same isotropy

subgroup: Γ22 = 〈1〉. Gradient bifurcations with Z6 symmetry look like bifurcations with D6

symmetry, except that the angle in the E plane is arbitrary. Again, trial and error is needed
to find starting eigenfunctions for which the pmGNGA converges.

The bifurcation digraph. A calculation similar to those summarized in Examples 4.12
and 4.13 was done for each of the isotropy subgroups of the D6 × Z2 action on L2(Ω). The
calculations were done by hand and verified with GAP. There are 59 generic symmetry-

breaking bifurcations, one for each isotypic component V
(j)
Γi

on which Γi acts nontrivially.
The amount of information is overwhelming, so we display the essential results in what we
call a bifurcation digraph.
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Definition 4.14. The bifurcation digraph of the Γ0 action on a real vector space V is a
directed graph with labeled arrows. The vertices are the symmetry types (equivalence classes
of isotropy subgroups). Given Σ ≤ Γ, two isotropy subgroups of the Γ0 action on V , we draw
an arrow from [Γ] to [Σ] if and only if Σ is a maximal isotropy subgroup of the Γ action on

some isotypic component V
(j)
Γ of V . Each arrow has the label Γ/Γ′, where Γ′ is the kernel of

the Γ action on V
(j)
Γ . Furthermore, each arrow is either solid, dashed, or dotted. The arrow

is

solid if dim Fix(Σ, E) = 1 and NΓ(Σ)/Σ = Z2,

dashed if dim Fix(Σ, E) = 1 and NΓ(Σ)/Σ = 〈1〉, and

dotted if dim Fix(Σ, E) ≥ 2,

where E is any irreducible subspace contained in V
(j)
Γ .

Note that if dim Fix(Σ, E) = 1, then NΓ(Σ)/Σ is either Z2 or 〈1〉, since these are the only
linear group actions on E ∼= R

1. Thus, the three arrow types (solid, dashed, and dotted)
exhaust all possibilities.

Theorem 4.15. For a given Γ0 action on V , every arrow in the diagram of the isotropy
lattice is an arrow in the bifurcation digraph.

Proof. Suppose that [Γ] → [Σ] is an arrow in the diagram of the isotropy lattice. Then
some Σ∗ ∈ [Σ] is a maximal isotropy subgroup of the Γ action on V . Choose u∗ ∈ V such
that Stab(u∗,Γ) = Σ∗. Such a u∗ exists since Σ∗ is an isotropy subgroup. Now consider the

isotypic decomposition {V (j)
Γ }j∈J of V . We can write u∗ =

∑
j∈J u

(j), where u(j) ∈ V
(j)
Γ are

uniquely determined. Let γ be any element of Σ∗. Then γ ·u∗ =
∑

j∈J γ ·u(j) = u∗. Since each

of the components V
(j)
Γ is Γ-invariant, γ · u(j) = u(j) for each j ∈ J . Thus Σ∗ ≤ Stab(u(j),Γ)

for each j ∈ J . Either Stab(u(j),Γ) = Γ or Stab(u(j),Γ) = Σ∗, since Σ∗ is a maximal isotropy
subgroup of the Γ action on V . If Stab(u(j),Γ) = Γ for all j ∈ J , then Stab(u∗,Γ) = Γ. But
Stab(u∗,Γ) �= Γ, so Stab(u(j),Γ) = Σ∗ for some j ∈ J , and Σ∗ is a maximal isotropy subgroup

of the Γ action on this component V
(j)
Γ of V . Therefore the bifurcation digraph has an arrow

from [Γ] to [Σ∗] = [Σ].
Theorem 4.15 says that the bifurcation digraph is an extension of the diagram of the

isotropy lattice. The bifurcation digraph has more arrows, in general. As with the lattice of
isotropy subgroups, we usually draw a single element Γ of the equivalence class [Γ] for each
vertex of the bifurcation digraph.

An arrow from Γ to Σ in the bifurcation digraph indicates that a Γ0-equivariant gradient
system g(λ, u) = 0 can have a generic symmetry-breaking bifurcation where a mother branch
with isotropy subgroup Γ creates a daughter branch with isotropy subgroup Σ. The symmetry
group of the bifurcation is Γ/Γ′, and the center eigenspace at the bifurcation point is the Γ-
irreducible space E. The information encoded in the label and arrow type is used by the
heuristics of our branch following algorithm. A solid arrow indicates that every e in the one-
dimensional space Fix(Σ, E) satisfies γ · e = −e for some γ ∈ Σ. Thus, there is typically a
pitchfork bifurcation in the space Fix(Σ, E). A dashed arrow indicates that γ · e = e for all
e ∈ Fix(Σ, E) and γ ∈ Σ. Thus, the daughter branches bifurcating in the directions e and −e
are not conjugate. A dotted arrow indicates that the EBL does not apply to this bifurcation.
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Figure 5. The bifurcation digraph for the D6×Z2 action on L2(Ω) extends the diagram of the isotropy lattice.
The digraph shown is condensed as in Figure 2. The arrows indicate generic symmetry-breaking bifurcations.
The MI of the mother branch changes by 1 at bifurcations with Z2 symmetry, and it changes by 2 at all other
bifurcations shown here.

As mentioned above, branching of solutions corresponding to a dotted arrow is generic in
gradient systems [30, 10].

A condensed bifurcation digraph for the D6×Z2 action on L2(Ω) is shown in Figure 5. The
calculations for the directed edges coming from Γ1 and Γ13 are described in Examples 4.12
and 4.13, respectively. The digraph has 65 directed edges, but there are only five possibilities
for the symmetry group of the bifurcation: Γ/Γ′ = Z2, Z3, Z6, D3, or D6. The symmetry-
breaking bifurcation with each of these symmetries is well understood [10, 11], and each is
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described briefly in Example 4.12 or 4.13. This digraph is of great help in writing an automated
code for branch following.

In our problem the label Γ/Γ′ and arrow type are sufficient to characterize the bifurcation
completely. For more complicated groups, the label may need to contain more information
about the action of Γ on E. For example the label Γ/Γ′ = S4 would be ambiguous, since S4

has two faithful irreducible representations with different lattices of isotropy subgroups.

5. Symmetry and computational efficiency. Several modifications of Algorithm 2.1 take
advantage of symmetry to speed up the calculations. The symmetry forces many of the
components of the gradient and Hessian to be zero. We identified these zero components and
avoided doing the time-consuming numerical integrations to compute them. At the start of the
C++ program, the isotropy subgroup, Γi, of the initial guess is computed. Recall that there
are M modes in the Galerkin space BM , so dim(BM ) = M . Define Mi := dim(Fix(Γi, BM )).
We chose the representatives Γi within each conjugacy class so that Fix(Γi, BM ) is a coordinate
subspace of BM . Thus, M −Mi components of the gradient g(λ, u) are zero if Fix(u) = Γi.
The numerical integrations in (5) are done only for the Mi potentially nonzero components
of g. Similarly, Mi(Mi + 1)/2 rather than M(M + 1)/2 numerical integrations are needed to
compute the part of the Hessian matrix h needed by the GNGA algorithm: The numerical
integrations in (6) are done only if ψj and ψk are both in Fix(Γi, BM ). The system hχ = g
for the Newton step χ reduces to a system of Mi equations in Mi unknowns. After Newton’s
method converges to a solution, the full Hessian needs to be calculated in order to compute
the MI. Here, too, we can take advantage of the symmetry: Since h is Γi-equivariant, hj k = 0

if ψj and ψk are in different isotypic components V
(j)
Γi

of BM .
As an example, consider the execution time for approximating a solution with Γ1 symmetry

using M = 300 modes and a level � = 5 grid on a 1GHz PC. Our C++ code uses only
M1 = 30 modes, and takes about 1.5 seconds per Newton step, compared to 44 seconds when
the symmetry speedup is not implemented.

6. Automated branch following. The branch following code is a complex collection of
about a dozen Perl scripts, Mathematica and Gnuplot scripts, and a C++ program. These
programs write and call each other fully automatically and communicate through output files,
pipes, and command line arguments. A complete bifurcation diagram can be produced by a
single call to the main Perl script.

Two choices for the function of u plotted against λ are shown in Figure 6. In most bifur-
cation diagrams we plot approximate solutions u evaluated at a generic point (2/27, 4

√
3/27)

(the big dot in Figure 1) versus the parameter λ; other choices for the vertical axis such as
J(u) or ‖u‖∞ lead to less visible separation of branches. Two conjugate solutions can have
different values at the generic point, but since our program follows only one branch in each
group orbit this does not cause a problem.

The C++ program implements the GNGA algorithm. Its input is a vector of coefficients
a ∈ R

M for an initial guess in Newton’s method, an interval for λ, a stepsize for λ, and several
other parameters such as the grid level. It finds solutions on a single branch of the bifurcation
diagram. Every solution is written as a single line in an output file. This line contains all the
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Figure 6. Bifurcation diagrams of the sixth primary branch (which bifurcates from λ6), showing ||u||22
and u(2/27, 4

√
3/27) as functions of λ. Since ||u||22 is a D6 × Z2-invariant function of u, each group orbit of

solution branches is shown as one curve on the left. The disadvantage of plotting ||u||22 is that the curves in
many bifurcation diagrams are not well separated. The point (2/27, 4

√
3/27) is not on any of the reflection

axes of the snowflake region. There are two primary branches with symmetry S1, four secondary branches with
symmetry S9, and four secondary branches with symmetry S10. Our choice for the bifurcation diagrams in this
paper combines the advantages of both views: u(2/27, 4

√
3/27) is plotted as a function of λ for exactly one

branch (the solid lines) from each group orbit. Unless indicated otherwise, all figures were produced with level
� = 5 and M = 300 modes.

information about the solution and can be used to write an input file for a subsequent call to
the same C++ program.

The C++ program finds one branch (referred to as the main branch) and a short segment
of each of the daughter branches created at bifurcations of the main branch. The coefficients
approximating the first solution on the branch are supplied to the C++ program. Newton’s
method is used to find this first solution, then λ is incremented, and the next solution is
found. The program attempts to follow the main branch all the way to the final λ, usually 0.
Heuristics are used to double or halve the λ stepsize when needed, keeping the stepsize in the
interval from the initial stepsize (input to the C++ program) to 1/32 of the initial stepsize.
For example, the stepsize is halved if Newton’s method does not converge, if it converges to a
solution with the wrong symmetry, or if more than one bifurcation is detected in one λ step.

The MI is computed at each λ value on the main branch. When the MI changes, a
subroutine is called to handle the bifurcation before the main branch is continued. If the
MI changes from m1 to m2, we define m = max{m1,m2}. Then the bifurcation point is
approximated by using the secant method to set the mth eigenvalue of the Hessian h(u) to
zero as a function of λ. The GNGA is needed at each step of the secant method to compute
u = u(λ). We find that the GNGA works well even though we are approximating a solution
for which the Hessian is singular.

After the bifurcation point is approximated, a short segment of each bifurcating branch
is computed, and one output file is written for each branch, using Algorithm 6.1. If the EBL
holds, then we know exactly which critical eigenvector to use for each branch.
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Figure 7. A partial bifurcation diagram of the 14th primary branch showing a D6, a D3, and several Z2

bifurcations. At the D6 bifurcation, 12 branches in two different group orbits are born. In accordance with
Figure 6, only two branches are followed and shown on this bifurcation diagram. An animation showing the
followed branch with symmetry type S15 is shown in 64048 01.gif [152KB], and an animation of the followed
branch with symmetry type S17 is in 64048 02.gif [246KB]. Note that this branch with S17 symmetry “dies” at a
bifurcation with Z2 symmetry, showing that we cannot always make a consistent distinction between secondary
and tertiary branches. At the D3 bifurcation, six branches in two different group orbits are born. As before,
only two branches are followed. An animation showing the “upper” branch with symmetry type S7, through
the bifurcation point and continuing to the “lower” branch with symmetry type S7 is shown in 64048 03.gif
[178KB]. For clarity, the branches bifurcating from three of the Z2 bifurcations are not shown. The numbers
next to a branch indicate the MI of the solution; the MI changes by 2 at a square, and by 1 at a circle.

Algorithm 6.1 (follow branch).
1. Input: bifurcation point (λ, a), one critical eigenvector e ∈ R

M , and stepsize Δλ < 0.
Output: A file is written for one daughter branch.

2. Write (λ, a) to output file. Set t = 0.1. Set λb = λ.
3. Compute index k so that |ek| ≥ |ei| for all i ∈ {1, . . . ,M}.
4. Repeat until λb − λ < Δλ, or t < 0.1/32, or some maximum number of points have

been written to the file.
(a) Do the pmGNGA with initial guess (λ, a + t e), fixing coefficient k.
(b) If Newton’s method converges, replace (λ, a) by the solution found and write this

point to the file; else t ← t/2.
Note that the pmGNGA can follow a branch that bifurcates to the right or the left. Those

that bifurcate to the right usually turn over in a saddle-node “bifurcation” that does not offer
any difficulty for the pmGNGA. Figures 7 and 8 show several examples of bifurcations.

The EBL does not hold at bifurcations with Z3 and Z6 symmetry in our problem, since

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64048_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64048_02.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64048_03.gif
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Figure 8. The D3 bifurcation of the 13th primary branch is on the left. This is the only observed D3

bifurcation that is not transcritical. An animation of the upper branch with symmetry type S5, through the
bifurcation point and continuing with the lower branch, is shown in 64048 04.gif [118KB]. A Z3 bifurcation of
a daughter of the 24th primary branch is shown on the right. The branches created at this bifurcation are not
described by the EBL. An animation of the branches with symmetry type S19 is shown in 64048 05.gif [101KB].

the two-dimensional center eigenspace does not have a one-dimensional subspace with more
symmetry. Figure 8 shows one of the few bifurcations with Z3 symmetry that we observed.
By good fortune, the branches with symmetry type S19 were successfully followed using the
same eigenvectors one would choose for a bifurcation with D3 symmetry. A better method
for following bifurcating solutions that are not predicted by the EBL would be to use the
pmGNGA with random (normalized) eigenvectors in E repeatedly until it appears that all
equivalence classes of solutions have been found.

The branch following code is called recursively by a main Perl script. Initially, the C++
program follows the trivial branch on a given λ range. This results in an output file for
the trivial branch and another output file for each bifurcating primary branch. Then the
short parts of the primary branches are followed with more calls to the C++ program. Any
bifurcating branch results in a new output file, and the Perl script makes another call to
the C++ program to continue that branch. The main Perl script’s most important job is
bookkeeping. It saves the output files with distinct names, and calls the branch following
code to continue each of the new branches. The process stops when all the branches are fully
followed within the given λ range.

In this way, a complete bifurcation diagram is produced by a single invocation of the
main Perl script. There is no need to guess initial conditions for input to Newton’s method,
since the trivial solution is known exactly (a = 0) and all the other solutions are followed
automatically.

The main Perl script calls several other smaller scripts. For example, there is a script
which extracts solutions from output files and feeds them to the branch following code as
input. Another script creates Gnuplot scripts on the fly to generate bifurcation diagrams.
Perl scripts are used to automatically number and store the output files and create human
readable reports about them.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64048_04.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64048_05.gif
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Figure 9. The complete bifurcation diagram for the first six primary branches bifurcating from the trivial
branch. The second branch, with symmetry S7, contains the CCN solution. The dots at λ = 0 in Figures 9–12
correspond to solutions depicted in Figures 13 and 14. We used the level 5 grid with 300 modes in creating all
bifurcation diagrams. In Figure 15 convergence data for the solution of symmetry type S10 at λ = 0 is provided.

7. Numerical results. Our goal was to find solutions to (1), (2) at λ = 0 with each of
the 23 symmetry types. The 24th primary branch is the first one with symmetry type S2,
so we followed the first 24 primary branches. With level � = 5 and M = 300 modes, which
gave our most accurate results, this found solutions with all symmetry types except S11 and
S14. We then searched the first 100 primary branches, following only solutions with symmetry
above S11 and S14 on the bifurcation digraph (Figure 5). In this way we found solutions with
all 23 symmetry types. The bifurcation diagrams which lead to these solutions are shown in
Figures 9–12. We chose one solution at λ = 0 with each symmetry type by taking the one
descended from the lowest primary branch. These choices are indicated by dots in Figures
9–12, and the corresponding contour diagrams of the solutions are shown in Figures 13 and 14.
The contour diagrams use white for u > 0 and black for u < 0, and gray indicates u = 0.
Equally spaced contours are drawn along with dots for local extrema. Details about the
technique for generating these contour diagrams are found in [27].

We ran our experiments using a range of modes and levels in order to observe convergence
and qualitative stability of the implementation of our algorithm. At level � = 5 we have
computed 300 eigenfunctions, so M ≤ 300 is possible. At level � = 6 we computed only
100 eigenfunctions. Due to our limited computational resources, using more than 100 modes
on level 6 was not practical.

As an indication of the convergence, consider the bifurcation diagram in Figure 9. The
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Figure 10. A partial bifurcation diagram showing some of the solutions bifurcating from the 8th and 10th
primary branches. Again, the dots at λ = 0 indicate solutions shown in Figures 13 and 14. The contour plots as
a function of λ are animated for the branches ending with the dots indicating symmetry types S15 (64048 06.gif
[126KB]), S17 (64048 07.gif [161KB]), S16 (64048 08.gif [115KB]), and S22 (64048 09.gif [147KB]).

diagram looks qualitatively the same for any choice of � and M that we use. The position of
the bifurcation point creating the S10 solution (near λ = 30) changes slightly, according to
the following table:

� = 4 � = 5 � = 6

M = 100 35.3931 34.9814 34.9252
M = 200 32.1131 32.2964
M = 300 32.0518

The level 5 and 6 approximations with M = 100 modes are very close, but increasing the mode
number has more of an effect. This indicates that the results with (�,M) = (5, 300) are more
accurate than those with (6, 100). Figure 15 shows how u(2/27, 4

√
3/27) varies with mode

number and � for the solution with S10 symmetry at λ = 0 shown in Figures 9 and 13. The
horizontal segments of the graphs correspond to the addition of modes with zero coefficients
for this solution. Based on this and other similar convergence results, we chose to use level 5
with 300 modes in most of our numerical experiments.

8. Conclusions. We are currently working on a more general program for recursive branch
following in symmetric systems. Starting with any graph, the analogue to (1) is the partial
difference equation (PdE) Lu + f(u) = 0 [25], where L is the well-known discrete Laplacian
on that graph and u is a real-valued function on the vertices. Discretizing a PDE as we have

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64048_06.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64048_07.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64048_08.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64048_09.gif
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Figure 11. A partial bifurcation diagram providing three additional symmetry types. For clarity, the trivial
branch is not shown in this and the next figure.

done in this paper leads to a PdE on a graph with a large number of vertices. The grid points
are the vertices of the graph, and the edges of the graph connect nearest neighbor grid points.
Starting with an arbitrary graph, our new suite of programs will analyze the symmetry of the
graph and compute the bifurcation diagrams for the PdE on the graph.

The programs we describe in the current paper will work with other superlinear odd f and
other regions with hexagonal symmetry. The nonlinearity f needs to be superlinear since our
program assumes that the branches eventually “go to the left.” Our general program will not
have this restriction; the GNGA and pmGNGA will be replaced by a single method of branch
following that is able to go through fold points and has no prejudice about the parameter
increasing or decreasing. This new method of branch following has already been successfully
implemented in [33]. We hope to write the new code so that a cluster of computers can be
used in parallel, with each computer following a single branch at one time, under the control
of a central PERL script.

With minor modifications, our program would analyze the PDE (1) even when f is not
odd. The appropriate bifurcation digraph for D6 acting on L2(Ω) is a subgraph of the digraph
in Figure 5, and so the bifurcating branches would be followed properly unless the symmetry
of the mother solution is incorrectly identified. The Perl scripts which start with the trivial
branch would have to be modified, since u = 0 is not a solution when f is not odd (unless
f(0) = 0). If f(0) = 0, the trivial branch exists, but its bifurcations are not properly described
by the bifurcation digraph in Figure 5, and some special code would be needed to handle these
bifurcations.
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Figure 12. A partial bifurcation diagram containing solutions of the seven remaining symmetry types.
Primary branch 24 is the first branch with symmetry type S2. The symmetry types S14 and S11 were found
by searching the first 100 primary branches, following only those branches which can lead to solutions with the
desired symmetry. These two solutions are included for completeness, but their existence for the PDE would
have to be confirmed with more modes and a higher-level approximation of the eigenfunctions.

It is valid to ask the question “does the GNGA converge” (as implemented in this current
research). While we do not have a complete proof affirming the positive of this conjecture,
many references contain relevant theorems. The GNGA is an implementation of Newton’s
method, which indeed converges under standard assumptions. In [14], one finds the classical
fixed point iteration proof that Newton’s method in R

N converges when the initial guess is
sufficiently close to a nondegenerate zero of the object function. This proof applies almost
without change to the infinite dimensional case. Also addressed in [14] are algorithms where
the object function and/or its derivative are only approximated; this would apply to our im-
plementation due to numerical integration errors, as well as owing to our imperfect knowledge
of the eigenfunctions and corresponding eigenvalues. While not discussed exactly in the cited
literature, elementary fixed point arguments indicate that the restriction of our object func-
tion ∇J to sufficiently large subspaces BM will still result in convergent iterations. It would
be worthwhile to string these type of results together in order to obtain a “best possible”
GNGA convergence theorem. Monograph [13] gives an easy introduction into some of the
details of implementing Newton’s method to solve nonlinear problems. Further, in the spirit
of [7] and [35], by the invariance of the Newton map, any convergence result should hold
in fixed point subspaces corresponding to a given symmetry type. The articles [20, 35] and
others by those authors discuss the convergence of algorithms similar to the GNGA, at times
also considering symmetry restrictions. Finally, the well-known book [3] contains relevant
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σ

τ

ρ

Action of ρ, σ, and τ . Γ0 = 〈ρ, σ, τ,−1〉 = D6 × Z2 Γ1 = 〈ρ, σ, τ〉 = D6

Γ2 = 〈ρ,−σ,−τ〉 ∼= D6 Γ3 = 〈−ρ, σ − τ〉 ∼= D6 Γ4 = 〈−ρ,−σ, τ〉 ∼= D6

Γ5 = 〈σ, τ〉 ∼= Z2 × Z2 Γ6 = 〈−σ,−τ〉 ∼= Z2 × Z2 Γ7 = 〈σ,−τ〉 ∼= Z2 × Z2

Γ8 = 〈−σ, τ〉 ∼= Z2 × Z2 Γ9 = 〈ρ2, σ〉 ∼= D3 Γ10 = 〈ρ2, τ〉 ∼= D3

Figure 13. The action of the generators of D6 on the plane, along with contour plots of solutions with
symmetry types S0, . . . , S10 at λ = 0. Recall that Si = [Γi].



504 J. M. NEUBERGER, N. SIEBEN, AND J. W. SWIFT

Γ11 = 〈ρ2,−τ〉 ∼= D3 Γ12 = 〈ρ2,−σ〉 ∼= D3 Γ13 = 〈ρ〉 ∼= Z6

Γ14 = 〈−ρ〉 ∼= Z6 Γ15 = 〈σ〉 ∼= Z2 Γ16 = 〈τ〉 ∼= Z2

Γ17 = 〈−τ〉 ∼= Z2 Γ18 = 〈−σ〉 ∼= Z2 Γ19 = 〈ρ3〉 ∼= Z2

Γ20 = 〈−ρ3〉 ∼= Z2 Γ21 = 〈ρ2〉 ∼= Z3 Γ22 = 〈1〉

Figure 14. Contour plots of solutions with symmetry types S11, . . . , S22 at λ = 0.
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Figure 15. A plot of u(2/27, 4
√

3/27) as a function of the number of modes for the lowest energy solution
at λ = 0 with symmetry type S10. The point at M = 300 matches the point labeled S10 in Figure 9.

convergence results for Newton and approximate Newton iterative fixed point algorithms.
In summary, we have written a suite of programs that automatically computes the bifurca-

tion diagram of the PDE (1), (2). The program finds solutions with each of the 23 symmetry
types by following solution branches which are connected to the trivial branch by a sequence
of symmetry-breaking bifurcations. A thorough understanding of the possible symmetry-
breaking bifurcations is required for this task. We introduced the bifurcation digraph, which
summarizes the results of the necessary symmetry calculations. For the group D6 ×Z2, these
calculations were done by hand and verified by the GAP computer program [8, 21]. In the
future, we plan to implement automated branch following in systems where the symmetry
group is so complicated that GAP is necessary.
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Abstract. We consider networks of coupled scalar maps, with weighted connections which may include a time
delay, and study the stability of equilibria with respect to the delays and connection structure. We
prove that the largest eigenvalue of the graph Laplacian determines the effect of the connection
topology on stability. The stability region in the parameter plane shrinks with increasing values of
the largest eigenvalue, or of the time delay of the same parity. In particular, all bipartite graphs
have an identical stability region, regardless of the delay or graph size, which is also the smallest
stability region among those of all graphs. Furthermore, for certain parameter ranges, unstable (and
possibly chaotic) maps can be stabilized via diffusive coupling with an odd time delay, provided that
the network does not have a nontrivial and connected bipartite component. On the other hand,
stabilization is not possible for even values of the delay or for bipartite networks.
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1. Introduction. Coupled map networks were introduced in the 1980s as models of various
physical phenomena [1, 2]. Since then, they have become one of the prototype systems for
studying collective behavior, such as chaotic synchronization and cluster formation [3]. The
interaction between the nodes in such networks is often modeled by a diffusion operator,
which intuitively should favor homogenous (i.e., synchronized) behavior of the whole network.
Nevertheless, in view of a chaotic system’s sensitive dependence on initial conditions, it is
a nontrivial finding of the early 1990s that coupled chaotic systems can indeed synchronize
[4]. The synchronization of identical chaotic units is rather well understood, and the relevant
conditions can be expressed in terms of the largest Lyapunov exponent of the individual
maps and the spectrum of the diffusion operator [5]. Because of the diffusive nature of
coupling, the synchronized solution is identical to the behavior of individual units in isolation.
Thus, a network of chaotic maps will itself be chaotic when synchronized. Partly because
of this, the equilibrium solutions of these networks did not receive much attention, although
spatially homogeneous equilibria are a special form of synchrony. On the other hand, if one
takes into account the time delays in the information transmission between the units, the
synchronized dynamics is no longer the same as the isolated behavior [6]. In particular, delays
can induce stability in coupled identical limit cycle oscillators [7, 8], leading to the phenomenon
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of amplitude death, which was known earlier for nonidentical oscillators [9, 10]. This suggests
the possibility that a synchronized network of chaotic maps might exhibit a stable equilibrium
solution if delays are introduced into the model.

In this paper we present a stability analysis of networks of diffusively coupled scalar maps,
both with and without time delays. We give necessary and sufficient conditions for stability in
terms of the parameters of the individual map and the coupling function, the coupling delay,
and the connectivity operator. We show that the role of the coupling topology is characterized
solely by the largest eigenvalue of the coupling operator, which provides an order relation for
comparing graphs with respect to their stability properties. More precisely, the larger the
largest eigenvalue, the smaller the stability region in the parameter space. A similar result
has been proved for continuous-time systems near Hopf bifurcation [11]. In the discrete-time
setting of this paper, we are able to dispense with the assumption of Hopf bifurcation and
extend the result to arbitrary maps. Nevertheless, discrete time has its own peculiarities and
introduces some important differences in the stability picture, depending on the parity of
the delay. Specifically, we prove that an unstable fixed point of the map can be stable for
the network, provided that the delay is odd and that the network has no nontrivial bipartite
components, whereas such stabilization is never possible with even (or zero) delays. Moreover,
for delays of the same parity, the stability region becomes monotonically smaller as the delay
increases, and we calculate the limiting profile of the stability region.

We consider coupled systems of the form

xi(t + 1) = f(xi(t)) +
1

di

n∑
j=1

aijg(xi(t), xj(t− τ)), i = 1, . . . , n.(1)

Here xi(t) ∈ R denotes the state of the ith node at time t ∈ Z, and τ ∈ Z
+ is the signal

transmission delay between the nodes. (Z+ denotes the nonnegative integers.) The function
f : R → R describes the individual dynamics of the units, and g : R

2 → R is the interaction
between a pair of units. We assume that g satisfies the general diffusion condition

g(x, x) = 0 ∀x ∈ R.(2)

The numbers aij determine the connection structure of the network. In the simplest case,
aij takes on binary values, depending on whether or not there is a connection between the
nodes i and j. In other words, aij = 1 if nodes i and j are neighbors, and aij = 0 otherwise,
with the stipulation aij = aji and aii = 0 for all i, j. (More generally, one might have
weighted connections where aij ∈ R

+.) The number of neighbors of the ith node is denoted
by di =

∑
j aij . Disregarding the trivial case of isolated nodes, it is assumed that di > 0 for

all i.
Our interest in this paper is the stability of spatially uniform equilibrium solutions of

(1). By virtue of the diffusion condition (2), x∗ := (x∗, . . . , x∗) ∈ R
n is a spatially uniform

equilibrium solution if and only if x∗ ∈ R is a fixed point of f . The main question is how the
stability of x∗ for the coupled system is related to the stability of x∗ for the isolated map.
Suppose that f ′(x∗) as well as the partial derivatives Dig of g at (x∗, x∗) exist, and denote

b = f ′(x∗) and c = D2g(x
∗, x∗) = −D1g(x

∗, x∗),
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where the last equality is a consequence of (2). Then the linear variational equation about
x∗ = (x∗, . . . , x∗) is

ui(t + 1) = bui(t) +
c

di

n∑
j=1

aij [uj(t− τ) − ui(t)], i = 1, . . . n,(3)

with ui = xi − x∗. The asymptotic stability of the zero solution of the linear equation (3) is
equivalent to the exponential stability of x∗ in the nonlinear equation (1) (see, e.g., [12]).

In the following sections we present a detailed analysis of the stability of (3). Section 2
derives necessary and sufficient conditions for stability. Section 3 studies the relationship
between stability and the delays. Section 4 treats the role of the network topology. In section
5 we look at the implications of the results for the nonlinear system (1) and also mention some
extensions to high-dimensional maps. Section 6 concludes the work

2. Stability criteria. We study the stability of the linear system (3). Using the fact that
di =

∑
j aij , (3) can be written in the vector form

u(t + 1) = (b− c)u(t) + cD−1Au(t− τ),(4)

where u = (u1, . . . , un), A = [aij ], and D = diag{d1, . . . , dn} is a diagonal matrix. Thus, the
characteristic values s corresponding to (3) are given by the solutions of

det(sτ+1I − sτ (b− c)I − cD−1A) = 0.(5)

Consequently, the zero solution of (3) is asymptotically stable if and only if all roots s of (5)
lie inside the unit circle.

The dynamics of the system (3) is intimately related to the underlying connection struc-
ture. Therefore, we shall make use of some graph-theoretical ideas in the analysis. We identify
the indices i with the vertices of a graph G, whose adjacency matrix is A = [aij ], and the ver-
tex degrees are given by di. We assume that G is a simple and nontrivial graph; i.e., it contains
at least one edge and no self-connections. The matrix D−1A appearing in (4) depends only
on the connection structure of the graph G. It is related to a (normalized) Laplacian operator
L, which encapsulates the diffusive nature of the coupling. In matrix form, L is given by

L = I − D−1A.(6)

Although L is in general not symmetric, it can be shown to be a self-adjoint operator with
respect to a certain inner product. We list some relevant spectral properties of L in the
next lemma (see, e.g., [13, 5, 11]). Recall that G is called a complete graph if every vertex is
connected to every other vertex, and is called bipartite if its vertex set can be divided into
two parts V1 and V2 such that every edge has one end in V1 and one in V2.

Lemma 1. Let G be a graph on n vertices, n ≥ 2. Then L is a self-adjoint and positive
semidefinite operator; thus its eigenvalues λk are real and nonnegative, and its eigenvectors
{v1, . . . ,vn} form a complete orthogonal basis for R

n. Its smallest eigenvalue is zero and
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corresponds to the eigenvector (1, 1, . . . , 1). If G has no isolated vertices, then the largest
eigenvalue λmax of L satisfies

n

n− 1
≤ λmax ≤ 2.(7)

Furthermore, λmax = n/(n−1) if and only if G is a complete graph of n vertices, and λmax = 2
if and only if a connected component of G is bipartite and nontrivial.

The lemma implies that for large complete graphs the largest eigenvalue λmax is close to
one. We remark that, if self-connections are included for the nodes, then λmax for complete
graphs is exactly one. At the other extreme are bipartite graphs, for which λmax = 2. This
is a richer set of graphs, which includes regular lattices in arbitrary dimensions, cycles with
an even number of vertices, and all trees. We shall occasionally refer to these two extreme
cases in the analysis. The set of eigenvalues of L is often referred to as the spectrum of the
corresponding graph. We note that the spectrum of a graph is the union of the spectra of its
connected components.

The system (1) can be generalized in a straightforward way to take into account different
connection strengths between pairs of nodes. In this setting, aij are arbitrary nonnegative
numbers denoting the strength of the connection between the ith and jth nodes, where a zero
value for aij indicates that i and j are not connected. The graph G is now a weighted graph,
where the vertex degrees di =

∑
j aij may have noninteger values. We still assume aij = aji,

aii = 0, and di > 0. The Laplacian is defined by (6), and the spectral properties given in
Lemma 1, and in particular (7), remain valid for this more general case [13].

Now using (6) and Lemma 1, one has

D−1Avk = (I − L)vk = (1 − λk)vk, k = 1, . . . , n,

where vk and λk are the eigenvectors and eigenvalues, respectively, of the Laplacian L. Hence,
in the basis {v1, . . . ,vn}, D−1A can be written as a diagonal matrix, and the characteristic
equation (5) can be expressed as the product

n∏
k=1

pk(s) = 0,(8)

where

pk(s) := sτ+1 − (b− c)sτ − c(1 − λk).(9)

We conclude that the zero solution of (3) is asymptotically stable if and only if all roots of
(9) lie inside the unit circle for all k = 1, . . . , n.

We first give a sufficient condition for stability that is independent of the delay τ .
Theorem 1. The zero solution of (3) is asymptotically stable for all τ ∈ Z

+ if

|b− c| + |c| < 1,(10)

or equivalently,

|b| < 1 and |b− 2c| < 1.(11)
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Figure 1. Minimal stability region.

Proof. For τ > 0, a result due to Clark (Lemma 6 in the appendix) implies that the roots
of (9) lie inside the unit circle, provided

|b− c| + |c(1 − λk)| < 1.(12)

For τ = 0, the characteristic roots are directly solved from (9) as s = (b − c) + c(1 − λk);
so one again has stability if (12) is satisfied. However, (10) implies (12) since λk ∈ [0, 2] by
Lemma 1, and so (10) is a sufficient condition for stability. The equivalence of (10) and (11)
is proved in Lemma 3 in the appendix.

In the parameter space (b, c), we call the set

SRmin =
{
(b, c) ∈ R

2 : |b− c| + |c| < 1
}

(13)

=
{
(b, c) ∈ R

2 : |b| < 1 and |b− 2c| < 1
}

(14)

the minimal stability region, since by Theorem 1 it is necessarily included in the stability region
for any network and any choice of time delay. We shall prove later that SRmin is actually the
exact stability region for certain graphs. Figure 1 depicts the shape of the minimal stability
region. The bounding lines are

c =
b± 1

2
and b = ±1,(15)

corresponding to the inequalities in (14).
The precise conditions for stability are given by the next theorem.
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Theorem 2. Let τ be a positive integer. The zero solution of (3) is asymptotically stable if
and only if one of the following hold for both λ = 0 and λ = λmax (i.e., for the smallest and
the largest eigenvalues of the Laplacian):

(i) τ is odd and

|b− c| − 1 < −c(1 − λ) <
√

(b− c)2 + 1 − 2 |b− c| cos Φ.(16)

(ii) τ is even,

|b− cλ| < 1, and(17)

|c| <
√

(b− c)2 + 1 − 2 |b− c| cos Φ,(18)

where Φ is the unique number satisfying

sin ((τ + 1)Φ)

sin (τΦ)
= |b− c| , Φ ∈

(
0,

π

τ + 1

)
.(19)

For τ = 0, the zero solution is asymptotically stable if and only if (17) holds for λ = 0 and
λ = λmax.

We will make repeated use of the following simple lemma, whose proof is omitted.

Lemma 2. Let p < q and λ1 ≤ λ2 be real numbers, and h : R → R a monotone1 function.
Then the inequality

p < h(λ) < q

is satisfied for all λ ∈ [λ1, λ2] if and only if it is satisfied for both λ = λ1 and λ = λ2.

Proof of Theorem 2. We first prove sufficiency. Assume that τ is odd and (16) holds for
λ = 0 and λ = λmax. Then,

|b− c| − 1 < −c,(20)

and |b− c| − 1 < −c(1 − λmax).(21)

If c ≥ 0, then (20) implies |b− c| − 1 < 0, whereas if c < 0, then (21) implies |b− c| − 1 < 0.
In either case we have

|b− c| < 1 <
τ + 1

τ
.(22)

On the other hand, Lemma 2 implies that (16) holds for all eigenvalues λk ∈ [0, λmax] of the
Laplacian. We now apply a result of Kuruklis (Lemma 7 in the appendix) with a1 = (b−c) and
a2 = −c(1 − λk) and the inequalities (16) and (22), proving that all roots of the polynomials

1We say h : R → R is monotone increasing (resp., decreasing) if h(x1) ≤ h(x2) whenever x1 is less than
(resp., greater than) x2. A monotone function is one that is either monotone increasing or monotone decreasing
on R.
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(9) are within the unit circle for k = 1, . . . , n. Next assume that τ is even, and (17) and (18)
hold. Since (17) is equivalent to

−1 < b− cλ < 1

and holds for λ = 0 and λ = λmax, it holds for all λ ∈ [0, λmax] by Lemma 2. In particular, it
holds for λ = 1, which implies (22). Furthermore, |c(1 − λ)| ≤ |c| for all λ ∈ [0, λmax] ⊂ [0, 2].
Again, an application of Lemma 7 proves stability.

To prove necessity, assume that all roots of the polynomials (9) are within the unit circle
for k = 1, . . . , n. If τ is odd, Lemma 7 implies (16) for any λ = λk. If τ is even, we use Lemma
7 again to conclude

|b− cλk| < 1,

and

|c(1 − λk)| <
√

(b− c)2 + 1 − 2|b− c| cos Φ

for all eigenvalues λk of the Laplacian, in particular for the zero and the largest eigenvalues,
which imply (17)–(18). On the other hand, when τ = 0, the roots of (9) can be explicitly
solved as s = b− cλk. Thus, the zero solution of (3) is asymptotically stable if and only if (17)
holds for λ = λk, k = 1, . . . , n. By Lemma 2, it is necessary and sufficient that this inequality
hold for λ = 0 and λ = λmax. Finally, the uniqueness of the solution Φ of (19) is proved in
Lemma 5 in the appendix.

Theorem 2 gives precise conditions for the stability of the coupled system, which will be
explored in more detail in the remainder of the paper. The first important observation is
that the network topology enters the stability criteria only through the largest eigenvalue
λmax of the Laplacian. The other parameters affecting stability are the time delay τ and the
derivatives b = f ′(x∗) and c = D2g(x

∗, x∗). For a given λmax and τ , we denote the stability
region in the (b, c) parameter plane as

SRτ,λmax = {(b, c) ∈ R
2 : the zero solution of (3) is asymptotically stable}.(23)

In addition to the shape of SRτ,λmax in the (b, c) plane, it is of interest how it depends on
the time delay and the network structure, as encapsulated by the quantities τ and λmax,
respectively. We give a detailed study of this problem in the following sections.

3. Delays and stability. In this section we investigate how the stability region SRτ,λmax

defined by (23) depends on the time delay τ . In Theorem 2, the delay affects the stability
conditions (16)–(18) implicitly through the quantity Φ defined in (19). In the special case
τ = 1 and the limiting case τ → ∞, Φ can be explicitly solved and the bounds of the stability
region can be analytically determined. Furthermore, the case τ = 0 follows directly from (9),
as stated in Theorem 2. For the remaining cases Φ is easy to solve numerically, for instance by
the Newton–Raphson method. Figure 2 shows Φ as a function of |b− c| for various values of
τ . In the following, we obtain detailed information on how the stability of the system depends
on the time delay.
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Figure 2. The solution Φ of (19), plotted for τ equal to (from top to bottom) 1, 2, 3, 4, 5, 10, 25, and 100.

3.1. A monotonicity property. We start by proving a monotone dependence on the delay
and the limiting behavior for large delays.

Theorem 3. Let λmax ∈ [1, 2], and let τ1 and τ2 be positive integers which are both odd or
both even. If τ2 > τ1, then

SRτ2,λmax ⊂ SRτ1,λmax .(24)

Furthermore, if {τj : j = 1, 2, . . . } is a sequence of even (or odd) integers tending to infinity,
then

lim
j→∞

SRτj ,λmax ⊂ cl(SRmin),(25)

where cl denotes closure in R
2.

Proof. Suppose that τ1 and τ2 are both odd or both even, with τ1 < τ2. We fix a point
(b, c) ∈ SRτ2,λmax . We will prove that (b, c) ∈ SRτ1,λmax . To show this, let Φ = Φ(τ) be the
solution of (19) belonging to the interval (0, π/(τ + 1)). By Lemma 5 in the appendix, Φ is
a decreasing function of τ , and so cos Φ is increasing in τ . Therefore, the radicands in (16)
and (18) are decreasing functions of τ , which implies that (16) or (18) is satisfied for Φ(τ2)
whenever it is satisfied for Φ(τ1). This proves (24).

Now let {τj} be a sequence of even integers tending to ∞. By the first part of the theorem,
the limit S = limj→∞ SRτj ,λmax exists and equals

S =

∞⋂
j=1

SRτj ,λmax .
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Hence, if (b, c) ∈ S, then b and c satisfy (17) for λ = 0 and λ = λmax and (18) for all j. Now,
(17) is linear in λ, so it also holds for λ = 1 by Lemma 2, which implies

|b− c| − 1 < 0.(26)

On the other hand, since Φj � Φ(τj) ∈ (0, π/(τj + 1)), we have cos Φj → 1, and using this in
(18) gives

|c| ≤ ||b− c| − 1| .(27)

Combining (27) with (26) yields

|c| ≤ 1 − |b− c|,(28)

which describes the closure of the minimal stability region SRmin given by (13). Hence,
S ⊂ cl(SRmin), proving (25). A similar argument works also for the case when {τj} are odd
integers. In this case b and c satisfy (16) as cos Φ → 1; that is,

|b− c| − 1 < −c(1 − λ) ≤ ||b− c| − 1|
for λ = 0 and λ = λmax, and therefore also for λ = 1. Evaluating at λ = 1 gives (26) as above.
Evaluating at λ = 0 and using (26) yields

|b− c| − 1 < −c ≤ 1 − |b− c|,(29)

which implies (28) and proves (25).
By Theorem 1, the set SRmin is contained in every stability region SRτ,λmax . Hence,

Theorem 24 implies that the stability region SRτ,λmax approaches SRmin for large delays.
Nevertheless, there are some important qualitative differences resulting from the parity of the
delay, as we show next.

3.2. Zero delay and even delays. By Theorem 2, the stability region for τ = 0 is given
by

SR0,λmax = {(b, c) : |b| < 1 and |b− cλmax| < 1}.(30)

Figure 3 depicts the region SR0,λmax , together with the minimal stability region SRmin. The
boundary curves are given by

c =
b± 1

λmax
and b = ±1.(31)

Note that if λA
max > λB

max, then

SR0,λA
max

� SR0,λB
max

.

Furthermore, comparison of (31) and (15) shows that the stability region of a bipartite graph
(SR0,2) coincides with the minimal stability region SRmin. We shall generalize these observa-
tions to the case of positive delays in section 4.

The stability regions for other even delays are similar in shape, although they get smaller
with increasing τ . Figure 3 shows the stability regions for τ = 0 and τ = 2. In all cases, the
stability region is a subset of the strip |b| < 1, as follows from Theorem 2 by evaluating (17)
at λ = 0. In other words, an unstable fixed point of the isolated map f cannot be stabilized
by any coupling strength or topology when the delay is even.
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Figure 3. Stability regions for even delays: τ = 0 (gray area) and τ = 2 (inside solid boundaries), plotted
for λmax = 1.8. The dotted lines delineate the minimal stability region.

3.3. Odd delays. When τ = 1, the equation (19) for Φ yields cos Φ = |b − c|/2. Substi-
tuting into (16), we obtain

|b− c| − 1 < −c(1 − λ) < 1(32)

for λ = 0, λmax. A straightforward calculation involves these four inequalities in different
regions according to the signs of c and b − c. The resulting stability region is depicted in
Figure 4. For comparison, the stability boundaries for the undelayed case are also shown in
the figure. The stability changes introduced by the delay can be summarized as follows. For
c ≥ 0 one easily obtains |b− c| − 1 < −c from (32), which coincides with the upper half of the
minimal stability region (13),

0 < c <
b + 1

2
, |b| < 1.

For c < 0, three different domains can be identified: in the region

(1 − λmax) < b < 1,
b− 1

λmax
< c < 0

the stability is unchanged from the undelayed case; for

−1 < b < (1 − λmax), −1 < c < 0,



518 FATIHCAN M. ATAY AND ÖZKAN KARABACAK
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Figure 4. Stability regions for τ = 1 (gray area) and τ = 0 (inside dotted lines). The value of λmax is 1.5.

it is worsened; and for

(λmax − 3) < b < −1, −1 < c <
b + 1

(2 − λmax)
(33)

it is improved. The last possibility is particularly interesting, as it extends the stability region
beyond the strip |b| < 1. In other words, an unstable fixed point of f can be stabilized in a
network with τ = 1, provided that (33) holds.

The stability region is similar for other odd values of the delay. Figure 5 depicts a close-up
view of the region where stability extends into the domain b < −1 by the virtue of delays. In
accordance with Theorem 3, the stability region gets smaller as the delay gets larger; however,
it still extends into b < −1. As already mentioned, the stability region is necessarily confined
to the strip |b| < 1 for even values of the delay. Hence, stabilization of unstable maps by
coupling is a feature of odd delays only.

4. Stability and network topology. We now turn to the role of the connection topology
on stability. We have already seen that the stability depends on the graph topology only
through the value of the largest eigenvalue λmax of the graph Laplacian. We now prove a
monotonicity property; namely, the smaller the value of λmax, the larger the stability region
on the (b, c)-plane for the same value of τ .

Theorem 4. Let 1 ≤ λA ≤ λB ≤ 2. Then SRτ,λB
⊂ SRτ,λA

.

Proof. Let (b, c) ∈ SRτ,λB
. Then by Theorem 2, b and c satisfy either (16) or (17)–(18),

depending on whether τ is odd or even, for both λ = 0 and λ = λB. Because these inequalities
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Figure 5. Part of the stability region for odd delays, plotted for λmax = 1. As the delay increases, the
stability region approaches SRmin.

are linear in λ, they also hold for λ = λA, by Lemma 2. Since the conditions (16) or (17)–(18)
are also sufficient for stability, (b, c) ∈ SRτ,λA

.

Theorem 4 provides an ordering relation for graphs with respect to their stability prop-
erties. Thus, if GA and GB are two graphs such that λA ≤ λB, where λA and λB denote
the largest eigenvalue of the respective Laplacian, and if b, c ∈ R and τ ∈ Z

+, then the zero
solution of (3) is asymptotically stable for GA whenever it is asymptotically stable for GB.
Figure 6 shows the shrinking of the stability region as λmax increases.

We next show that all bipartite graphs have the same stability region, which in fact equals
the minimal stability region SRmin. An important implication of this property is that the
stability region for bipartite graphs is independent of the delay τ . Recall from Lemma 1 that
λmax = 2 for bipartite graphs.

Theorem 5. SRτ,2 = SRmin for all τ ∈ Z
+. Hence, the stability regions of all bipartite2

graphs are identical and independent of the delay τ or the graph size n.

Proof. Let (b, c) ∈ SRτ,2. Assume first that τ is odd. By Theorem 2, b and c satisfy

|b− c| − 1 < −c(1 − λ)(34)

for λ = 0 and λ = 2. If c ≥ 0, we use (34) with λ = 0; otherwise we use it with λ = 2, to

2More generally, the statement holds for all graphs which have a connected and nontrivial bipartite com-
ponent.
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Figure 6. The effect of the network topology: stability regions for λmax = 1 (gray area), λmax = 1.5 (inside
solid lines), and λmax = 1.95 (inside dotted lines). As λmax approaches 2, the stability region approaches SRmin.
A value of τ = 1 is used in the plots.

obtain

|b− c| − 1 < −|c|.(35)

Similarly, for τ positive and even, the condition (17) with λ = 0 and λ = 2 gives

|b| < 1 and |b− 2c| < 1.(36)

The inequalities in (36) also hold for the case τ = 0, as can be seen by setting λmax = 2 in
(30). By (14) it follows that SRτ,2 ⊂ SRmin. Moreover, SRmin ⊂ SRτ,2 by Theorem 1. Hence,
SRτ,2 = SRmin.

Corollary 1. If |b| > 1, then the zero solution of (3) is unstable for a bipartite graph for any
choice of parameters. Hence, an unstable fixed point of the map f cannot be stabilized in a
bipartite network configuration.

Proof. By Theorem 5, the stability region of a bipartite graph is SRmin, which is a subset
of the strip |b| < 1 by (14). It follows that if |b| > 1, then the zero solution of the linear
equation (3) is unstable.

Recalling the spectral properties summarized in Lemma 1, the above results imply that,
for a given value of delay τ , a complete graph has the best stability characteristics among
all graphs of the same size, and its stability improves slightly with increasing graph size. On
the other hand, bipartite graphs have the worst stability characteristics among all graphs of
any size and for any value of delay. In fact, a bipartite graph configuration is incapable of
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stabilizing an unstable fixed point of the individual map. All other graph configurations lie
between the two extremes of bipartite and complete graphs.

5. Nonlinear and higher-dimensional maps. We summarize the implications of the fore-
going results for the nonlinear system (1), which we reproduce here for convenience:

xi(t + 1) = f(xi(t)) +
1

di

n∑
j=1

aijg(xi(t), xj(t− τ)), i = 1, . . . , n.(37)

Furthermore, we briefly discuss some extensions to higher-dimensional maps.
In section 3 we have seen that stabilization is possible only for odd values of the delay.

Moreover, Theorem 3 implies that the choice of τ = 1 gives the largest stability region in the
(b, c) parameter plane. It follows that the inequalities (33), i.e.,

λmax − 3 < f ′(x∗) < −1(38)

and

−1 < c <
f ′(x∗) + 1

(2 − λmax)
,(39)

are necessary conditions for stability in the case |f ′(x∗)| > 1. From a bifurcation point of view,
(38) implies that the network can stabilize x∗ in case of a flip bifurcation in the isolated map
(f ′(x∗) = −1) but not in a saddle-node, transcritical, or pitchfork bifurcation (f ′(x∗) = 1). In
particular, an appropriate network configuration can suppress chaotic oscillations originating
from a period doubling route to chaos. Furthermore, (38) can be satisfied only if λmax < 2,
that is, if no nontrivial component of the graph G is bipartite (viz. Corollary 1). In short,
the ingredients of a stabilization scheme involve a flip bifurcation, a nonbipartite network
configuration, and an odd coupling delay.

As an example, consider the well-known quadratic family of maps fρ(x) = ρx(1−x) on the
unit interval with parameter ρ ∈ [0, 4]. There are two fixed points, one at zero with f ′

ρ(0) = ρ,
and the other one at x∗ρ = (ρ− 1)/ρ with f ′(x∗ρ) = 2− ρ. The origin undergoes a transcritical
bifurcation at the parameter value ρ = 1 and is unstable for 1 < ρ ≤ 4 for the map fρ. Hence
by the preceding analysis, the origin cannot be stabilized in any network configuration and by
any diffusive-type coupling. On the other hand, x∗ρ loses its stability at ρ = 3 through a flip
bifurcation and is an unstable fixed point of fρ for 3 < ρ ≤ 4. By (38), x∗ρ can be stabilized
for parameter values in the range

3 < ρ < 5 − λmax

with a choice of c satisfying

−1 < c <
3 − ρ

(2 − λmax)
.

The largest stability region is provided by large complete graphs, as observed in section 4,
where λmax → 1 as n → ∞. In this case, one can obtain stability for up to ρ = 4, i.e., well
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into the fully chaotic regime. (Although the analysis is inconclusive about the case ρ = 4,
numerical solution with complete graphs having self-connections indicates stability also for
the value ρ = 4.)

A similar analysis can be extended to m-dimensional maps, i.e., when f : R
m → R

m and
g : R

m ×R
m → R

m. In this case, linearizing and expressing in the eigenbasis of the Laplacian
leads to the equations

u(t + 1) = (B − C)u(t) + (1 − λi)Cu(t− τ), i = 1, . . . , n,(40)

where u ∈ R
m, B,C ∈ R

m×m, and λi are the eigenvalues of the Laplacian as before. Hence,
the spatially homogeneous fixed point x∗ is exponentially stable if and only if the zero solution
is asymptotically stable in (40) for i = 1, . . . , n. The depiction of detailed stability regions
will not be attempted here due to the large number of parameters. We confine ourselves to
some special cases that allow for some immediate conclusions.

In the classical coupled map lattice model, the interaction function is g(x, y) = κ(f(y) −
f(x)), where the scalar κ ∈ R plays the role of a coupling strength. Using C = κB in (40),
and assuming that B is diagonalizable and has eigenvalues bj , one sees that x∗ is exponentially
stable if and only if all roots of the equation

sτ+1 − bj(1 − κ)sτ − bjκ(1 − λi) = 0(41)

are inside the unit circle for i = 1, . . . , n, j = 1, . . . ,m. Another common interaction type is
linear diffusion, where g(x, y) = κ(y − x) for some κ ∈ R, so that C = κI. With the same
assumptions on B as above, we obtain

sτ+1 − (bj − κ)sτ − κ(1 − λi) = 0,(42)

whose roots determine the stability. In case the eigenvalues bj are real, both (41) and (42)
become special cases of (9), and the results of the previous chapters are applicable.

A special case of (40) is the undelayed network. With τ = 0, (40) reduces to

u(t + 1) = (B − λiC)u(t), i = 1, . . . , n,(43)

and the stability condition is that all eigenvalues of B − λiC, i = 1, . . . , n, have modulus
less than one. Since the Laplacian always has a zero eigenvalue, a necessary condition for
asymptotic stability is that B have all its eigenvalues inside the unit circle. In other words,
unstable fixed points of isolated maps cannot be stabilized in a diffusive network in the absence
of delays. This generalizes the corresponding results of section 3. It is interesting to compare
(43) to the case obtained by rewriting the delayed system as a higher-dimensional system
without delays. Hence, letting u(t) = (u(t), u(t − 1), . . . , u(t − τ)) ∈ R

τ+1 in the system (3)
of coupled scalar maps, and rewriting in the eigenbasis of the Laplacian, we obtain

u(t + 1) = (B − C1 + (1 − λi)C2)u(t), i = 1, . . . , n,(44)

with

B =

(
b 01×τ

Iτ 0τ×1

)
, C1=

(
c 01×τ

0τ×τ 0τ×1

)
, C2=

(
01×τ c
0τ×τ 0τ×1

)
,
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where 0n×m denotes an n ×m matrix of zeros and Iτ is the identity matrix of size τ . Note
the difference with (43). In (43) the coupling C acts only through multiplication by λi and
so has no effect along the eigenvector corresponding to the zero eigenvalue. By contrast, in
(44), even when λi = 0 the coupling has a nonzero contribution C2 −C1. This is the essence
of the role of delays in stabilizing unstable fixed points.

6. Conclusion. We have presented a general analysis of the stability of equilibrium so-
lutions of diffusively coupled scalar maps, with particular focus on the effects of coupling
configuration and delays. These two factors can induce a stability change upon the fixed
point of the isolated map, causing a qualitative change in the phase space dynamics. While
the loss of stability is not particularly surprising in the presence of delays, the possibility of
stabilization by coupling of an otherwise unstable fixed point is an interesting direction in
the study of network dynamics. A natural next step is the stabilization of periodic solutions,
since these can be expressed as the fixed points of the iterates of the original map. However,
the extension requires additional work in the presence of delays, and is deferred to a future
publication.

To explore the stabilizing role of delays in more detail, note that the diffusive nature of
the interaction, i.e., (2), implies that in the absence of delays the coupling term vanishes
whenever the states of the nodes are identical. Consequently, the synchronized dynamics
coincides with the isolated dynamics of the map f . This statement is a reflection of the
fact that the Laplacian has a zero eigenvalue corresponding to the eigenvector (1, 1, . . . , 1). In
other words, diffusive coupling, which helps synchronization by reducing the difference between
neighboring nodes, is precisely the reason for the lack of control along the synchronization
direction (1, 1, . . . , 1). The situation is markedly different when delays are present. Now the
effect of the coupling does not vanish along the synchronized direction, which gives it a chance
of stabilizing an unstable fixed point of the isolated map. The analysis presented in this paper
gives the precise conditions under which such stabilization can occur. We mention in passing
that exact synchronization of chaotic maps is still possible under delays, facilitated by the
fact that the synchronized dynamics in this case exhibits smaller Lyapunov exponents [6].

The ability of time delays to suppress oscillatory behavior has been observed in continuous-
time limit-cycle oscillators [14, 15], where the mechanism essentially involves controlling a Hopf
bifurcation. The results of the present paper generalize this effect to networks of arbitrary
maps, including chaotic ones, in discrete time. Here it is the flip bifurcation which induces
the oscillatory behavior of the map, which is reversed by the collective action of the network,
where the parity of the delay has a significant role. Similar to the continuous-time case
[11], the effect of the network topology is characterized solely by the largest eigenvalue of
the graph Laplacian. On the one hand, the analysis here is more general in the sense that
it does not require being near a bifurcation. On the other hand, it assumes scalar units,
symmetrical coupling, and a single value for the delay, in contrast to some continuous-time
results [11]. The case of multiple delays, especially if they are of different parity, requires
different techniques. In case of differential equations, distributed delays are known to be able
to enhance stability for single equations [16] as well as networks [17]. To the extent that
multiple delays in maps can be considered as the counterpart of distributed delays, one might
anticipate further stabilization effects in such general networks; however, this is yet to be
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quantified.

Appendix. We prove several intermediate results used in the paper.
Lemma 3. Let b and c be arbitrary real numbers. Then,

|b− c| + |c| < 1(45)

if and only if

|b| < 1 and |b− 2c| < 1.(46)

Proof. If (45) holds, then

|b| = |b− c + c| ≤ |b− c| + |c| < 1

and

|b− 2c| = |b− c− c| ≤ |b− c| + |c| < 1,

yielding (46). Similarly, writing (46) as

|b− c + c| < 1 and |b− c− c| < 1

and expanding gives

−1 − c < b− c < 1 − c,

−1 + c < b− c < 1 + c.

Thus,

−1 + |c| < b− c < 1 − |c|,

which implies (45).
Lemma 4. Let p > 1 and 0 < x ≤ 2π/(p + 1). Then

p sinx > sin(px).

Proof. Define g(x) = p sinx− sin(px). Using the identity

cos(z1 − z2) − cos(z1 + z2) = 2 sin z1 sin z2,

we calculate

g′(x) = p(cosx− cos(px))

= 2p sin

(
p + 1

2
x

)
sin

(
p− 1

2
x

)
> 0,
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provided that 0 < x < 2π/(p + 1). Since g(0) = 0, it follows that g(x) > 0 for 0 < x ≤
2π/(p + 1).

Lemma 5. Let τ be a positive number and 0 ≤ a < (τ + 1)/τ . Then there exists a unique
number Φ = Φ(τ, a) in the interval (0, π

τ+1) satisfying

sin ((τ + 1)Φ)

sin (τΦ)
= a.(47)

Furthermore, ∂Φ/∂τ < 0.

Proof. We let

hτ (Φ) =
sin ((τ + 1)Φ)

sin (τΦ)
.

Then hτ : (0, π
τ+1 ] → R is differentiable, and

h′τ (Φ) =
(τ + 1) cos((τ + 1)Φ) sin(τΦ) − τ sin((τ + 1)Φ) cos(τΦ)

sin2(τΦ)

=
−τ sin Φ + cos((τ + 1)Φ) sin(τΦ)

sin2(τΦ)
.

The sign of h′τ (Φ) is determined by the numerator

−τ sin Φ + cos((τ + 1)Φ) sin(τΦ) =
1

2
[−(2τ + 1) sin Φ + sin((2τ + 1)Φ)] ,(48)

where we have used the identity

2 sinx cos y = sin(x + y) + sin(x− y).

We apply Lemma 4 to conclude that the right-hand side of (48) is negative. Thus, hτ is
strictly decreasing over (0, π

τ+1 ]. Furthermore, hτ (π/(τ + 1)) = 0 and

lim
Φ→0+

hτ (Φ) =
τ + 1

τ
.

Thus, for any a satisfying 0 ≤ a < (τ + 1)/τ , the equation hτ (Φ) = a has a unique solution,
which proves the first statement of the theorem. Now fix a ∈ [0, (τ + 1)/τ) and consider (47)
for varying τ . Implicit differentiation with respect to τ and rearranging give

∂Φ

∂τ
= Φ

sin((τ + 1) Φ) cos τΦ − cos((τ + 1) Φ) sin τΦ

(τ + 1) cos((τ + 1) Φ) sin τΦ − τ sin((τ + 1) Φ) cos τΦ

= Φ
sin Φ

−τ sin Φ + cos((τ + 1) Φ) sin τΦ
.

The sign of the last expression is determined by the denominator, which is identical to the
left-hand side of (48), which was shown above to be negative. Hence, ∂Φ/∂τ < 0.
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Finally, we list some results from the theory of higher order difference equations related
to the study of the characteristic equation

sk+1 − a1s
k + a2 = 0,(49)

where a1, a2 ∈ R and k is a positive integer. A sufficient condition for stability was given by
Clark [18] (see also [19]).

Lemma 6. All roots of (49) lie inside the unit circle, provided |a1| + |a2| < 1.

Necessary and sufficient conditions for the stability of (49) were given by Kuruklis [19].

Lemma 7. All roots of (49) lie inside the unit circle if and only if

|a1| <
k + 1

k

and one of the following is satisfied:

k is odd and |a1| − 1 < a2 < (a2
1 + 1 − 2|a1| cos Φ)

1
2

or

k is even, |a1 − a2| < 1, and |a2| < (a2
1 + 1 − 2|a1| cos Φ)

1
2 ,

where Φ is the unique solution of sin ((k + 1)Φ)/ sin (kΦ) = |a1| in the interval (0, π/(k + 1)).

In the statement of the result in [19], a1 was assumed to be nonnegative; however, the
proof given works also without this restriction.
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Phase Boundaries as Electrically Induced Phosphenes∗
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Abstract. A model is presented of experiments where electrical stimulation of the eye of human subjects
results in the perception of evenly spaced lines, or phosphenes. The model is a two-dimensional
grid of integrate-and-fire oscillators that captures the important experimental characteristics of line-
creation when a sinusoidal current injection is used. The spatio-temporal behavior of the lines, once
formed, is also reproduced. A reduced model consisting of an evolution/convolution equation on the
real line is analyzed, and it is shown that stationary solutions with arbitrarily located discontinuities
exist and are linearly stable. Traveling waves are numerically shown to exist when the coupling is
both sufficiently strong and biased, which accounts for the movement of the lines in the experiments.
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1. Introduction. A phosphene is the sensation of light produced from within the nervous
system rather than from an external source. Examples of phosphenes range from the stars
seen when one is hit on the head to the geometric patterns perceived during hallucinations.
Phosphenes can be induced by direct electrical stimulation of the visual pathway, including
the eyeball, leading to the preliminary design of prosthetic visual devices for patients with
severely limited vision [14].

Claussen [6] was the first to discover that sinusoidal electrical stimulation of the retina
produced a variety of complex visual sensations. In experiments two decades later, Carpen-
ter [4] studied these electrical phosphenes in much greater detail. If the eyeball is stimulated
by high frequency (100 Hz) alternating current and a dark bar is passed through visual space,
it leaves in its wake a series of thin contours which slowly move over time. These disappear
almost instantly when the electrical stimulation is turned off. The production and movement
of these contours is the subject of this paper.

While electrical stimulation of the eye is rather unnatural, it has recently been used to
study the effects of electromagnetic radiation on the human nervous system [1]. Furthermore,
Wilms et al. [23] have used direct electrical stimulation to estimate the spatial resolution of
the retina as mapped onto the visual cortex. Unusual and abnormal stimuli have long been
used as probes of the visual system, as they can often provide information about processing
that is not available with more natural stimuli. For example binocular rivalry experiments
(different images presented to the left and right eyes, leading to an alternation in the perceived
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Figure 1. The patterns reported by subjects in Carpenter’s experiments (redrawn after [4]).

image) led to insights into how visual forms are processed in the cortex [24]. Classic illusions
such as Mach bands (illusory light or dark areas at the ends of a luminence ramp) [20] led to
the theory of lateral inhibition in the retina.

In this paper, we present a new model for the formation of the so-called contour phosphenes
elicited through electrical stimulation of the eyeball. Our model is based on experiments
demonstrating 1:2 phase-locking of retinal cells to periodic stimuli [7], together with anatom-
ical and physiological evidence for electrical coupling between the cells in the retina. In
section 2, we introduce the experimental protocol, describe the phenomena, and introduce
our model. We start with a one-dimensional (1D) system to illustrate the basic mechanism,
and then turn to a two-dimensional (2D) model which reproduces both the formation of the
contours and their subsequent movements. To gain better mathematical insight into the ex-
istence of contours and their stability, in section 3, we introduce a simplified 1D continuum
model for which we can prove the existence of alternating domains much like those in the
experiments and simulations. We prove that these are stable and also explore the onset of
movement of the boundaries.

2. Electrically induced phosphenes. In this section, we model the spatio-temporal pat-
terns reported by subjects in an experiment described in [4]. We begin by presenting a brief
description of the experiment and the illusion.

A subject’s eyes are submerged in a saline bath, and alternating electrical current is passed
through the bath. The subject views a uniformly lit screen while receiving the stimulation. A
dark object is passed through the field of vision. Subjects report line phosphenes or contours
(illusions of light) in the wake of the trailing edge of the dark object. Carpenter shows that
there is one line created for every complete cycle of the driving stimulus coincident with the
moving edge, yielding the temporal and spatial periodicity. Thus a slowly advancing edge
will produce many more lines than a rapidly advancing one. The result, upon full passage
of the edge across the medium, is a set of evenly spaced line phosphenes. These lines slowly
evolve in time, moving in various directions and occasionally interacting with each other to
form loops (Figure 1). Later in this section, we will specify the rules of movement described
in Carpenter’s paper.
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2.1. A model for contour formation. According to Carpenter [4] and Brindley [3], the
genesis of these phosphenes is in the retina itself. This contrasts with the presumed cortical
origin of more complex phosphenes seen during flicker, occular pressure, or drug ingestion [21].
Thus, we will assume that all of the dynamics are occurring within the retina.

Carpenter suggests a hypothesis as to the nature of the illusions: The lines represent
nodes, separating areas of the retina that are responding in antiphase to each other. We take
this as our main hypothesis and create a biophysically plausible implementation using recent
physiological data on the retina. The basic idea is to induce bistability at each spatial location
in the retina so that the phosphenes become the boundaries between the two different stable
states. Given that the stimulus is periodic, one way to achieve a de facto bistability is to
assume that the relevant retinal cells are able to fire only on every other cycle of the stimulus.
That is, each cell is locked in a 1:2 (one spike per two stimulus cycles) manner to the 100 Hz
current. Thus, the bistability is between cells firing on the “odd” cycle of the 100 Hz current
and cells firing on the “even” cycle. There are many candidate cells in the retina: bipolar cells,
amacrine cells, horizontal cells, and ganglion cells (whose output goes to the central nervous
system). Our model does not depend on which type of cell is firing, only on the fact that
the cells generating the activity are coupled. As there are electrical (gap) junctions between
most of the cell types in the retina [17, 16, 15], we will not speculate as to which neurons are
involved in the phosphenes as perceived in human subjects.

In [7], Crevier and Meister studied human electroretinograms (ERGs) and salamander
retinal cell responses to periodic pulses of light. In the human studies, the authors found
that there is a period doubling (1:2 locking) of the ERG at between 30 to 70 Hz photic
stimuli. In order to explore the origin of this, these authors looked at the neurophysiology
of salamander retinas since their eyes have similar structure to those of humans. They found
that the photoreceptors (the first stage of vision) are able to maintain the 1:1 locking with
the stimulus, but that ganglion cells (last stage in the retina) can follow only in a 1:2 manner.
Thus, the inability to follow the stimulus in a 1:1 manner occurs between the photoreceptors
and the ganglion cells—this includes all the cell types mentioned above: bipolar, amacrine,
and horizontal.

For simplicity, we model each cell (or cluster of cells that behave identically) as an
integrate-and-fire neuron with adaptation [8]:

dx

dt
= −x− z + A sin

(
2πt

T

)
,(1)

dz

dt
= −z

τ
.(2)

The variables x and z are real. The parameter A is the amplitude of the driving stimulus,
and T is the period. We assume that both A and T are positive. The driving stimulus is the
analogue to the alternating current in the experiments. The reset criterion is given by

x(t−) = xspike → x(t+) = xreset; z(t+) = z(t−) + zjump.

For the remainder of this section, we assume the parameter values to be xspike = π, xreset =
−π, and zjump = 1.
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The purpose of the refractory variable, z, is to make the 1:2 phase-locking more robust.
In the absence of the explicit refractory variable, the oscillations approach threshold during
every cycle of the driving current, and 1:2 locking occurs only in a very narrow range of
parameters. In [9] parameter regimes for 1:2 locking are explicitly found; that is, the neuron
spikes exactly once for every two cycles of the current for a range of values of A. For the
remainder of this paper, we assume that A = 4.7. Because one phase-locked solution exists,
another must also exist; it is a translate of the first by one period of the stimulus. The result
is a form of bistability, where the attractors are a pair of periodic orbits. A cell, after some
transient behavior, will converge to one of these solutions, either the even cycle or the odd
cycle. By symmetry, the basins of attraction of the two solutions have equal measure.

We now turn to the mechanism that causes the medium to break into the desired regions.
We assume that, at the onset of the stimulus, the entire retinal area is simultaneously excited.
Thus all cells start in the same phase of the 1:2 locked solution. All that the subject observes
is a uniform background, since 100 Hz is well above the critical flicker fusion frequency of
about 30 Hz. The input of a dark bar across the visual field causes the retinal receptors
to depolarize. (The primary receptors in the retina act counterintuitively, since light hyper-
polarizes or inhibits them.) This signal is inverted by the bipolar cells to produce spatially
restricted inhibitory signal to the cells which are locked in the 1:2 rhythm with the electrical
signal. This inhibition is sufficient to keep the cells from firing. Once the bar passes through,
the cells are released from the inhibition and can start to fire again. Depending on the time
at which they are released, they will be drawn into either the “odd” or the “even” 1:2 locked
solution. All cells aligned in parallel with the bar of light will be released simultaneously,
so that all cells in the vertical direction will have the same phase. Thus, to understand the
initial creation of the phase-boundaries, we need consider only a 1D line of cells through which
sweeps an inhibitory pulse.

We model this inhibition using a step function

bar(i, t) =

{
−d if i/v + T0 < t < i/v + T0 + W,
0 otherwise,

(3)

where i is the index of the node, T0 is the time when the sweep begins, W is the amount
of time that a node is inhibited, and v is the velocity of the sweep. The parameter d is the
strength of the inhibition.

We first consider a horizontal line of cells with the inhibitory sweep. The variable xi at
location i satisfies

dxi
dt

= −xi − zi + A sin(ωt) + bar(i, t) ≡ Fi(xi, zi, t).(4)

The creation of the lines occurs in the wake of the traveling inhibition. Prior to the sweep,
the visual field is uniform, and all cells are phase-locked to the driving stimulus. The trav-
eling inhibition causes the nodes to deviate from the phase-locked solution. The inhibition
is sufficiently long so that, upon the completion of a sweep, approximately half of the nodes
are left in the basin of attraction corresponding to the opposite phase solution. Because the
inhibition travels with a constant velocity, once the inhibition has passed, the medium has
alternating regions firing in the odd and even cycles. The locations where there is a phase
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space (index 0−99)

time

v=1 v=4v=2

Figure 2. Three simulations of a line of oscillators inhibited by a sweep of the bar function. In each panel
the horizontal axis is the spatial index, and the vertical axis is time, increasing from top to bottom. Grayscale
represents the value of the refractory variable, zi. The velocity of the sweep is above each panel and measures
the speed of the movement of the bar in index units per time. In all three panels W = 30 and d = −2.

boundary correspond to the phosphenes in Carpenter’s experiment. The phase-locked solu-
tions have identical basins of attraction, and so the result is the appearance of evenly spaced
phase boundaries. In Figure 2, the behavior of the line of oscillators is shown during and
after a sweep. In Carpenter’s experiments, one line was seen for every cycle of the stimulus
coinciding with the trailing edge of the bar. Thus, the slower the bar moves, the more lines.
In this figure, T = 10. For v = 1, there are ten cycles of the stimulus, and there should be
10 lines. Similarly, for v = 2 and v = 4, there should be 5 and 2–3 lines, respectively. These
simulations confirm that our model behaves appropriately. Furthermore, the thickness of the
contours is independent of the velocity of the bar. This suggests that the contours are not
different states of the system, but rather, they are the boundaries between two stable states.
We next model the movement of these boundaries.

2.2. Movement of the lines: Two dimensions. The previous section provided a simple
but robust mechanism for partitioning a 1D “retina” into regularly spaced domains of alter-
nating phase. Suppose, for the moment, that our situation is exactly as in section 2.1, where
all the cells are uncoupled and independent, but now arranged in a 2D grid. A stimulus in
the form of a long vertical bar is moved horizontally across the 2D array of cells. All cells in
any column will behave exactly the same since the bar is vertical. After the bar passes, it will
leave a series of vertical stripes representing the alternating domains of in- and out-of-phase
oscillations much like those shown at the leading edge of the stimulus in Figure 1. However,
in the experiments, the lines do not remain fixed. Rather, they move and appear to interact
with each other. In this section, we suggest that the reason for the movement is that there
are interactions between the neighboring cells which underlie the phosphene patterns.

Carpenter makes the following observations about the phosphenes:

1. Lines never cross through one another. Rather, they combine to form loops.
2. A line never breaks apart unless it meets another line.
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a b c

a b c

Figure 3. Line behavior when two lines meet. The top panel depicts the case where the lines meet near
their centers. The bottom panel is the case where the lines meet near the edges. In either case, the lines do not
pass through one another, but instead leave patterns similar to those shown.

3. Neighboring lines show a tendency to move in a similar manner. That is, if a given
line is bulging to the right, then it is likely that a neighboring line will bulge in the
same direction.

Figure 3 illustrates the first two rules.
In the model as posed so far, each cell is independent from the others, and there are

no interactions. Furthermore, the model is completely homogeneous. However, there are
many interactions between retinal neurons—graded chemical synapses, electrical junctions,
threshold chemical synapses, etc. Thus, we can expect that, at least locally, the behavior of
one neuron will influence that of another one. The detailed means of coupling is less important
than its effect. We will assume that coupling is such that two coupled neurons will tend to
synchronize their activities. As there is much evidence for electrical (gap) junctions in the
retina [17, 15] and since such coupling can synchronize neuronal oscillations [13, 19], we will
illustrate the phenomena with gap junction coupling. We note that gap junction coupling is
generally modeled as a linear function of the difference between the potentials of two cells:
discrete diffusion.

Coupling provides a mechanism for the first two of Carpenter’s observations. (See Figure
4.) Within a domain, all cells are nearly equal and firing at the same cycle, so that in the
interior the coupling has a negligible effect. However, a point near the boundary will try to
synchronize with cells which are firing on opposite phases of the stimulus. With perfectly



ELECTRICALLY INDUCED PHOSPHENES 535

1

2

A A AB B B

Figure 4. Line movement mechanism. The figure depicts three moments in time, advancing from left to
right. In the leftmost, the boundary is shown separating regions that are out of phase with one another. In
the center of the figure, the region marked 1 is more strongly coupled to the cells in region B than to those in
region A. The opposite is true for those cells in region 2. The right of the figure shows the result once the cells
in region 1 have synchronized with those in region B and the cells in region 2 have synchronized with region A.
This is how line movement occurs in our model.

symmetric coupling, the battle is a “tie.” However, if the coupling has any kind of asymmetry
(which is generally the case), then the boundary point will be recruited into the region with
the stronger effective coupling, thus moving the boundary point; one region will take over
the other, and the lines will move away from the absorbing area. In the uncoupled case,
the pattern is stable so that the coupling has to be sufficiently strong to begin the process
of recruiting territory. In order to explain rule 3, we have to make a somewhat stronger
assumption about the coupling heterogeneity. If the heterogeneity is at a “microscopic” scale,
that is, essentially random from cell to cell, then we cannot expect any kind of trend in motion
such as seen in Figure 4. Thus, we suppose that the coupling strength varies on a coarser
scale. If the coupling has a favored direction at some point x, then nearly the same direction
will be favored for a point y near x. We have no evidence of such trends in coupling, but,
neither is there any compelling evidence against this. This notion could be tested by looking
for any kind of asymmetry of spontaneous wave propagation in isolated retinas [12].

2.2.1. Line movement and biased coupling strength. We assume that coupling within
the retina, particularly the gap junctions between horizontal cells, is not of uniform strength.
We accomplish the movement of the lines by coupling a given node to its neighbors with
different strengths. Since the effect of the coupling is to synchronize, a cell will approach the
phase of the neighbor to which it is most strongly coupled (see Figure 6 below). It is through
this mechanism that cells on a boundary synchronize with neighbors, moving the boundary
itself (Figure 4).

The coupling has to have a number of characteristics, inspired by the movement “rules”
stated in the previous subsection. Rules 2 and 3 make it essential that the coupling cause
synchrony to be a locally stable solution. The most obvious form of coupling would be to add
a term proportional to the difference between the x components of the two cells, e.g., x2 −x1.
This form of coupling works very well for a pair of coupled cells and, if sufficiently strong,
induces synchrony [19]. However, we have found (simulations not shown) that linear coupling
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Figure 5. Behavior of a forced array of Hodgkin–Huxley neurons (top row) with isotropic and biased linear
diffusional coupling. Bottom row: Integrate-and-fire model with sinusoidal coupling, with and without bias.

of the integrate-and-fire model in spatially organized arrays of cells does not lead to smooth
patterns in which one phase takes over the other. Rather, the medium breaks up into very fine-
grained spatial patterns. Thus, we do not use linear coupling between the cells, but instead
coupling which depends on the sine of the difference. To justify this somewhat unusual form of
coupling, we compare a 1D integrate-and-fire network with sinusoidal coupling to a 1D network
of periodically forced Hodgkin–Huxley neurons. Each cell satisfies the four variable Hodgkin–
Huxley equations and is forced at 100 Hz by a sinusoidal stimulus with amplitude sufficient to
lead to 1:2 locking. Cells are coupled to nearest neighbors with identical coupling to the left
and right cells or with a bias in one direction. Figure 5 shows a simulation when the coupling
is strong enough to destroy the two-phase pattern. When the medium is isotropic, a wave is
generated, and it is always in the same direction (top left). By biasing the coupling strength,
we can make the wave travel in the opposite direction (top right). The same phenomenon is
illustrated with the integrate-and-fire model with sinusoidal (as opposed to linear) coupling.
Since this is the type of behavior we are looking for, we use sinusoidal coupling instead of
linear coupling for the integrate-and-fire model.

With these considerations, we return to the full 2D model and use coupling of the form

cfd sin(xd − xi,j),(5)

where d = {up, down, left, right} (e.g., fup = fi,j−1). See Figure 6. The coefficients fd are
positive and discussed in detail in the next subsection. We restrict ourselves to the case of
nearest neighbor coupling, although in the next section longer range coupling is allowed. The
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Figure 6. Coupling diagram.

parameter c is always positive and determines the linear strength of the coupling, and it is
the same for each node. The evolution of the cells in the coupled network is governed by the
equation

dxi,j
dt

= Fi,j(xi,j , zi,j , t) + c
∑
d

fd sin(xd − xi,j),(6)

where Fi,j(x, z, t) is the local dynamics from (4) along with the dynamics for the refractory
variable governed by (2) and the sum is over the four nearest neighbors. The 1D bar in (4) is
replaced by the corresponding rightward moving vertical bar in the 2D system.

2.2.2. The coupling coefficients fd. To motivate our choice of coupling, we briefly dis-
cuss the mechanism for movement of the phosphenes. Suppose that we have one oscillating
cell, A, with four neighbors, Nj , j = 1, . . . , 4 (Figure 6). Suppose that N1 and N2 are firing
synchronously (with one another), and N3 and N4 are firing at the opposite phase. The phase
to which A synchronizes depends on the relative strengths of the coupling. For example,
suppose that fup + fleft � fright + fdown. Then, oscillating cell A will synchronize with N1

and N2. If the relative difference between coupling strengths is not so high, there will be an
intermediate phase for A, which will in turn alter other nearby cells. Eventually, cell A will
be on the interior of a region and will synchronize with the others there. The phosphenes are
represented by the boundaries of regions which have different phases where they temporarily
assume a parameter dependent (relative sizes of fd), and neighbor dependent, phase and are
then absorbed into the interior of a region. Once this process is complete, the line (boundary)
will have moved.

Because the direction of the movement depends on the relative coupling strengths, we
wish to structure the coefficients, fd, spatially. Suppose we have a single line of oscillators. If
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for every oscillator fright > fleft, we expect each to synchronize with its neighbor to the right,
thus moving the lines left.

From rule 3, neighboring lines tend to move in the same direction, so there should be
spatial intervals in which coupling in a particular direction is favored. Thus, rather than
choosing the coupling strengths independently at each spatial point, we allow them to vary
in a continuous fashion. For example, if fup > fdown at location x, then the same inequality
will hold for nearby oscillators. The particular choice of coupling parameters is not crucial;
however, continuity is needed to satisfy rule 3. The specific coupling matrix is described in
the next section.

Bias in the coupling strength plays an important role in the movement of the phosphenes.
Figure 5 shows that, without bias, the phosphenes move in one direction. In particular, for the
Hodgkin–Huxley model, one cycle (say the even) always takes over the other if the coupling is
sufficiently strong. The reason for this (similarly for the integrate-and-fire model) is as follows.
Consider a pair of uncoupled cells which are firing on alternate cycles. Turn on the coupling
at a time t. If the coupling is strong enough, the cell that fires first after t will cause the other
cell to fire, and thus the second cell will be pushed into firing in the same cycle as the first
cell. In a network in which half the cells are set in the even and the other half in the odd
cycle, the moment the coupling is turned on will determine the direction of the wave. This
is an exquisite sensitivity to initial conditions as well as any small heterogeneities. Thus, by
making the medium anisotropic, we allow waves that robustly travel in a preferred direction.

2.3. Simulation. Simulations were done using a fourth order Runge–Kutta integrator
with constant time step, Δt = 0.01. The reset is accomplished by setting xi,j(tk) = −π and
zi,j(tk) = zi,j(tk) + 1 whenever xi,j(tk) > π. No interpolation is done, resulting in resets that
always occur at a multiple of the time step.

All simulations are done on a 100 × 50 grid. The coupling strength array, fi,j , was deter-
mined as follows:

1. Randomly choose three indices in the horizontal domain (h1, h2, h3), and three more
in the vertical domain (v1, v2, v3). Assume that h1 < h2 < h3 and v1 < v2 < v3. The
choice of three set indices is motivated by figures in [4]. This implementation can be
extended to incorporate any number of set nodes, up to the number of nodes present
in the grid.

2. Define two arrays, H and V (for horizontal and vertical), with the appropriate number
of elements. For our purposes H has 100 elements (the width of the grid) and V has
50 elements (the height of the grid).

3. Assign to the array elements H(1), H(h1), H(h2), H(h3), and H(100) random values
between 0 and 1.

4. The grid is now divided into rectangles. Divide each of these rectangles into two right
triangles. In the simulations presented here, the diagonal goes from the top left to the
lower right.

5. Using the three corners of the triangles, compute the value at the indices inside each
triangle according to the plane the corner values define (see Figure 7).

We assume (as noted above) that there are heterogeneities in the retina, but at a coarse scale
that covers many cells so that coupling strengths have some spatial correlations. While the
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Figure 7. A diagram that shows how the biased coupling is determined for the simulations. The value of
the function is chosen randomly at the vertices A, B, C, D. The rectangle is divided into two triangles. The
value of the coupling function for points in these triangles is determined using a linear interpolation of the three
vertices that form the triangle. For example, if a node lies in the region marked II, the value of the relative
coupling strength at that node is determined by the plane that crosses the determined points at B, C, and D.

evidence for such large-scale heterogeneities is unclear (Marla Feller, personal communication,
and [12]), by carefully looking at spontaneous propagating waves in isolated retinas, it may
be possible to test this hypothesis.

Simulations were carried out using FORTRAN code, with calls to LAPACK and BLAS to
do the vector operations in the Runge–Kutta integrator. The graphical output was produced
using the PGPlot package. Because we use an integrate-and-fire model, we plot the recovery
variable, zi,j , as this is continuous.

Figure 8 shows output from a sample run of the simulation. In panel A, the bar (outlined
in a thin dashed line) is about to complete the pass to the right. Lines (or regions) have formed
on the left edge and have begun to move. In panels B and C, the lines are clearly defined and
moving. In panel D, synchronous regions “poke holes” through a region in antiphase, forming
two loops. Panels E and F show two of the loops annihilating themselves as the region that
defines them collapses. Compare this with Figure 1.

3. A bistable evolution/convolution network. The analysis of the formation of domains,
their transient stability, and the onset and direction of movement is a difficult task, given that
each “cell” is governed by a nonlinear periodically driven 2D differential equation. Hence, it is
useful to introduce a heuristic model which has similar qualitative features. In this section, we
consider such a simplified model for the spatial network for which we can prove the existence
of local phase-domains. The simple model also provides insight into the movement of the
boundaries between domains and how the transition between stationary and moving patterns
is effected. We will concentrate on a 1D network since this is conceptually easier to understand.
However, the theorem in [2] is independent of the spatial dimension and applies, in particular,
to 2D domains. The result proved below is an extension of [2], so that, with little effort, a 2D
version of it is likely to hold.
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A B

C D

E F

Figure 8. Simulation of the integrate-and-fire model on a 100 × 50 oscillator grid. Each panel shows the
field after a set increment of time. The variable plotted is z, the refractory variable. Parameter values (for (6))
are v = 1.3, A = 4.7, T = 10, τ = 20, d = −2, W = 30, c = 7. Clicking on the above image displays the
accompanying animation of simulated phosphenes (64646 01.mpg [2.93MB]).

3.1. Derivation. The integrate-and-fire model with adaptation is an excitable system.
With sufficiently strong periodic drive, each cell can be driven to fire at every other cycle.
Conceptually, in the absence of coupling we can represent the dynamics of each cell by a
scalar variable depicting its phase relative to the firing time of the stimulus. The period of the
stimulus is T , but since each cell is firing only at every other cycle, the period of an individual
cell is 2T . Thus, the individual dynamics of each cell can be written in terms of the scalar
variable as

ut = H(u).(7)

Zeros of H(u) correspond to times with respect to the stimulus at which the cell fires. The
function H(u) should be T -periodic, so that if u = ū is a fixed point, H(ū) = 0, then there

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64646_01.mpg
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64646_01.mpg
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will be a second fixed point, u = ū + T , corresponding to u firing on the opposite cycles of
the stimulus. Thus, on the interval [0, 2T ), there is bistability corresponding to firing on the
even and odd cycles of the periodic stimulus. Furthermore, we want ū to be the only stable
fixed point in the interval [0, T ). An exact scalar equation of the form (7) can be derived
from the integrate-and-fire with adaptation model if we assume that the unforced system is
an intrinsic oscillator and the forcing has roughly twice the same frequency [10]. However,
in the present situation, the forcing is strong and the unforced model is excitable. Thus (7)
should be viewed as a simplified version of the forced excitatory cell.

Now, consider two neighboring cells which are coupled by gap junctions, that is, coupling
depending only on the difference between, say, the voltages of the cells, and which vanishes
when the cells are in identical states. Since u ∈ [0, 2T ), the coupling function must be 2T -
periodic. Furthermore, if both cells are in the same state, then the coupling should not
contribute anything to the dynamics since the coupling is diffusion-like. This leads us to the
following simplified equation for a pair of coupled cells:

u′1 = H(u1) + cD(u2 − u1),(8)

u′2 = H(u2) + cD(u1 − u2),

where H is T -periodic and D is 2T -periodic. Before turning to the analysis of the continuum
model, let us consider a simple example illustrating the general phenomena. Suppose that
T = 2 and choose H(u) = sinπu + a cosπu and D(u) = sin(πu/2) + q(1 − cos(πu/2)). Note
that we have included cosine terms in the equations for H,D since we cannot assume any kind
of intrinsic symmetry in the functions, as this can destroy the genericity of the results [18].
For small a, u1 ≈ 1 and u2 ≈ −1 ≡ 3 is a fixed point when c = 0. Thus u1 fires on even
cycles of the stimulus and u2 fires on odd cycles. For c small enough this stable fixed point
persists. However, for c > c∗, this state is lost via a saddle-node bifurcation (not shown, but
see Figure 10 for a higher-dimensional analogue), and the system synchronizes at u1 = u2 ≈ 1
or u1 = u2 ≈ −1. That is, one domain takes over the other.

If we now imagine an array of cells arranged on a line with local coupling which can extend
beyond nearest neighbors, then we obtain the following generalization of (8):

u′j = H(uj) + c
∑
k

Jj−kD(uk − uj),(9)

where Jk is a nonnegative weight for the strength of coupling. Since the strength of electri-
cal junctions falls off with distance [13], we assume the same about Jk. Proceeding to the
continuum limit, we obtain

∂u

∂t
(x, t) = H(u(x, t)) + c

∫
R

J(x− y)D(u(y, t) − u(x, t))dy,(10)

which we analyze in the next section.

3.2. Behavior of the continuum model. In this and the succeeding sections, we ana-
lyze (10), where u : R × (0,∞) → R. The parameter c is real and positive. The function
H is continuously differentiable and periodic with period T . The function D is continuously
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differentiable and periodic with period 2T . We assume, without loss of generality, that T = 2.
Additionally, the functions satisfy

H(−1) = H(0) = 0,

H ′(−1) < 0,

H ′(0) > 0,

D(0) = 0,

D′(0) > 0.

The conditions on H and D guarantee that each is bounded and well defined on the entire
real line. Thus, solutions to the initial value problem with u(x, 0) evolving according to (10)
will not blow up in finite time. Also, since the right-hand side of (10) is always defined, the
first time derivative of u exists for all t > 0, and so the solutions will be continuous in t. In
other words

lim
Δt→0

u(x, t + Δt) − u(x, t) = 0

for every x ∈ R.
In [2], the authors prove the existence and stability of stationary solutions to

ut = −u− λf(u) + J ∗ u,(11)

where λ > 0, J ∗ u is the spatial convolution of J with u, and the function f is bistable.
Specifically, they prove that, under conditions on the parameters, there exist stable steady
state solutions that are discontinuous. In this section we prove the existence of similar solutions
to (10). We remark that the proofs of existence and stability do not depend at all on the
fact the the model is on a 1D domain. Indeed, all proofs hold in arbitrary domains and, in
particular, the planar domain of the simulations. We focus on the 1D case, as the proof is
easier to explain.

3.3. Existence of stationary solutions. We wish to prove the existence of stationary
solutions that are discontinuous at arbitrary points on the real line. We begin by choosing
a set, M . Denote the complement by M c. Also, choose β > 0 such that H ′(u) < 0 for all
u ∈ (1 − β, 1 + β). We wish to prove the existence of a solution, U(x), satisfying

0 = H(U(x)) + c

∫
R

J(x− y)D(U(y) − U(x))dy(12)

with

U(x) ∈ (1 − β, 1 + β) when x ∈ M,

U(x) ∈ (−1 − β,−1 + β) when x ∈ M c.

We assume that the function H satisfies the following conditions:
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• H is a periodic function with period 2,
• H is continuously differentiable,
• H(1) = 0 and H ′(1) < 0,
• H(0) = 0 and H ′(0) > 0,

and that the function D satisfies

• D is continuously differentiable,
• D(0) = 0 and D′(0) > 0,
• D is periodic with period 4 (twice the period of H).

These conditions are consistent with the analogy to the full integrate-and-fire model.
Specifically, the 2-periodicity of H reflects the symmetry of the medium. In the full model,
each of the pair of stimulus-induced basins of attraction were identical. Since the function
H describes the intrinsic properties for a given point on the line, it is appropriate to assume
higher periodicity than for D. The condition that H be continuously differentiable is for
convenience in the proof that follows. The conditions on the function D reflect the proper-
ties of the coupling. The full model was developed under the assumption that the coupling
encourages synchrony between neighboring cells. Since D depends on the difference in u, the
D′(0) > 0 condition follows easily (as this is equivalent to positive diffusion). Also, cells that
are synchronized have no effect on one another, which leads to the condition that D(0) = 0.
Finally, the choice of fixed points of H is arbitrary and for convenience.

Let β > 0 be a number such that H ′(u) < 0 for u ∈ (1 − β, 1 + β), and set δ =
−maxu∈(1−β,1+β) H

′(u) > 0. Set K = maxu∈R |D′(u)|. Choose a measurable set M and
denote the complement as M c. Assume that c is small enough so that the following conditions
hold:

H(1 + β) + cDMMc sup
x∈M

∫
Mc

J(x− y)dy ≤ 0,

H(1 − β) + cDMMc sup
x∈M

∫
Mc

J(x− y)dy ≥ 0,

H(−1 + β) + cDMMc sup
x∈Mc

∫
M

J(x− y)dy ≤ 0,

H(−1 − β) + cDMMc sup
x∈Mc

∫
M

J(x− y)dy ≥ 0,

(13)

where

DMMc = max
s∈(2−2β,2+2β)

D(s),

DMMc = min
s∈(2−2β,2+2β)

D(s).

These conditions quantify the competition between the intrinsic properties at a location
and the coupling influence on that location. They are derived by choosing a band of width β
around the stable equilibria of u′ = H(u) and comparing the strength of attraction with the
maximum possible strength of the coupling toward the opposite equalibrium. These conditions
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guarantee that the coupling strength, c, is not strong enough to force a uniform profile across
the entire line for any set M , where

u(x, 0) ∈
{

(−1 − β,−1 + β) for x ∈ M,
(1 − β, 1 + β) for x ∈ M c.

We can now state the following theorem.
Theorem 1 (existence). Define δ and K as above, and assume that H and D satisfy the

conditions described above. Also assume that (13) holds. If −δ + 2cK < 0, then there exists
a solution, U(x), satisfying

0 = H(U(x)) + c

∫
R

J(x− y)D(U(y) − U(x))dy(14)

such that

U(x) ∈ (1 − β, 1 + β) when x ∈ M,

U(x) ∈ (−1 − β,−1 + β) when x ∈ M c.
(15)

Proof. Let

B =

{
U(x)

∣∣∣∣ U(x) ∈ (1 − β, 1 + β) when x ∈ M
U(x) ∈ (−1 − β,−1 + β) when x ∈ M c

}

and define the map

TU(x) = U(x) + ε

[
H(U(x)) + c

∫
R

J(x− y)D(U(y) − U(x))dy

]
.(16)

For ε sufficiently small, the conditions (13) guarantee that T : B → B. Our method of proof
is to show that T is a contraction mapping. This allows us to conclude that there is a solution
of the type (15) that satisfies (14).

To simplify expressions, define the function

A(U, x) =

∫
R

J(x− y)D(U(y) − U(x))dy.

Let U, V ∈ B. We write

‖TU − TV ‖∞ = ‖U − V + ε(H(U) −H(V ) + A(U, x) −A(V, x))‖∞.

The quantity A(U, x) −A(V, x) can be written∫
R

J(x− y)[D(U(y) − U(x)) −D(V (y) − V (x))]dy.

Because D is continuously differentiable and K is a finite number, we have that

|D(g − h)| < K|g − h|
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for g, h ∈ R. We have the inequality

‖A(U, x) −A(V, x)‖∞ ≤
∥∥∥∥cK

∫
R

J(x− y)(U(y) − U(x) − V (y) + V (x))dy

∥∥∥∥
∞

=

∥∥∥∥−cK(U(x) − V (x))

∫
R

J(x− y) + cK

∫
R

J(x− y)(U(y) − V (y))dy

∥∥∥∥
∞

≤ cK

∫
R

J(x− y)dy‖U(x) − V (x)‖∞ + cK

∫
R

J(x− y)dy‖U(x) − V (x)‖∞

=

(
2cK

∫
R

J(x− y)dy

)
‖U(x) − V (x)‖∞.

We may write

‖TU − TV ‖ ≤ ‖U(x) − V (x) + ε(H(U(x)) −H(V (x)))‖ + 2εcK‖U(x) − V (x)‖.(17)

Since H ′(U) > −δ for u ∈ (1 − β, 1 + β) we have that

H(U(x)) −H(V (x)) ≤ −δ(U(x) − V (x)) ≤ 0

for x such that U(x) > V (x) and

0 ≤ H(U(x)) −H(V (x)) ≤ −δ(U(x) − V (x))

for x such that U(x) < V (x). Since the value of H(U(x))−H(V (x)) has the opposite sign as
U(x) − V (x) it follows that

‖U(x) − V (x) + ε(H(U(x)) −H(V (x)))‖∞ ≤ ‖U(x) − V (x) − εδ(U(x) − V (x))‖∞.(18)

We may choose ε small enough so that εδ < 1. Substituting (18) into the right-hand side
of (17) gives

‖TU − TV ‖∞ ≤ (1 − εδ)‖U(x) − V (x)‖∞ + 2εcK‖U(x) − V (x)‖∞,

‖TU − TV ‖∞ ≤ (1 − ε(δ − 2cK))‖U(x) − V (x)‖∞.

Thus, if δ > 2cK, then T is a contraction mapping, and hence there is a steady state solution
to (10).

The quantity −δ + 2cK is a comparison of the strength of the attraction to the stable
fixed points of the function H to the strength of the coupling. If δ is sufficiently large, then
the attraction to the stable roots of H is strong enough to counter the coupling. On the
other hand, for strong enough coupling, the network will assume a more uniform profile and
the solutions will not remain in bands of width β around the fixed points for the uncoupled
system.

It is important to note that Theorem 1 provides sufficient conditions for the existence of
these solutions; however, they are not, in general, necessary. The Lipschitz condition used to
bound the effect of the coupling can be somewhat generous, given that the solutions lie in the
β bands.

We remark that the existence proof is virtually identical to that in [2]; our diffusion
function is somewhat different, but once we impose the Lipschitz condition, the proof proceeds
identically.
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3.4. Stability. We now prove stability of the above patterns with the same hypotheses as
needed for their existence.

Theorem 2 (linear stability). Assume that for a set M , a number β, and a parameter c the
conditions in Theorem 1 are satisfied. The resulting stationary solution is linearly stable.

Proof. Let U(x) be the steady state solution to (10). Linearizing around the steady state,
we obtain

∂tw(x, t) = H ′(U(x))w(x, t) + c

∫
R

J(x− y)D′(U(y) − U(x))[w(y, t) − w(x, t)]dy.(19)

We rewrite (19) as

∂tw(x, t) = f(x)w(x, t) + c

∫
R

J(x− y)D′(U(y) − U(x))w(y, t) dy,

where

f(x) = H ′(U(x)) + c

∫
R

J(x− y)D′(U(x) − U(y)) dy.

We know that H ′(U(x)) < −δ for all x, and D is Lipschitz with constant K. Thus, f(x) <
−δ+ cK ≡ −b for all x, and if c is small enough, then −b < 0. Taking absolute values, we see
that |w(x, t)| is less than v(x, t), where v(x, t) is nonnegative and satisfies

vt = −f(x)v(x, t) + cK

∫
R

J(x− y)v(y, t) dy.

Here we have used again the fact that D is Lipschitz and also that J(x−y) is nonnegative. The
right-hand linear operator clearly preserves nonnegativity. Consider the following equation:

zt = −bz(x, t) + cK

∫
R

J(x− y)z(y, t) dy.(20)

Solutions to this problem can be found with Fourier transforms. Since J(x) ≥ 0 and is
symmetric and integrable, the Fourier transform, Ĵ , exists, is real, and is less than or equal
to Ĵ(0) = 1. Solutions to (20) have the form z(x, t) = exp(λt + i
x), where 
 is real and

λ = −b + cKĴ(
).

Thus, if b > cK, then all solutions to (20) decay to zero. We claim that if z(x, 0) = v(x, 0) > 0,
then z(x, t) > v(x, t) for all positive t. (We note that if z(x0, 0) = v(x0, 0) = 0 for some value
of x0, then both zt and vt will be positive due to the positive convolution term, so that both
z(x0, t) and v(x0, t) will be positive for any positive t. Thus, we assume that the initial data
are strictly positive.) If we can prove that z > v, then, since z decays to zero, so does v(x, t)
and thus so do all solutions to (19). Since f(x) < −b for all x, it is clear that at t = 0,
vt(x, 0) < zt(x, 0) so that up to some time τ , v(x, t) < z(x, t). Suppose at t = τ there is an
x0 with v(x0, τ) = z(x0, τ). At that point of intersection, we must have zt(x0, τ) < vt(x0, τ).
But, since z(x, τ) ≥ v(x, τ) for all x,∫

R

J(x− y)z(y, τ) dy ≥
∫

R

J(x− y)v(y, τ) dy
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and −bz(x0, τ) > f(x0)v(x0, τ), so from the evolution equations, zt(x0, τ) > vt(x0, τ), a
contradiction. Recalling that b = δ−cK, we see that a sufficient condition for stability is that
−δ + 2cK < 0.

As we noted at the end of the existence proof, the quantity −δ + 2cK measures the
competition between the attraction to the two different stable states (odd/even cycles of the
stimulus) and the coupling which attempts to make the network uniform. We can use this
result to motivate a more general result that is much more akin to the simulations in section 2.
The parameter δ is related to the attractivity of the uncoupled states. Suppose that instead
of the scalar function H we return to the general uncoupled periodically driven system:

du

dt
= F (u, t),

where F is a general vector function which is T -periodic in its second argument. Suppose that
u0(t) is a stable 2T -periodic function representing a 1:2 locked solution. Since it is stable, all
the Floquet exponents have negative real parts. Let −δ denote the real part of the exponent
closest to zero real part. Then, we conjecture that there are regions locked to the even and
odd cycles which persist as long as δ > cK, where c is the coupling strength and K is a
coupling function dependent value.

3.5. Traveling waves. In the previous sections, we proved the existence and linear sta-
bility of stationary solutions with discontinuities, as long as the coupling between cells is
sufficiently weak. The experiments and our model show movement of the lines which indi-
cates that the coupling strength must be fairly large. We can view the theory laid out in the
last two subsections as being the mechanism for setting up the domains and assuring that they
are stable. In this section we explore what happens in the simple model when the coupling
increases.

Once again, reconsider (10), which we repeat here:

ut(x, t) = H(u(x, t) + c

∫
R

J(x− y)D(u(y, t) − u(x, t))dy.

We will relax our assumption that J(x) is symmetric. We first prove the following proposition.
Proposition 1. Suppose that H(ū) = 0, D(0) = 0, D′(0) > 0, J(x) ≥ 0, c > 0, and∫

R
J(y) dy = 1. Then u(x, t) = ū is a linearly stable solution to (10).
Proof. Clearly, ū is a solution to this equation. Linearizing about ū, we see that the

linearized equation satisfies

vt = −δv − cD′(0) + cD′(0)

∫
R

J(x− y)v(y, t) dy.

Here −δ = H ′(ū). Solutions to this equation have the form

v(x, t) = eλteikx.

The eigenvalue λ satisfies

λ = −δ + cD′(0)[Ĵ(k) − 1],
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Figure 9. Traveling wave simulation for (10) with H(u) = sinπu, D(u) = sinπu/2 + 0.25(1 − cosπu/2),
and J(x) = exp(−|x + p|) on a grid of N = 50 cells. Coupling strength c = 6. Left: p = 0, no bias, shows the
profiles in which the state 3 (equivalent to −1 on the periodic domain [0, 4)) takes over. Right: bias p = 0.25
leads to a wave traveling in the opposite direction.

where Ĵ(k) is the Fourier transform of J(x). Since J(x) ≥ 0, �Ĵ(k) ≤ Ĵ(0) = 1, so that

�λ < 0

for all k as long as cD′(0) > 0 and δ > 0. Hence the constant state is stable.

Our assumptions on H presume that there are two stable constant solutions; thus, we
expect that if the coupling is sufficiently strong, there will be a wave front switching from
one state to the other. Indeed, if D(u) = u was linear, then the existence, uniqueness, and
stability of wave fronts would follow from a theorem of Chen [5]. Figure 9 shows an example
simulation in which the −1 state takes over the +1 state when the coupling is large enough.
This movement is due to a mechanism akin to that seen in Figure 5 for the nonbiased case.
The interaction J(x) is symmetric, but the function D(u) is not a purely odd function. We
can reverse the tendency for the +1 state to take over by allowing for asymmetric coupling.
The right-hand side of Figure 9 shows a wave in which −1 takes over by making the coupling
stronger from the right.

To gain some insight into the transition from stationary states to traveling waves, we
use AUTO to explore the existence and stability of the stationary state as a function of the
coupling strength. We consider N = 20 cells with nearest neighbor coupling:

u′j = H(u) + c[(1 + s)D(uj−1 − uj) + (1 − s)D(uj+1 − uj)], j = 1, . . . , 20.(21)

We set u0 = u1 and u21 = u20 as the boundary conditions and choose functions H(u) =
sinπu − 0.1 cosπu and D(u) = sinπu/2 + 0.25(1 − cosπu/2). We have added the cosine
terms to make sure that the results do not depend on the oddness of the functions H,D.
The parameter c is the overall coupling strength, and s is the measure of asymmetry. We
choose s = 0.1 so that the left cell has a greater effect than the right cell. When c = 0,
there are 2N stable fixed points corresponding to each cell taking a value of either of the two
stable roots to H(u) = 0 on the interval [0, 4). (Since the cosine term for H is small, these
roots are close to 1 and 3 = −1.) Figure 10A shows the how the steady states evolve for
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Figure 10. (A) Bifurcation diagram for (21) for five different equilibrium states as the coupling, c, increases.
Equilibria when c = 0 are shown to the right corresponding to cells in the “1” or “3” states. (B) Evolution
of traveling waves for coupling larger than the critical value. Time increases downward, and cell index is
horizontal. Coupling is stronger from the left so that the left state takes over the right. Left figure is for c = 1.3
such that the initial state has half the cells in the “1” state and the other half in the “3” state. Right panel is
the same, but only the first five cells are in the “1” state.

five different configurations. In each of the cases the first m cells are in the state near 1, and
the remaining are in the state near 3. In all cases, as the coupling increases there is little
quantitative change in the equilibria, but at a critical value of the coupling, the fixed point
is lost at a saddle-node. If the distribution of cells is very unbalanced (say, only one cell in
state 1 and the rest in state 3), then the amount of coupling required to destroy the steady
state is small compared to the more balanced case. An analogue of this is seen in Figure
8C,D, where the thin region between two similar domains is quickly absorbed. Figure 10B
shows the evolution of the stationary state when the coupling is larger than the saddle-node
value. The left figure shows that in the balanced case, as expected from the coupling bias,
the “1” state takes over the “3” state. Even when there is a 3:1 advantage of “3” state, the
bias is able to overcome this, and a traveling wave results. When only the leftmost cell is in
the “1” state and the other cells are in the “3” state, then the wave travels to the left—the
bias is unable to overcome the huge unbalance.

4. Discussion. We have derived a simple model for complex visual effects due to the
direct stimulation of the eyeball. The model is based on the simple idea that if there is
phase-locking between a stimulus which fires twice for every response of the cell, then there
is a natural bistability in the medium: firing on the odd or even cycles of the stimuli. We
have suggested that visual stimuli are able to push the phase-locked retinal cells into different
basins of attraction and that the boundaries between the bistable domains account for the
thin line illusions. This notion allows us to make several predictions. First, the thickness
of the boundaries should be independent of any stimulus properties—the “boundary layer”
is, rather, a function of the intrinsic coupling between retinal cells involved in the illusion.
Stronger coupling should lead to thicker boundaries. Second, more complex patterns should
be easy to create. For example, a visual stimulus consisting of an expanding annulus should
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result in a series of concentric circular patterns which will gradually disperse. Third, the
illusion should disappear instantly when the electrical stimulus is cut off, since the cells will
no longer fire and there will thus be no phase boundary. We have not completely explored how
differently shaped electrical stimuli will affect the patterns. However, one important prediction
that we can make is that if the electrical stimulation is at a sufficiently low frequency, there
will be no illusion, since the retinal cells will be able to fire in a 1:1 manner and so no phase-
boundaries can develop. This would allow us to distinguish our model from the model of
Willis, which we discuss briefly below.

In addition to a biologically “realistic” model, we abstracted the mechanism to a scalar
bistable medium with nonlocal but “weak” coupling. We proved a theorem about the exis-
tence and stability of patterned states, and then explored how asymmetric coupling which is
sufficiently strong can lead to traveling waves that connect the stable states of the bistable
medium, similar to those in [11].

There has been one other attempt to model these curious phosphenes [22]. The Willis
model captured the idea of bistability but did not model the slow movement of the phosphenes
over time. Willis’ model is based on a piecewise linear firing rate model, which proposes
that the interactions between two classes of cells (receptors and horizontal cells) switch sign
(excitation becomes inhibition and vice versa) during the two phases of electrical excitation.
Unless the nonlinearities of the Willis model are exactly balanced, one of the two states
should have a larger basin of attraction than the other. Thus, with any coupling at all, in
the Willis model, we would expect the phosphenes to have a strong tendency to move in
a preferred direction. This is not reported in the experiments. Our model is considerably
simpler and makes fewer assumptions about the cells and their connectivity. The two models
could be experimentally distinguished by recording from ganglion or horizonal cells during
the phosphenes. While this is unlikely, given that the subjects are humans, our model is more
compatible with both the physiological data in salamanders and the psychophysical data in
humans [7]. Furthermore, the Willis model would predict that the phosphenes persist at lower
frequencies, say, 50 Hz, since the bistability is based on a different mechanism from ours. This
is easy to test in humans.

While the illusions we have modeled are unusual and a consequence of unnatural stimuli,
such experiments can often be used to shed light on basic biological structure and function.
For example, by probing the retina with periodic stimuli, we can determine the frequency
response of the neurons. The width of the phosphenes tells us something about the degree of
intrinsic connectivity between retinal cells. Finally, there is a good deal of recent interest in
direct stimulation of the nervous system as a means of providing visual prosthesis [14]. Thus,
models such as the present one can provide a simple framework for exploring how direct
electrical stimuli are visually interpreted.
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Existence and Wandering of Bumps in a Spiking Neural Network Model∗
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Abstract. We study spatially localized states of a spiking neuronal network populated by a pulse-coupled phase
oscillator known as the lighthouse model. We show that in the limit of slow synaptic interactions
in the continuum limit the dynamics reduce to those of the standard Amari model. For nonslow
synaptic connections we are able to go beyond the standard firing rate analysis of localized solutions,
allowing us to explicitly construct a family of coexisting one-bump solutions and then track bump
width and firing pattern as a function of system parameters. We also present an analysis of the
model on a discrete lattice. We show that multiple width bump states can coexist, and uncover
a mechanism for bump wandering linked to the speed of synaptic processing. Moreover, beyond
a wandering transition point we show that the bump undergoes an effective random walk with a
diffusion coefficient that scales exponentially with the rate of synaptic processing and linearly with
the lattice spacing.
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1. Introduction. A goal of theoretical neuroscience is to develop a tractable model of
a spiking neuronal network. This must necessarily involve a single cell model, capable of
generating spikes of activity (so-called action-potentials), that when connected into a synaptic
network can generate the rich repertoire of behavior seen in a real nervous system. For all of
the popular conductance-based single neuron models, and also the simpler integrate-and-fire
(IF) variety, a full understanding of network dynamics has proved elusive. In essence this is
because we have not yet developed an appropriate mathematical framework for understanding
the neurodynamics of spiking networks. To date, progress in this area has been restricted to
firing rate neural models [1, 2, 3, 4], which cannot adequately capture known spike-train
correlations, or the analysis of phase-locked states and instabilities of homogeneous steady
states in spiking IF networks [5, 6, 7, 8, 9, 10].

The lighthouse model of Haken is a candidate single neuron model that falls between
spiking neuron models and firing rate descriptions (see [11] and references therein). We show
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that in the limit of slow synaptic interactions it reduces to the classic Wilson–Cowan and
Amari firing rate models. For fast synaptic interactions, it displays some of the complex
properties that have been observed in simulations of spiking neuronal networks. Importantly
the lighthouse model is sufficiently simple that it may also be analyzed at the network level
even for fast synaptic responses. Hence, a detailed investigation into the network dynamics
of the lighthouse model may pave the way to the development of a specific soluble spiking
neurodynamics.

With this in mind we turn our attention to spatially localized bumps of persistent activity,
which have been linked to working memory (the temporary storage of information within the
brain) [12, 13, 14]. In many models of working memory, transient stimuli are encoded by
feature-selective persistent neural activity. Such stimuli are imagined to induce the formation
of a spatially localized bump of persistent activity which coexists with a stable uniform state
(with low firing rate). The most popular mathematical formulations of such models assume
long-range inhibition with local recurrent excitation and invoke a population level description
in terms of a rate model (see, for example, [15, 16]). Although interesting in their own
right and studied by a number of authors (surveyed in [17]), such models are useful only for
describing systems with slow synaptic interactions.

The study of localized states in fully spiking network models with fast synaptic interactions
has typically been possible only with the aid of numerical simulation. For example, the work
of Laing and Chow [18] on IF networks shows a number of interesting behaviors that would
be absent in a firing rate study. These include the observation that (i) a bump solution can
exist in a spiking network (coexisting with the quiescent state), provided that the neurons fire
asynchronously within the bump, and (ii) a bump can lose stability with increasing rate of
synaptic processing to a wandering bump or a traveling wave. Wandering was also observed
in a model of working memory that had populations of excitatory and inhibitory spiking
neurons [19].

It is precisely these observations that we revisit in this paper within the context of the
lighthouse model of a spiking neural network. Not only does the lighthouse model support
behavior similar to that seen in the IF network, it is sufficiently simple to admit further
mathematical analysis. In this regard it is a minimal model of a spiking neural network.
Although to date only patterns of synchronized activity have been analyzed [11] it is clearly
a model that may be studied further in more interesting scenarios, such as the one we now
present. Importantly this allows us to uncover the mechanism that governs the transition
from a stable to a wandering bump.

In the next section we introduce the lighthouse model and survey some of its known prop-
erties. For simplicity we first study the model in the continuum limit, which allows us to more
easily show its correspondence with the Amari model in the limit of slow synaptic processing.
Next we introduce the definitions of a bump, a stationary bump, and an equiperiod bump so
that we may carefully formulate appropriate existence conditions for bumps and wandering
bumps. We then show how one may analyze spatially localized states of the continuum light-
house model for nonslow synaptic processing and explicitly construct a family of spiking bump
solutions. We follow the continuum description with a treatment of dynamics on a lattice,
including bump wandering. Finally, we discuss natural extensions of the work in this paper.
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2. The lighthouse model. The lighthouse model was introduced by Haken as a pulse-
coupled model of a spiking neural network whose behavior could be explicitly analyzed at
the network level [20, 21]. Much is now known about phase-locked solutions and the effect
of noise and delays on stability, summarized in the book by Haken [11]. As we will show,
the lighthouse model exhibits a transition to wandering like the IF model but is easier to
analyze. Here we briefly outline the lighthouse model before presenting our new results on
bump solutions.

The lighthouse model is a hybrid between a phase-oscillator and a firing rate model.
Indexing a lighthouse neuron with i ∈ Z, the dynamical description of a discrete network is
cast as a system of ordinary differential equations for the phase variable θi = θi(t) ∈ [0, 1),
t ∈ R

+, in the form

dθi
dt

= H(ui − h),(2.1)

with

ui(t) =

N∑
j=1

wijEj(t), Ei(t) =
∑
m

η(t− Tm
i ),(2.2)

and H(·) is interpreted as a firing rate function, with threshold h. Haken uses the Naka–
Rushton sigmoidal function (though many of the analytical results for the lighthouse model
are obtained for a linear firing rate function). Throughout this paper we work with the
Heaviside step function such that H(x) = 1 for x ≥ 0 and is zero otherwise. The quantity
ui is recognized as the input to neuron i, mediated by the synaptic processing of a set of
incoming spikes. The spike time Tm

j marks the mth firing of neuron j, given by the times
for which θj(t) = 1. Each time neuron i fires, a synaptic pulse η(t) (with η(t) = 0 for t < 0)
is transmitted to other neurons j = 1, . . . , N with coupling weight wij . We shall take the
synaptic response to be normalized, such that

∫∞
0 η(t)dt = 1. When the input to a neuron

exceeds the threshold, h, the phase will advance towards threshold at a constant rate, which
we have arbitrarily set to 1. We note that the activity of a given neuron need not be periodic.
Depending on the nature of the inputs, it could also be quiescent or fire irregularly.

We consider two versions of the lighthouse model. In the first version, which is the model
originally proposed by Haken, whenever the input is below threshold or drops below threshold,
the phase immediately resets to zero. In this case the neuron can fire only if it receives input
that remains above threshold for an entire period. In the second version the phase is not
reset, except when the neuron fires. We will see that the two versions have different possible
bump solutions and dynamics. In particular, the instant reset version does not have wandering
bumps.

We consider lateral inhibition-type synaptic coupling on a one-dimensional lattice. The
system has two length scales, the lattice spacing and the coupling footprint. We take the array
length to be much longer than either of these two length scales. We can index the N neurons
in the array by a distance via x = iδx, where δx is the lattice spacing. The continuum limit
is given by N → ∞, δx → 0 with δxN a constant. To make the connection to the continuum
limit transparent we rewrite the coupling function as wij = w([i − j]δx)δx. A continuum
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version of the lighthouse model (along the whole real line) is obtained under the replacement
(θi, ui, T

m
i , w((i − j)δx)) → (θ(x, t), u(x, t), Tm(x), w(x − y)), x ∈ R, and is governed by the

dynamics

∂θ(x, t)

∂t
= H(u(x, t) − h),(2.3)

with

u(x, t) =
∑
m

∫ ∞

0
dsη(s)

∫ ∞

−∞
dyw(x− y)δ(s− t + Tm(y)).(2.4)

Here the function w(x) plays the role of the connectivity kernel, which we shall assume to
be homogeneous so that w(x) = w(|x|). For concreteness we will use the explicit functions
η(t) = α exp(−αt)H(t) and the “wizard hat” w(x) = A exp(−a|x|) − exp(−|x|).

2.1. Connection to the Amari model. We first consider the continuum limit for slow
synapses and show that it is identical to the classical Amari model. Taking the time average
of (2.4) gives

〈u(x, t)〉 =
1

T

∫ t+T

t
ds

∫ ∞

−∞
dyw(x− y)

∫ ∞

0
ds′η(s′)

∑
m

δ(s′ − s + Tm(y))

=

∫ ∞

−∞
dyw(x− y)

∫ ∞

0
dsη(s)Ω(y, t− s),(2.5)

where Ω(x, t) = M(x, t)/T is the firing rate and M(x, t) =
∫ T+t
t

∑
m δ(s + Tm(x))ds is the

number of firing events at position x within a window T .
We next recognize that the firing rate is given by

Ω(x, t) =
∂θ(x, t)

∂t
= H(u(x, t) − h).(2.6)

Substituting (2.6) into (2.5) gives

〈u(x, t)〉 =

∫ t

−∞
dsη(t− s)

∫ ∞

−∞
dyw(x− y)H(u(y, s) − h).(2.7)

For slow synaptic interactions (such that η(t) is approximately constant over the timescale
T ), then we have the condition u(x, t) = 〈u(x, t)〉. For the specific choice η(t) = αe−αtH(t),
(2.7) may be written in the form

1

α

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
dyw(x− y)H(u(y, t) − h),(2.8)

which is recognized as the well-known Amari model [22]. The equivalence between the light-
house model and the Amari equation is only strictly true in the limit of α → 0, where u(x)
is constant in time. For nonzero α we will see that the dynamics between the two models
deviate substantially.
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3. Bump solutions. For a threshold h > 0 neurons will not fire spontaneously. However,
for a lateral-inhibition-type coupling function, a group of neurons could mutually excite each
other to sustain activity. Indeed for this choice of interaction function the Amari model given
by (2.8) is known to support spatially localized solutions, commonly referred to as bumps.
Moreover, their stability is insensitive to variation in the synaptic rate parameter α. It is
therefore of interest to ascertain whether the analogue of such solutions can be found in the
full spiking lighthouse network, and whether they are also stable to variations in α. As we
shall see, the answers to these questions are “yes” and “no,” respectively.

Definitions. We are interested in analyzing the existence and dynamics of localized pulses
of activity or bumps. A bump is defined as a group of contiguous neurons that fire together.
However, given the discontinuous nature of spiking events and that the bump location may
change in time, it is necessary to make this idea more precise with the following definitions.

Definition 1. A bump at time t is the set of all contiguous neurons that fired in the time
interval [t− 1, t].

Definition 2. A stationary bump is a bump which persists in a single location for all time;
i.e., the same set of neurons continue to fire indefinitely.

Definition 3. An equiperiod bump is a stationary bump for which the neurons in the bump
all fire with the same rate.

On a lattice any of the above states are invariant to shifts by arbitrary lattice spacings.
As we will demonstrate, the position or the width of the bump need not be constant in time.

We first consider conditions for the existence of a continuum equiperiod bump in the limit
of infinitely slow decaying synapses (α → 0). In this case each neuron in the bump receives
constant above threshold input, and thus all neurons within the bump will fire with rate 1.
All neurons outside of the bump receive below threshold input and never fire. We suppose
that a bump exists on the domain L = [x1, x2]. This implies that u(x, t) is above threshold
on L, below threshold outside of L, and equal to the threshold at x = x1 and x2. From (2.4)

u(x, t) =

∫ x2

x1

w(x− y)P (t− ψ(y))dy,(3.1)

where P (t) =
∑

m η(t − m) is a periodic function (with period 1) and ψ(y) is the location-
dependent phase. If w(x) is symmetric, we need to consider only one edge. For infinitely slow
synapses, P (t) = 1. This leads to the Amari existence condition

h =

∫ Δ

0
w(y)dy, Δ = x2 − x1.(3.2)

We note that in the Amari limit the bump solution is insensitive to the phases of the neurons.
For a standard lateral-inhibition-type coupling there are two bump solutions that arise in a
saddle-node bifurcation [3]. Importantly, it is possible to construct a class of bump solutions
for the full continuum lighthouse model, and thus take a step beyond the standard Amari-style
analysis of localized states.

3.1. Continuum bump solutions in the lighthouse model. For the original lighthouse
model with instant phase reset whenever activity drops below threshold, an equiperiod bump
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is expected since neurons within the bump will fire with rate one and those outside of the
bump will not fire. For the second version without the phase reset condition, phases may
ride on long subthreshold plateaus. In this case the generic solution is a spatially localized
solution with an “interior” and “exterior” region. Within the interior, neurons fire with rate
1. In the exterior, the firing rate falls off to zero as the bump edge is approached. However,
the contribution from the exterior region only weakly perturbs the location of the inner edge,
so that the solution in the absence of a phase reset may be regarded as a perturbation of that
with a phase reset.

Here we focus on the class of (symmetric) maximally firing one-bump solutions (with firing
rate unity) for the instant reset model parameterized by

Tm(x) = m + [β|x| mod 1],(3.3)

such that u(x, t) ≥ h for x ∈ [x1, x2] for all t, and u(x, t) < h otherwise. Here we take
x1 = −Δ/2 = −x2. We are free to choose such a coordinate system by translational invariance
of the continuum model. In this case u(x, t) is given by (3.1) with ψ(y) = β|y|. Introducing
the Fourier transform P̃ (k) =

∫∞
−∞ dtP (t)e−ikt means that we may write (3.1) as

u(x, t) =

∫ ∞

−∞

dk

2π
P̃ (k)F (k, x)eikt,(3.4)

where

F (k, x) =

∫ x2

x1

w(x− y)e−ikβ|y|dy.(3.5)

Note that u(x, t) has period 1 (inherited from P (t)). It is also continuous if β is nonzero.
For slow synapses P (t) may be regarded as a constant so that P̃ (k) = 2πδ(k). In this case
(3.4) becomes time-independent, with u(x, t) = F (0, x). Moreover, the width of the bump
is independent of β and is given implicitly by h = F (0,Δ/2). This solution is identical to
the one-bump solution describing the time-independent localized state of the standard Amari
model [3]. In general, however, we proceed with the evaluation of (3.4) using the result that

P̃ (k) = 2πη̃(k)
∑
n

δ(k − 2πn).(3.6)

Substitution into (3.4) gives us the following Fourier series representation for u(x, t):

u(x, t) =
∑
n

η̃(2πn)F (2πn, x)e2πint.(3.7)

To determine the width of a bump in a self-consistent fashion we must enforce the condition
that at the boundaries x = xj the infimum of u (over t) must equal the threshold h. Hence,
the existence condition for a bump in the continuum lighthouse model is simply

inf
t
u(Δ/2, t) = h.(3.8)
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The bump width Δ is then determined by

h =

∫ Δ

0
w(y)dy + 2Re

(∑
n>0

η̃(2πn)g(2πn)e2πint∗

)
,(3.9)

where g(k) = F (k,Δ/2). Here t∗ denotes the value of t for which u(Δ/2, t) has a minimum.
The value of t∗ is calculated by differentiating (3.7) and then solving

0 = Re

(
i
∑
n>0

η̃(2πn)g(2πn)ne2πint∗

)
,(3.10)

subject to ∂ttu(Δ/2, t)|t=t∗ > 0. In some sense we may regard the second term on the right-
hand side of (3.9) as a correction to the standard Amari firing rate model description that
takes into account the effects of nonslow synaptic processing.

For our choice of temporal and spatial kernels a short calculation gives η̃(k) = α/(α+ ik)
and

g(k) = A

{
e−ikβΔ/2 − e−aΔ/2

a− ikβ
+

e−aΔ/2 − e−aΔe−ikβΔ/2

a + ikβ

}

− e−ikβΔ/2 − e−Δ/2

1 − ikβ
+

e−Δ/2 − e−Δe−ikβΔ/2

1 + ikβ
.(3.11)

In the limit α → 0 the β-independent shape of a bump is given explicitly by

u(x) =

⎧⎪⎨
⎪⎩
W (x1 − x, x2 − x), x < x1,

W (0, x− x1) + W (0, x2 − x), x1 ≤ x ≤ x2,

W (x− x2, x− x1), x > x2,

(3.12)

where

W (xa, xb) =

∫ xb

xa

w(y)dy =
A

a

[
e−axa − e−axb

]
−

[
e−xa − e−xb

]
, xb > xa > 0,(3.13)

and Δ satisfies h =
∫ Δ
0 w(y)dy. Figure 3.1 shows an example of the shape of u(x) given by

(3.12). This is the classic Amari bump. When u(x) > h, the neuron fires with rate 1. Of the
two branches of solutions to Δ = Δ(h), it is known that the branch with largest Δ is stable
for all α in the Amari model [3, 23, 24, 25]. To see the effects of a nonzero choice of α in the
lighthouse model we need only to calculate remaining terms from the right-hand side of (3.9).

We evaluate (3.9) and (3.10) numerically to determine the pair (Δ, t∗) as a function of
system parameters. An example of this is shown in Figure 3.2, where for a fixed (nonzero)
value of α we plot Δ = Δ(h) for the synchronous solution (β = 0). As for the standard Amari
solution we see two branches of solutions with a saddle-node bifurcation with increasing h.
Moreover, taking α as the bifurcation parameter shows that such solutions cannot exist if α
is chosen too large, as once again there is a saddle-node bifurcation, seen in the middle panel
of Figure 3.2. In the right most panel of Figure 3.2 we effectively combine the information
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Figure 3.1. A plot of u(x) of a bump with α = 0, A = a = 2, h = 0.1 given by (3.12). For u(x) ≥ 0.1, the
neuron will fire with rate 1.
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Figure 3.2. Left: Bump width as a function of h for the synchronous solution (β = 0) with α = 1. Middle:
Bump width as a function of α for the synchronous solution with h = 0.1. Right: Existence window (below
the curve) for the synchronous solution in the (α, h) plane obtained by the numerical continuation of the limit
point in the left-hand plot. In all plots A = a = 2.

from the other two panels into an existence plot, such that synchronous solutions are found
below the curve shown in the (α, h) plane. In Figure 3.3 we show a plot of how the solution
with the largest width varies as a function of β. This theoretical curve is compared with
direct numerical simulations of the instant rest lighthouse model and found to be in excellent
agreement.

We see in Figure 3.3 that as β is increased there is a general trend towards increasing
width with a weak oscillation imposed. We now explain this behavior. The function g(2πn)
has a periodic modulation in β of fundamental period β = 2/Δ. Hence, from (3.10), t∗ will
oscillate as β is varied. From (3.9) we expect a similar modulation of Δ = Δ(β). Note that
when β = 2/Δ the firing times are asynchronous, and the system may be said to be in a
so-called splay state. The synchronous state (β = 0) has an infimum at t∗ = Δ, and hence
all other nonsynchronous states are such that t∗β=0 > t∗β �=0, at least avoiding resonances where
2β/Δ = n. Hence, from (3.7), inft u(x, t∗β=0) < inft u(x, t∗β �=0). Since u(x, t) is a decreasing
function of x (in the neighborhood of the bump edges where x = ±Δ/2), the synchronous
solution has the smallest width as a consequence of condition (3.8). As β increases, the phases
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Figure 3.3. A plot of the theoretical curve (red) for Δ = Δ(β), with h = 0.1 and other parameters as in the
leftmost panel of Figure 3.2. Black crosses denote results from direct numerical simulations of the lighthouse
model with instant reset.
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Figure 3.4. A direct numerical simulation of the continuum model approximated by a finite system with
lattice spacing δx = 0.004 on N = 1000 grid points. The dots in the raster plot indicate the times of firing
events. Data is shown for the parameters of Figure 3.3 with β = 2. The left and right panels show results with
and without phase reset, respectively.

become more splayed and pass through resonances with the width Δ, ultimately resulting in
the local peaks seen in Figure 3.3.

An example of a spiking bump state is shown in Figure 3.4, with the left and right panels
showing simulation results with and without phase reset. The interior and exterior regions are
clearly visible in the no phase reset model. Moreover, simulations show that with increasing
α, bumps can lose stability and begin to wander in exactly the same fashion as seen in earlier
work of Laing and Chow on IF networks [18]. Examples of this will be presented in section
3.4. Direct simulation results are obtained by approximating the continuum model as a finite
system sampled at a discrete set of grid points, i.e., a lattice model. We now proceed with a
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treatment of the lighthouse model dynamics on a lattice.

3.2. Bumps on a lattice: Slow synapses. We first derive the existence conditions of
a bump on a discrete lattice. Suppose neuron j fires periodically with period 1 and has a
phase ψj ∈ [0, 1), i.e., Tm

j = m + ψj . The periodic synaptic output of neuron j is given by
Ej(t) = P (t − ψj). In the limit of infinitely slow synapses P (t − ψj) = 1. Without loss of
generality we fix one end of the bump at neuron index 0. The bump is then specified by the
set i ∈ {0, . . . ,m}, where

ui =

m∑
j=0

wij ≥ h, i ∈ {0, . . . ,m},(3.14)

and ui < h elsewhere. The phase does not appear in the existence condition, so any configu-
ration of phases is allowed. Thus a family of solutions satisfying condition (3.14) defines an
equiperiod bump at a given location. To make this condition more explicit we introduce the
following two additional definitions:

Definition 4. The edge of a contiguous set of firing neurons is a neuron in the set that has
one neighbor in the set and one neighbor not in the set.

Definition 5. The next edge of a set of contiguous firing neurons is a neuron that is not in
the set but has one neighbor that is an edge.

Thus the edge neurons i = 0,m must satisfy u0 ≥ h, um ≥ h, and the next edge neurons
i = −1,m + 1 must satisfy u−1 < h, um+1 < h. Unlike the continuum version, the discrete
bump must satisfy two independent conditions; i.e., the edge neuron is above threshold and
the next edge neuron is below threshold. If wij is symmetric, the bump will be symmetric,
and thus we need to consider only one edge. Following the Amari strategy, we construct two
existence functions:

φne
m =

m∑
j=0

w−1,j =

m+1∑
j=1

w0,j ,(3.15)

φe
m =

m∑
j=0

w0,j .(3.16)

A bump of width m will exist for any m for which φne
m < h ≤ φe

m. In the continuum limit, the
existence condition is φne

m = φe
m = h.

We now consider conditions on the coupling weight and threshold for which this existence
condition can be satisfied. We note that if φne

m < φe
m for some m, then we can choose h

to lie between the existence curves. This can be satisfied in a number of ways. One is if
wi−1,j − wi,j < 0 for i < j, i.e., the weight function is monotonically decreasing in |i − j|.
This can be proved by comparing the terms individually in the sums (3.15) and (3.16). We
note that the weight function needs only to decrease monotonically for |i− j| ≤ m+ 2. If wij

is positive at i = j and decreases in |i − j|, then φne
m and φe

m will increase until wij becomes
negative, whereupon φne

m and φe
m will begin to decrease. The existence curves will then be

concave functions. Hence, if h is initially greater than the maximum of the existence curves,
no bump solutions exist. Bump solutions will appear if h is lowered so that it intersects with
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Figure 3.5. Existence functions for wij = 2e−0.05|i−j| − e−0.01|i−j|. In this example, multiple bump states
are possible for the large bump but not the small bump.

the existence curves. In the continuum limit, if h is initially above the existence curve and
then reduced, two bump states will arise from a saddle-node bifurcation. However, in the
discrete case, a set of states can arise simultaneously or in succession. We summarize the
conditions for the existence of a bump in Proposition 1.

Proposition 1. A symmetric bump or set of bumps can exist for some threshold h > 0 if wij

is (a) symmetric, (b) maximal and strictly positive at i = j, and (c) decreasing in |i− j| (for
some large enough finite set around i = j). These are sufficient but not necessary conditions.

Figure 3.5 shows an example of the existence functions. We immediately can see that
unlike in the continuum version, there is a possibility that sets of “small” and “large” bump
solutions can exist. Multiple bump solutions are possible if the slope of the existence function
is not too steep. More precisely, for any m > 0 and k > 1 satisfying φe

m > φe
m−k and

φe
m−k > φne

m , there are k bump solutions with widths ranging from m− k to m for the small
set of bumps. Using (3.15) and (3.16), these conditions become

∑m
j=m−k+1 w0,j > 0 and

w0,0 −
∑m+1

j=m−k+1 w0,j > 0. For φe
m−k > φe

m and φe
m > φne

m−k, there are k solutions with
widths ranging from m−k to m for the large set of bumps. In terms of the coupling function,
the conditions are

∑m
j=m−k+1 w0,j < 0 and w0,0 +

∑m
j=m−k+2 w0,j > 0. Thus k solutions are

possible for the small bump set if the self-excitation to a neuron exceeds the excitation arriving
from k neurons a bump width away. For the large bump set, multiple solutions are possible
if self-excitation dominates the inhibition arriving from k neurons a bump width away.

3.2.1. Stability. A given equiperiod bump with infinitely slow synaptic processing (α = 0)
is degenerate to arbitrary phase arrangements. Hence, any perturbation of the phase will not
affect a bump. Additionally, infinitesimally small perturbations to the input to any neuron
will have no effect, since generically no neuron in the network has an input that is arbitrarily
close to threshold. Thus all firing states in a lattice network are stable to small enough
perturbations. Hence, the more relevant question is whether or not the bump states are
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attractors with a nontrivial basin of attraction. Consider a lateral-inhibition-like coupling
function that yields a single large and small bump. In the Amari model, the large bump is
stable and the small bump is not. As we have discussed, in the discrete model, both are stable
to infinitesimal perturbations. In order to address the nonlinear stability question we need to
address the full dynamics.

We examine the ensuing dynamics of threshold crossing perturbations to the edge neuron
and next edge neuron. Consider first the small bump. Here, the recurrent excitation between
the neurons in the bump is just sufficient to sustain the bump. If the edge neuron is suppressed,
the internal neurons will receive subthreshold input and cease firing. The bump will then
collapse to the zero state. Conversely, if the next edge is induced to fire, it will induce its
neighbor and the opposite next edge to fire. Thus the set of firing neurons will spread. These
dynamics can be directly deduced from Figure 3.5. If neuron m + 1 begins to fire, the input
to neuron −1 will cross threshold and begin to fire. On the other hand, if neuron m stops
firing, the edge neuron 0 will stop firing as well.

Now consider the large bump where the opposite edges inhibit each other. If the next edge
neuron fires, it suppresses the opposite edge neuron. If the edge neuron stops firing, inhibition
is lessened on the opposite next edge, and it is induced to begin firing. Thus, a large bump
of width m is stable, although it could shift location if given a strong enough perturbation.
Dynamically, if too many neurons fire, they will suppress each other and the bump will
shrink. If too few neurons fire, the inhibition will be released and the silent neurons will be
induced to fire. The mechanism for this stability is a discretized version of the continuum
case first established by Amari [3]. These observations will be relevant later when we consider
wandering. It is important to note that stability and existence are inherently intertwined.
Henceforth, when we refer to a stable neuron we imply nonlinear stability.

3.3. Bumps on a lattice: Fast synapses. We now consider the case where the synaptic
decay rate α is nonzero. Simulations on a discrete lattice show that a stable bump is possible
for small enough α. However, if the synaptic decay rate α is increased sufficiently, a stationary
bump will not exist. For the no phase reset version of the model, for large enough α, the
location of the bump can shift in a seemingly random way which we call wandering. However,
as we will discuss in section 3.4, the instant reset version does not support wandering for large
α. In the instant reset model, a neuron must receive continuous above-threshold input to fire,
so a finite set of neurons cannot maintain self-sustained firing if the synaptic decay rate is so
fast that the sum total of the input to any neuron that exceeds threshold has a time duration
less than 1. As such, the instant reset model either has a stationary equiperiod bump solution
or the zero solution where no neuron fires.

Hence in this section we examine possible stationary solutions for the no phase reset
version of the lighthouse model for nonzero synaptic decay rate. In this version, each time a
neuron receives above threshold input its phase advances towards threshold. As shown in the
proposition below, if α is extremely large, then no self-sustaining bump can exist. However,
there can be a range of α for which stationary and wandering bumps can exist.

Proposition 2. For a fixed coupling function and lattice spacing, there exists an α large
enough so no self-sustained activity can exist in a finite set of neurons. Hence no bump can
exist for large enough α.
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We can prove this by considering a set of m neurons that form a self-sustaining set.
Whenever a neuron receives suprathreshold input, its phase is advanced at rate 1 for the
duration of time that the input exceeds threshold. Hence, suprathreshold input must total a
time of 1 before the neuron will fire. The maximum rate at which a neuron can fire in the
lighthouse model is 1. To sustain activity in a set of neurons, the net output of the neurons
in the set must provide sufficient input to maintain firing in all the neurons. The input to a
neuron is the weighted sum of synaptic pulses from all neurons in the bump. For any fixed
threshold, the synaptic decay rate α can be made large enough so that the suprathreshold
duration for the synaptic input due to a given firing event can be made arbitrarily short.
When the duration is so short that a neuron requires more than m firing event inputs to fire,
then the network cannot sustain itself.

We now investigate the dynamics for α nonzero but not large enough so that no bump
can exist. For α nonzero and all neurons firing periodically with rate 1, the synaptic input to
a neuron is no longer constant in time but is given by

ui(t) =

m∑
j=0

wijP (t− ψj),(3.17)

where P (t) = P (t + 1). For our specific example P (t) = αe−αt/(1 − e−α), 0 ≤ t < 1. The
input function ui(t) now depends on the phases of the firing times of the neurons. As before,
in order for a stationary equiperiod bump to exist, the input to the edge neuron must be
entirely above threshold, and the input to the next edge must be entirely below threshold.
We can thus re-express the existence conditions in terms of the following generalized existence
functions:

φne
m (α) = sup

t

m∑
j=0

w−1,jP (t− ψj),(3.18)

φe
m(α) = inf

t

m∑
j=0

w0,jP (t− ψj).(3.19)

Again we require

φne
m (α) < h ≤ φe

m(α)(3.20)

for an equiperiod bump.
We see for our specific choice of η(t) that as α increases, the maximum of P (t) increases

and the minimum decreases. Thus for large enough α the existence conditions will be violated
and no equiperiod bump can exist. We can show this more explicitly. When α increases from
zero, ui(t) on the edge may not remain above h for an entire period. As an example, consider
a synchronous bump where all neurons fire together. First we define the sum

Wm
i =

m∑
j=0

wij .(3.21)
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If all the neurons in the bump are synchronized, we can shift the phase so that ui(t) = Wm
0 P (t).

On [0, 1), the minimum of P (t) is αe−α/(1 − e−α), and the maximum is α/(1 − e−α). The
existence condition of an equiperiod bump will not be satisfied when

φne
m = Wm

−1

α

1 − e−α
≥ h(3.22)

or

φ0
m = Wm

0

αe−α

1 − e−α
< h.(3.23)

Thus, for each fixed α, there is a critical lattice spacing, below which there is no equiperiod
bump. Consider the difference dm = Wm

0 − Wm
−1. By translational invariance of wij , dm =

w00 − w0,m+1. Recall that wij = w(|i − j|δx)δx for a fixed function w(x). Consider keeping
the bump width Δ fixed in space while reducing δx. This implies that the number of neurons
in the bump m must scale as m = Δ/δx. We can then write dm = (w(0) − w(Δ + δx))δx.
As expected, dm scales as δx. Hence, as the lattice spacing decreases, Wm

0 approaches Wm
−1,

which implies that φne
m (α) will approach φe

m(α). When the two existence curves meet, the
equiperiod bump will no longer exist.

The crucial fact for the nonexistence of the equiperiod bump is that if the input function
ui(t) is not constant, then it will have a maximum and a minimum. The minimum of the
edge must remain above threshold, while the maximum of the next edge must remain below
threshold for an equiperiod bump to exist. Figure 3.8 (below) shows an example of ui(t) of
the edge and next edge neurons of a bump situated above and below threshold, respectively.
As the lattice spacing decreases, the maximum of the next edge will approach the minimum of
the edge and eventually violate the condition for the existence of an equiperiod bump. Hence,
even if the neurons do not fire synchronously, the existence condition for α nonzero will still
be violated for α large enough or δx small enough. For any phase arrangement ψj , ui(t) will
always have a time-dependence on a finite lattice. The input function ui(t) will be constant
only if P (t) is constant, and P (t) is constant only if α = 0.

In fact, the input function u(t) cannot be constant even in the continuum. We can see
this by considering (3.1). Clearly if ψ(y) is differentiable, then u(x, t) is not a constant unless
either P (t) or w(x) are constant. If ψ(y) is discontinuous on a countable set in the interval,
then the integral can be written as a sum of integrals over separate intervals between the
discontinuous points. Each piece is not constant in time, so the same argument that u(x, t)
cannot be constant applies. We summarize our results (for the no phase reset lighthouse
model) in the following propositions.

Proposition 3. For a fixed lattice spacing δx, there exists a large enough α such that there
is no equiperiod bump. Conversely, for a fixed α > 0, there exists a small enough δx so that
there is no equiperiod bump.

Proposition 4. A continuum equiperiod bump cannot exist for α > 0 if neither w(x) nor
P (t) are constants.

Propositions 3 and 4 do not negate the possibility of a nonequiperiod bump. During
the time that the input is suprathreshold, the phase of the neuron will advance at rate 1.
When the accumulated time of the intervals of suprathreshold input is equal to 1, the neuron
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will reach threshold and fire. Thus we could have an α such that a set of interior neurons
receive above threshold input while a set of adjacent neurons receive above threshold input
intermittently. These neurons will advance towards the firing threshold at a rate slower than
1. This could result in a bump solution with an interior region of neurons firing with rate 1
and an exterior region where the rate decreases to zero as the edge is approached. An example
of a nonequiperiod bump is shown in Figure 3.4 (right panel).

Determining the width of a nonequiperiod bump is difficult because the firing rate in the
exterior region must be calculated explicitly from the neuronal dynamics. However, we can
present an argument that nonequiperiod bumps can exist for α > 0 for a suitably chosen
coupling kernel. We first introduce the following definition.

Definition 6. The interior edge of a bump is the neuron nearest to the edge that is firing
with period 1. It divides the bump into an interior region where the firing rate is 1 and an
exterior region where the firing rate is nonzero but not 1.

Suppose we choose wij so that a symmetric equiperiod bump with all neurons firing in
phase on the set {0, . . . ,m} exists for α = 0 and so φne

m < h ≤ φe
m. We want to show that

there exists an α > 0 such that the original next edge neurons of this bump will fire and
become the new edge of a nonequiperiod bump. The original edge becomes an interior edge.
Hence we need to show that there exists an α such that (1) inf

∑m+2
j=0 w1,jPj(t− ψj) ≥ h, (2)

sup
∑m+2

j=0 w0,jPj(t− ψj) > h, and (3) φne
m+2 < h.

Consider a stable large bump so that wij is positive for |i−j| > n where n < m and negative
elsewhere, so that neurons in the bump give a positive stimulus to their near neighbors. We
also suppose that they give a weaker negative stimulus to the neurons on the opposite side of
the bump. We can then choose h such that it is larger than φe

m+2 to satisfy condition (3). We
note that for a neuron firing with period T , 1/T − α/2 ≤ P (t) ≤ 1/T + α/2. Thus, we can
choose an α such that the original next edge begins to fire at an arbitrarily low rate which
satisfies condition (2). Each time this neuron fires it gives a stimulus to each neuron in the
network. For a symmetric bump, the two next edges fire synchronously, so the net effect is a
positive impulse on the original edge. Since the input is already above threshold, this added
input will not violate condition (1). The new next edge will also receive a positive stimulus.
However, for a small enough α it can remain below threshold, so that condition (3) is still
not violated. Thus we have a nonequiperiod bump with m neurons in the interior and two
neurons in the exterior.

3.4. Bump wandering states. It was found in simulations of the IF model that as the
synaptic decay rate α is increased, the stationary bump state can destabilize and begin to
wander [18]. For even larger α, traveling waves can arise, and finally for fast enough α no
sustained activity exists. In simulations of the no phase reset lighthouse model, we find that
for increasing α there is a transition to wandering, and for high enough α a bump cannot be
self-sustained. However, traveling waves are not observed in the lighthouse model. Figure 3.6
shows an example of wandering in a numerical simulation of the lighthouse model.

We can see how wandering may occur by considering the conditions for firing near the
edge of the bump. For increased α, the firing rate of the edge neuron could decrease, while the
next edge could begin to receive suprathreshold input (for some of the time) and thus begin
to fire. The next edge firing would then give inhibitory input to the opposite edge and might
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Figure 3.6. Raster of a wandering bump. Parameters are N = 400, h = 0.1, wij = 2.1e−|i−j|/60 −
2e−|i−j|/75 and α = 3.5.

cause it to cease firing. In this case the bump could experience a state of frustration where
there is no satisfactory equilibrium state to which it can settle. The consequence is that a
set of contiguous firing neurons could exist, but the set might not be of a fixed width or at a
fixed location. The result could be a wandering set of contiguous neurons.

We have shown previously that, for large enough α, the edge neurons will decrease their
firing rate and next edge neurons will receive above threshold input and begin to fire. Recall
that a bump is defined as the set of contiguous neurons that fired within the last window
of period one. Given that the edge and next edge neurons fire at a slower rate than the
interior neurons, the bump width for time intervals over this window will not be stationary.
However, the bulk of the bump could still remain in place. If α is not too large, the neurons in
the interior of the bump will receive above threshold input continuously and fire with period
1. With this in mind, we make the concept of wandering more precise with the following
definition.

Definition 7. A bump is wandering if the position of the interior edge is neither time sta-
tionary nor periodic.

We argue that a wandering state can exist by first demonstrating that there is a non-
stationary attractor state comprised of a contiguous set of firing neurons. As we discussed
in section 3.2.1, there exists an attractor for a set of bump widths. Consider a stable large
bump of width m for α = 0 with existence functions of the generic form in Figure 3.5. For
such a bump, contiguous sets of firing neurons broader than m will result in strong inhibition
to the edge neurons, and the set will diminish. Conversely, for sets smaller than m, but not
smaller than the small bump, inhibition will be reduced to the next edge neurons, inducing
them to fire and the set will expand. For α nonzero, the inputs to each neuron will no longer
be constant in time but will remain bounded. However, for nonzero α there will be a range
of α for which this attractor property will still hold.

To show that wandering can exist we must first establish the following proposition.
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Figure 3.7. Rasters for α = 2.789 with 0.001 difference in θi initial conditions. Parameters are N − 1200,
wij = 2.1e−|i−j|/60 − 2e−|i−j|/75, and h = 0.1

Proposition 5. The firing of the interior edge can be perturbed by the firing of a single
exterior neuron and depends sensitively on the firing phase.

We first consider a nonequiperiod bump where the interior has more neurons than the
exterior and the input from exterior neurons is positive to the adjacent interior edge but
negative to the opposite interior edge. For small enough α, the input to the interior edge is
bounded away from the threshold h. As α increases, two things can occur. One is that the
infimum of the interior edge input will decrease. The second is that the maximum amplitude
of inputs from exterior neurons will increase. When α is large enough such that the input
from an exterior neuron is large enough to drop the interior edge input below threshold for
some temporal duration, then the interior neuron’s firing will be delayed and it will no longer
fire with rate one.

For a bump with a finite number of neurons, the local infima of the interior edge comprise
a finite set. Input from the exterior region will arrive as individual positive or negative
exponentially decaying pulses. Hence, there should exist a range of α such that an exterior
neuron can slow the firing rate of the interior edge only if it fires in a time window that overlaps
with an interior edge infimum. This window can be made arbitrarily small by adjusting α.
When the interior edge slows, it no longer has rate 1 and hence no longer belongs to the
interior set. Conversely, a next edge neuron could be receiving input that is above threshold
except at a few isolated locations around the infima. When these neurons receive a positive
input that overlaps with an infimum, they can fire with rate 1 and thus become an interior
edge. Hence, the location of the interior depends sensitively on the firing phase of the exterior
neurons.

This also explains why there is no wandering for the instant reset lighthouse version. Here,
when the input to an interior neuron drops below threshold for no matter how brief a time,
the phase will be instantly reset to zero, and thus the neuron will no longer fire. Additionally,
while the next edge neurons receive intermittent above threshold input, their phases do not
advance because they are reset each time the input drops below threshold. Hence, they can
never fire. Thus infinitesimal perturbations can only shrink a bump so no wandering can
occur.

Figure 3.7 shows the sensitivity to initial conditions for a bump that is initially near
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Figure 3.8. Inputs to one edge (red) and next edge (blue) for wij = 2.1e−|i−j|/60 − 2e−|i−j|/75, h = 0.1,
and α = 2.789 for the same initial conditions as in Figure 3.7.
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Figure 3.9. Voltage of opposite next edges for wij = 2.1e−|i−j|/60 − 2e−|i−j|/75, h = 0.1, and α = 2.789 for
the same initial conditions as in Figure 3.7.

synchronous in a simulation. The bump was driven above threshold for the first 20 time
units. The initial phases were randomized within a small neighborhood of zero phase (θi(t =
0) < 0.01). In the left-hand panel of Figure 3.7, a stable bump is present. Note that the edge
neurons fire at a slightly slower rate than the interior neurons and the next edge fires with a
very long period. The initial conditions in the left-hand panel differ from those on the right
by randomizing the phases in a small neighborhood of the zero phase that is 0.1% larger, but
a wandering bump arises. Thus there is a neighborhood of initial phases around zero that
tend to lead to a stationary bump. Initial conditions outside of this neighborhood lead to
wandering. For voltages initialized to random values between 0 and 1, wandering would be
generic. The crucial event that induced wandering occurs at time 30 when one of the next
edges fires but the other does not. If both fire together, then their effects on the interior
edges essentially cancel out and the stable bump will persist. Figure 3.8 shows the input
to the lower edge and next edge. In the left-hand graph, we can see that the inputs to the
neurons just barely cross threshold, but the bump can tolerate such excursions. However, in
the right-hand graph, one of the crossings disrupts the bump, and wandering ensues. Figure
3.9 shows the voltages of the two opposite next edges. On the left we see the voltages reach
threshold together and thus fire together. However, on the right, one of the next edges reaches
threshold first and gives an inhibitory pulse to the opposite next edge, delaying its firing. This
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Figure 3.10. An example of 〈[x(t)−x(t− τ)]2〉 versus τ for a numerical simulation with N = 400, δx = 1,
h = 0.1, wij = 2.1e−|i−j|/60 − 2e−|i−j|/75, and α = 1.4. The graph was obtained from an average over 20 trial
runs of length 20, 000 time units. Linear scaling with τ indicates that wandering is a diffusion process.

breaking of symmetry allows wandering to take place.
The implication of Proposition 5 is that time stationary bumps do not exist for sufficiently

large α, since arbitrarily small rearrangements of the phases could change the input to the
neurons and shift the interior edge. However, this does not show that the bumps will wander.
They could breathe in and out at a given location or move back and forth periodically. What
we need to show is that the bump can shift either left or right, and that the shift does not
depend on history. Given that an interior edge can become an exterior neuron and vice versa,
we see that shifts could occur in either direction. For a stable large bump, the edges on
opposite sides of the bump inhibit each other. Thus, if say the left inner edge moves left,
inhibition will increase on the right edge and force it to move left as well. If the inner edge
moves right, inhibition will be lessened on the right edge and it will move right as well. For
the exponential synaptic function, if α > 1, the influence of a neuronal firing decays quickly
beyond one period. Thus, past shifts should have little or no effect on future shifts. Hence,
after each period, the bump is as likely to move left as right. Thus, wandering is equivalent
to a random walk on a lattice. This implies that the position of the inner edge of a bump x
will obey 〈(x(t) − x(t − τ))2〉 = Dτ , with D ∝ δx2/Ts, where δx is the lattice spacing and
Ts is the average time for a perturbation of a firing neuron to cause a right- or leftward shift.
The graph of 〈(x(t) − x(t− τ))2〉 versus τ in Figure 3.10 for a direct numerical simulation of
the lighthouse model verifies that that wandering is a random walk (i.e., diffusion process).

Figure 3.11 shows a plot of the diffusion constant for different δx. We see that it increases
linearly in δx. We can see why this should be true by examining the four key quantities that
govern wandering: (1) the amplitude of the input due to the firing of one neuron, (2) the
distance to threshold for the interior edge and next interior edge neurons, (3) the average
shift size of the bump, and (4) the average time step per shift. The amplitude of the input to
location x from a single neuron at y is given by η(t)w(x−y)δx. The distances to threshold are
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Figure 3.11. Diffusion coefficient as a function of δx, with α = 2.5 and the other parameters as in Figure
3.10.

given by dneT = φne
m (α)− h and deT = φe

m(α)− h. For small δx, given the smoothness of u(x, t)
in x, dne

T and deT both should scale as δx. As δx decreases, the amplitude of an individual
input from a neuron will decrease, but so too will the distance to threshold. Hence, as the
lattice spacing decreases, the threshold α for initiating wandering will not change appreciably.
However, the minimum shift the interior edge can take also scales as δx. Thus, at the lattice
length scale, wandering of the interior edge will take place regardless of the spacing. However,
on the global length scale of the bump, the wandering step size will decrease with δx. Finally,
each step is potentially induced by the firing of a neuron within the bump. Therefore, it is
reasonable to expect that the step time Ts will scale with δx since the number of neurons in the
bump scales as δx−1. Hence, the result is that wandering decreases to zero as δx approaches
zero. Figure 3.12 shows the dependence of the diffusion coefficient on α. Interestingly, the
dependence seems to be D ∝ ekα, for some constant k. Thus D(α, δx) ∝ ekαδx.

4. Discussion. In this paper we have revisited the lighthouse model within the context
of localized reverberatory activity that can underlie the formation of attractor bump states,
both stationary and nonstationary (wandering). In particular, we have shown how this model
can be viewed as a natural extension of the Amari model to include the effects of nonslow
synaptic processing. Although the model is clearly a highly simplified and abstract model
of a neuron, it does possess network behavior that is reminiscent of more biological neuron
models.

One prediction of our work, supported by direct numerical simulations, is the possibility
that bump states with differing widths can coexist. This simple prediction would not be forth-
coming in a purely firing rate model (that has no knowledge of underlying spiking patterns),
and would seem to be a hard quantitative prediction to make from the analysis of IF networks.

Moreover, the lighthouse model’s simplicity lends itself naturally to both continuum and
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Figure 3.12. Diffusion coefficient as a function of α for wij = 2.1e−|i−j|/60−2e−|i−j|/75, δx = 1, N = 400,
and h = 0.1.

lattice studies. Indeed by analyzing both we have been able to clarify the role of discreteness
in contributing to emergent bump dynamics. In particular, we have shown that multiple width
bumps can coexist on a discrete lattice and that wandering bumps can coexist with stationary
bump states. Moreover, by tracking the dynamics of bump edges, we have seen a form of
competition giving rise to an equal probability that a bump will move left or right, resulting
in an effective random walk of the bump. Our studies suggest a diffusion coefficient that scales
with the exponential of the rate of synaptic processing and linearly with the lattice spacing.
Interestingly, our numerical simulations of the IF model (data not shown) also seem to exhibit
similar scaling for the diffusion coefficient on α and δx. Although this result warrants further
investigation, it does give further evidence that the lighthouse model can generate dynamics
consistent with that of other popular spiking neural networks.

A number of natural extensions of the work presented here suggest themselves. One would
be to study the dynamics of moving bumps. In contrast to an IF network, the lighthouse model
does not generate waves in response to a brief localized initial stimulus. To obtain a traveling
bump in the first instance one would need to augment the lighthouse model to include a form
of spike frequency adaptation, as in the work of Hansel and Sompolinsky [26] and Pinto and
Ermentrout [23], or perhaps an asymmetry in the synaptic footprint, as in the work of Zhang
[27], or even an adaptive threshold, as in the work of Coombes and Owen [28]. The persistence
of solutions in the presence of noise is also of interest. We say so mainly because the addition
of noise is known to reduce wave speed to turn a traveling bump into a stationary bump,
so that in this sense noise can lead to stabilization [29]. Another important study would be
to treat heterogeneous networks, say with a distribution of natural single neuron frequencies
and thresholds, i.e., by considering θ̇i = ωiH(ui − hi). Even for a globally coupled network
this might shed light on how heterogeneity can often lead to the emergence of long time-
scale oscillations, as in the network studies of Smolen, Rinzel, and Sherman [30]. Moreover,
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deviation from the lattice is completely equivalent to manipulating the coupling function w.
The influence of this type of heterogeneity could certainly destroy bump solutions. Including
them in the lighthouse model would open up a whole new avenue of research, which might
initially be tackled using techniques developed in [31, 32, 33].
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Abstract. In this work, we describe a new mechanism for the generation of multipulse solutions in a class
of nonlinearly coupled Schrödinger equations. Many novel pulses have been observed in such sys-
tems both numerically and experimentally, but, until now, an understanding of their origins has
been lacking. The particular bifurcation studied here is spurred by the passage through degener-
acy of a one-component pulse in orbit-flip configuration. We provide a straightforward geometric
analysis, demonstrating the production not only of a multicomponent 1-pulse nearby the original
one-component pulse, but also of an entire family of alternating N -pulses, for all positive integers N .
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1. Introduction and statement of results. Equations of nonlinear Schrödinger (NLS)
type provide models in various optical contexts for the propagation of a single electro-magnetic
field. In order to describe phenomena in which multiple fields are present, such models are
augmented to include two or more NLS equations, coupled together through the nonlinearity.
For example, such coupled equations describe the effects of birefringence in an optical fiber [1]
and incoherent beam interaction within a photorefractive slab [2].

The solitary wave solutions (solitons) often found in such NLS equations have garnered
much recent attention; these solitons are ideally suited to serve as information carriers in
modern optical systems. The coupling required to model multiple fields opens the possibility
of finding novel solitary wave solutions not seen when only a single field is present. In fact, a
variety of multicomponent and multipulse solitary waves have been observed for such coupled
systems in a number of works, both numerically [1, 2] and even experimentally [3]. However,
an analytic explanation for the presence of such multipulse solutions has been desired [4] and
until now has been absent. In the current paper, we identify the properties that make these
coupled systems ripe for interesting behavior and we provide a straightforward geometric
analysis detailing the unfolding of a family of multipulse solutions.

∗Received by the editors August 5, 2005; accepted for publication (in revised form) by T. Kaper May 15,
2006; published electronically November 14, 2006. This work was supported by a grant from the National Science
Foundation under award number DMS-0202542. The U.S. Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.
Copyright is owned by SIAM to the extent not limited by these rights.

http://www.siam.org/journals/siads/5-4/63768.html
†Mathematics Department, U.S. Naval Academy, Annapolis, MD 21402 (rkjackso@usna.edu).

575

http://www.siam.org/journals/siads/5-4/63768.html
mailto:rkjackso@usna.edu


576 RUSSELL K. JACKSON

We consider a general coupled system of the form

iuz + uxx + h1(|u|2, |w|2)u − u = 0,

iwz + wxx + h2(|u|2, |w|2)w − r2w = 0,
(1)

where 0 < r < 1 is a normalized propagation constant and h1(·) and h2(·) model the material
properties. We further assume that (1) has a Hamiltonian structure. Both Haelterman and
Sheppard’s model [1] for birefringence in optical fibers, where

h1(|u|2, |w|2) = (1 −B)|u|2 + (1 + B)|w|2,
h2(|u|2, |w|2) = (1 + B)|u|2 + (1 −B)|w|2,

(2)

and Ostrovskaya and Kivshar’s model [2] for incoherent beam interaction in a biased photo-
refractive crystal, where

h1(|u|2, |w|2) = h2(|u|2, |w|2) =
|u|2 + |w|2

1 + s(|u|2 + |w|2) ,(3)

can be written in this way.
Stationary waves are real-valued, pulse-like solutions that do not vary with z. In sys-

tem (1), a stationary wave can then be interpreted as an orbit homoclinic to the origin in the
related system of ordinary differential equations

u′′ = −h1(|u|2, |w|2)u + u,

w′′ = −h2(|u|2, |w|2)w + r2w,
(4)

where ′ indicates differentiation with respect to x. For reasonable incarnations of the nonlin-
earity h1(·)—including h1(·) nonnegative (a focusing nonlinearity), s, and B (above) not too
large—there is a symmetric pair of stationary waves of the form (U0(x), 0) and (−U0(x), 0)
which are independent of the parameter r. Our bifurcation values will be values of the param-
eter r strictly between 0 and 1 for which these one-component stationary waves are degenerate,
where degeneracy is defined precisely in Property 5 of section 2. For such parameter values,
we prove the following result.

Theorem 1. Suppose that the ordinary differential equation (4) supports a single-component
pulse (U0(x), 0), and that this pulse is degenerate for a particular parameter r = r∗ with
0 < r∗ < 1. Then, under the condition defined in (19), there exists a multicomponent pulse
near (U0(x), 0) for all r in a small parameter neighborhood with r > r∗. Additionally, for
every r in this parameter neighborhood, there also exists an N -pulse solution, alternating in
the sign of first component, for every positive integer N .

Examples of the multicomponent 1-pulse and the 2-pulse are shown in Figure 1.
In section 2, we discuss our geometric method of proof and outline the properties of (4)

and of the fast one-component pulse (U0(x), 0) that are pertinent to the bifurcation analysis.
Additionally, we provide a sketch of the bifurcation values for both of our motivating examples:
the fiber birefringence model (2) and the incoherent beam interaction model (3). Also of
special note is the simplification of the flow in a neighborhood of the origin achieved by an
application of Theorem 1.2 of Banyaga, de la Llave, and Wayne [5].



PULSES IN COUPLED NLS EQUATIONS I 577

u(x)

w(x)

u(x)

w(x)

u(x) 

w(x) 
x 

u(x) 

w(x) 
x 

Figure 1. Theorem 1 guarantees the existence of a variety of stationary waves near a value of the parameter
r where the single-component pulse (U0(x), 0) is degenerate. The top left panel shows the single-component pulse
in (3) with s = 0.8. The top right panel shows a bifurcating one-pulse with r2 = 0.45. The bottom left panel
shows another bifurcating one-pulse when r2 is increased to 0.65. The bottom right panel shows an alternating
2-pulse for this same parameter value r2 = 0.65. Such alternating concatenated N-pulses exist nearby in the
phase space for all N .

In section 3, we construct Poincaré cross-sections Σin and Σout transverse to the pulse
U0(x) in phase space; this allows us to consider the flow near the fixed point at the origin and
the excursion far from the origin separately. The behaviors in these regions are reflected in
the transition maps Φnear and Φfar between these sections. A careful study of the composition
of these maps yields the proof of Theorem 1. We note especially that the flow near the origin,
as reflected in the map Φnear, differs substantially depending upon whether the bifurcation
parameter satisfies r∗ < 1/2 or r∗ ≥ 1/2; however, the conclusion of Theorem 1 holds in either
case.

2. The procedure and pertinent properties. We are interested in stationary waves of (4)
bifurcating from the solution U0(x), for functions h1(·) where such a single component wave
exists. There are several different parameter regimes (in r) where we might expect nontriv-
ial behavior near such a wave, resulting in a bifurcation of additional pulses. For instance,
near r = 1, the problem displays a resonance in which all of the eigenvalues at the origin
have the same magnitude. This is one possible bifurcation value, and has been studied by
Yew, Sandstede, and Jones [6]. Their analysis near this resonance uses the method devel-
oped sequentially by Hale [7], Lin [8], and Sandstede [9], sometimes called the homoclinic
Lyapunov–Schmidt method (and, in any case, abbreviated as the HLS method). Another
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possible bifurcation may be expected at the other extreme, near r = 0. Here, the origin has
a pair of zero eigenvalues and ceases to be hyperbolic. This limit is of interest for further
study but will not be considered in this paper. We remark that the work of Champneys and
Yang [10] provides some insight into the dynamics in this regime.

In this paper, we consider intermediate bifurcation values: parameter values r between
0 and 1 for which the fast stationary wave solution U0(x) is degenerate, as defined in Property 5
below.

We prove Theorem 1 using a geometric method, in the spirit of Homburg, Kokubu, and
Krupa [11]. The usual geometric method proceeds by defining sections that divide the flow
near a homoclinic orbit into two regions: a near region around the critical point, where the
dynamics are dominated by the linearized flow; and a far region, away from the critical point,
where the behavior is governed by rectilinear flow. The full behavior can then be determined by
considering the interplay between these two regimes. This method has been used successfully
to analyze other homoclinic flip bifurcations: for instance, the orbit flip and the inclination
flip; see Homburg, Kokubu, and Krupa [11], Nii [12], or Homburg and Krauskopf [13], for
example. Several works have also analyzed degenerate homoclinic solutions in other contexts,
including Vanderbauwhede [14] and Fiedler and Turaev [15].

In the more analytic HLS method, piecewise continuous solutions are defined between
sections with jumps allowed only in a specified direction within these sections. Homoclinic
orbits correspond to solutions where the jumps can all be set to 0. Despite the increased
generality of the HLS method, the geometric mechanisms for multipulse production are often
hidden behind detailed remainder estimates. Analyses of this type can be seen for various
bifurcations in Sandstede [9], Yew [16], Sandstede, Jones, and Alexander [17], Knobloch [18],
or van Gils, Krupa, and Tchistiakov [19]. The work of Knobloch [18] is especially pertinent,
as it also examines degenerate pulse solutions in the presence of additional structure.

In the first part this section, we outline the properties of the ordinary differential equa-
tion (4) and of its one-component pulse solution (U0(x), 0) that impact the bifurcation. Before
proceeding, we implement the standard convention of reducing a second order system (4) to
an equivalent system of first order equations:

u′ = p,

w′ = q,

p′ = u − h1(|u|2, |w|2) u,

q′ = r2w − h2(|u|2, |w|2) w.

(5)

We sometimes abbreviate this system as

v′ = f(v)

for v in R
4. For r > 0, this system has a hyperbolic fixed point at the origin with eigenvalues

given by −1, −r, r, and 1. The stable and unstable manifolds of this fixed point are both two
dimensional.

Property 1. The system (5) is Hamiltonian; i.e., there is a function H(u,w, p, q) such that
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u′ = −∂H
∂p ,

w′ = −∂H
∂q ,

p′ = ∂H
∂u ,

q′ = ∂H
∂w .

(6)

Property 2. The system (5) is time-reversible; i.e., there exists an involution R : R
4 → R

4

with R2 = I such that

f(R(u,w, p, q)) = −R f(u,w, p, q).

In particular, R acts as R(u,w, p, q) = (u,w,−p,−q).
Property 3. There is a pair of additional symmetries S1 and S2 such that, for i = 1, 2,

f(Si(u,w, p, q)) = Si f(u,w, p, q).

These are S1(u,w, p, q) = (−u,w,−p, q) and S2(u,w, p, q) = (u,−w, p,−q).
Regarding Property 1, in the model given in (2) for pulse propagation in a birefringent

fiber, the Hamiltonian has the form

HHS(u,w, p, q) = −1
2(p2 + q2) + 1

2(u2 + (rw)2)

− 1
4

(
(1 −B)u4 + 2(1 + B)u2w2 + (1 −B)w4

)
.

(7)

In the case of the model in (3) for incoherently interacting beams in a photorefractive crystal,
we have

HOK(u,w, p, q) = −1
2(p2 + q2) + 1

2(u2 + (rw)2)

− 1
2s2

(
s(u2 + w2) − ln(1 + s(u2 + w2))

)
.

(8)

It follows from Property 3 that the two dimensional subspaces

U = {(u,w, p, q) | w = q = 0}

and

W = {(u,w, p, q) | u = p = 0}

are invariant. These subspaces correspond to one of the two fields being identically zero; in
either of these subspaces, the system behaves as a simple Newtonian vector field in a plane.
In the subspace U , for many variations of the focusing nonlinearity h1(·), there is a symmetric
pair of homoclinic orbits: we denote the solution with positive u-part U0(x) and call this pulse
the fast pulse. With a slight abuse of notation, we often refer to the solutions (U0(x), 0) of (4)
and (U0(x), 0, U ′

0(x), 0) of (5) both simply as U0(x). Note that both the fast pulse U0(x) and
its partner S1U0(x) are independent of the parameter r. Similarly, for a reasonable variety
of focusing nonlinearities h2(·), when r > 0, there is a symmetric pair of homoclinic orbits in
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W . The pulse with positive w-part is called the slow pulse, and both the slow pulse and its
reflection via S2 vary with the parameter r.

Here we also take note of several important properties of the fast pulses U0(x) and S1U0(x)
within the four dimensional phase space of (5).

Property 4. For r < 1, the elementary pulses U0(x) and S1U0(x) are in orbit flip config-
uration. That is, as x → ±∞, U0(x) and S1U0(x) approach the origin in phase space via a
direction other than the one associated with the eigenvalues of smallest real part.

Property 5. Depending upon the functions h1(·) and h2(·), for particular values of
the parameter r between 0 and 1, the pulses U0(x) and S1U0(x) may be degenerate, i.e.,
dim(TU0(x)W

u(0) ∩ TU0(x)W
s(0)) > 1.

Property 4 holds because the fast pulse U0(x) lies in the invariant subspace U and so must
approach the origin as x → ±∞ tangent to the eigenvectors corresponding to the eigenvalues
1 and −1. However, a generic solution in the stable or unstable manifold in the R

4 approaches
the origin as x → ±∞ tangent to an eigenvector associated with the eigenvalues ±r.

Property 5 says that, for particular values of the parameter r, the global stable and
unstable manifolds are tangent along the pulse U0(x). In general, the presence of any homo-
clinic orbit indicates an intersection of at least one dimension of the spaces TU0(x)W

u(0) and
TU0(x)W

s(0); in particular, these spaces will always have the vector U ′
0(x) in common. The

degeneracy specified in Property 5 indicates that, for particular values of the parameter r,
there may be yet another vector common to both tangent spaces. Because this is a property
of the tangent spaces about a pulse, such parameter values can be isolated by studying the
linearization about the fast pulse U0(x) (or its twin S1U0(x)). This will be pursued in detail
in the subsection below.

The degeneracy described in Property 5 is sometimes called a homoclinic flip, as the
orientation of the global unstable manifold of the origin, followed along the solution U0(x),
can be expected to change as r passes through such a value.

2.1. Degeneracy and Sturm–Liouville. In this subsection, we consider the problem of
identifying values of the parameter r for which the pulse U0(x) is degenerate, as defined in
Property 5, above. This turns out to be a Sturm–Liouville problem, the analysis of which is
well known. For completeness, we include a review of this theory that is in keeping with our
geometric outlook.

We write the solution U0(x) of (5) in component form as (U0(x), 0, U ′
0(x), 0). Linearizing

this equation about this pulse yields the nonautonomous system

U ′ = P ,

W ′ = Q,

P ′ =
(
1 − h1(U

2
0 (x), 0) − 2 U2

0 (x) D1h1(U
2
0 (x), 0)

)
U,

Q′ =
(
r2 − h2(U

2
0 (x), 0)

)
W.

(9)
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This decouples into the two smaller systems{
U ′ = P ,

P ′ =
(
1 − h1(U

2
0 (x), 0) − 2 U2

0 (x) D1h1(U
2
0 (x), 0)

)
U,

(10)

{
W ′ = Q,

Q′ =
(
r2 − h2(U

2
0 (x), 0)

)
Q.

(11)

The first system (10) has a bounded solution given by (U ′
0(x), U ′′

0 (x)); this solution captures
the trivial intersection of the tangent spaces induced by the mere existence of a homoclinic
orbit. The degeneracy described in Property 5 can then be interpreted as a simultaneous
bounded solution of the second system (11). We wish to understand the conditions under
which we may expect such a degeneracy to occur for some r > 0.

We simplify the system (11) for consideration in two ways. First, since these equations are
linear, we projectivize the flow. To this end, we introduce the radial and angular variables, ρ
and θ, satisfying

ρ2 = W 2 + Q2,

tan(θ) = Q
W .

It is a simple exercise to show that this substitution yields the equivalent system

ρ′ =
(
1 + (r2 − h2(U

2
0 (x), 0))

)
sin(2θ) ρ,

θ′ =
(
r2 − h2(U

2
0 (x), 0)

)
cos2(θ) − sin2(θ).

(12)

Note especially that the equation for θ is independent of ρ. We can therefore consider only
the second equation of (12)—a nonautonomous flow on the real projective space RP 1.

Second, since we are interested in the behavior of orbits as x → ±∞, we compactify the
evolution variable. In order to clarify the asymptotic behavior, we use Terman’s convention
and set

τ = tanh(κx),

where κ is chosen to be appropriately small, e.g., 0 < κ < 1
2 , so that

U2
c (τ) = U2

0

(
1

2κ
ln

(
1 + τ

1 − τ

))

can be extended in a C1 fashion from the open interval (−1, 1) to its closure. Hence we have

θ′ =
(
r2 − h2(U

2
c (τ), 0)

)
cos2(θ) − sin2(θ),

τ ′ = κ(1 − τ2),
(13)

which is an autonomous flow on RP 1 × [−1, 1]. The spaces τ = −1 and τ = +1 are now
invariant and carry the asymptotic flows. In these spaces we simply have

θ′ = r2 cos2(θ) − sin2(θ),

τ ′ = 0.
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For r > 0, the asymptotic system has two fixed points between −π/2 and π/2; these are
θ+ = + tan−1(r) and θ− = − tan−1(r). Solutions of the linearized equation (11) that decay as
x → −∞ correspond to solutions of (13) that tend to (θ+,−1) ∈ RP 1 × (−1, 1] as x → −∞.
Likewise, solutions of the linearized equation (11) that decay as x → +∞ correspond to
solutions of (13) that tend to (θ−,+1) ∈ RP 1 × [−1, 1) as x → +∞. And hence a bounded
solution of (11) corresponds to an orbit of (13) connecting (θ+,−1) and (θ−,+1).

We then have the following shooting problem. As r > 0 is allowed to vary, we follow the
nontrivial solution θr that approaches (θ+,−1) as x → −∞. As x increases, this solution will
wind around the cylinder for τ ∈ (−1, 1), and for particular values of r it may meet up exactly
with (θ−,+1) as x → +∞. We can count the number of these connecting values exactly by
invoking a monotonicity argument. In particular, consider two solutions θr1(x) and θr2(x)
that approach (θ+,−1) as x → −∞ for parameter values r = r1 and r = r2, respectively. The
following result can be deduced easily.

Lemma 2. For each x, if r1 < r2, then θr1(x) < θr2(x).

Also, for r large, there is no winding. In particular, we have the following lemma.

Lemma 3. For r sufficiently large, 0 < θr(x) < π/2 for all x.

Since there is no winding for r large, and θ(x) changes monotonically in r, the number of
times the trajectory leaving (θ+(r),−1) winds around the cylinder for r → 0 gives an exact
count of the number of degenerate parameter values satisfying r > 0.

For Haelterman and Sheppard’s model for birefringence in optical fibers, as given in (2)
and by the Hamiltonian (7), when B = 0 there are no parameter values r between 0 and 1
for which U0(x) is degenerate. In the limit B = 0, the equations (2) become the integrable
Manakov equations, and in this case exact solutions can be calculated; see, for instance, Li
and Promislow [20]. As B is increased from zero, a degenerate parameter r (in the sense of
Property 5) bifurcates immediately from r = 0. As B is increased further, the continuation
of this parameter r for which U0(x) is degenerate increases until it is no longer in the range
0 < r < 1. However, the pulse U0(x) becomes taller and wider with increasing B, and more
and more degenerate parameter values bifurcate from r = 0. As B → 1, the height and width
of the stationary pulse U0(x) approach infinity and the family of degenerate parameter values
r grows; see Figure 2, panel 1.

The behavior is similar for Ostrovskaya and Kivshar’s model for incoherent beam prop-
agation in a photorefractive material, as given in (3) and by the Hamiltonian (8). The case
s = 0 here is again the Manakov system, but the structure differs from the previous model
as the saturability s is allowed to vary. In this case, r = 1 is always degenerate; when r = 1,
the equations for u and w in (4) are identical and (U0(x), U ′

0(x)) always provides a bounded
solution of (11). Since U0(x) is nowhere zero, it follows that there cannot be any degenerate
parameter values for parameter values r > 1. Here, as the pulse U0(x) becomes taller and
wider with increasing s, degenerate parameter values again bifurcate from r = 0. In this
case, though, these degenerate parameter values accumulate at r = 1. In fact, the number of
degenerate parameter values between zero and one approaches infinity as the saturability s of
the medium approaches one; see Figure 2, panel 2.

2.2. A change of coordinates near the origin. One difficulty common to the geometric
method is the need to assume that the vector field f can be linearized about the origin, that
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Figure 2. Degeneracy of the pulse U0(x) can be reduced to a Sturm–Liouville problem. The curves in
panel 1 indicate parameter values for which the pulse U0(x) is degenerate for the nonlinearity given in the
Haelterman–Sheppard model of (2). Panel 2 shows the parameter values for which U0(x) is degenerate for the
Ostrovskaya–Kivshar model of (3).

is, that there is a “smooth-enough” function ϕ so that

ϕ−1 ◦ f ◦ ϕ(x) = Df(0) x

for x in some neighborhood of the origin. The classical result that would yield this property is
the Sternberg linearization theorem. Unfortunately, this theorem requires that the eigenvalues
of the fixed point be nonresonant; and in system (5) such an assumption will necessarily be
violated. In fact, such a linearization is in general not possible for the vector field given by (5).
However, through the use of the Birkhoff normal form and Theorem 1.2 of Banyaga, de la
Llave, and Wayne [5], we are nonetheless able to reduce (5) to a much simpler system.

To begin, we first rewrite system (5) with the aid of the canonical transformation:

ṽss = 1√
2
(p− u), ṽs = 1√

2r
(q − rw),

ṽuu = 1√
2
(p + u), ṽu = 1√

2r
(q + rw).

(14)

In these new coordinates, the eigenvectors associated with −1, −r, r, and 1 are tangent to the
coordinate axes ṽss, ṽs, ṽu, and ṽuu, respectively. In this coordinate system, the Hamiltonian
takes the form

H = ṽuuṽss + rṽuṽs + O(‖(ṽuu, ṽu, ṽss, ṽs)‖4).

According to Theorem 1.2 of Banyaga, de la Llave, and Wayne [5], we then have the following.

Lemma 4. Suppose that the C∞ ordinary differential equation (5) preserves a Hamiltonian
H, as described in Property 1. For 0 < r < 1 and l ≥ 1, let k be chosen so that

k ≥ (1 + r)2

r2
(l + 1) + 2.

Then, in a neighborhood of the origin, there is a C l canonical change of coordinates such that,
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in the new coordinates, the Hamiltonian H takes the truncated form

Hk = vuuvss + rvuvs +

k∑
j=2

j∑
m=0

ajm (vuuvss)
m (vuvs)

j−m(15)

for some prescribed constants ajm.
In these new coordinates, the equations of motion become

v′uu = vuu +
∑k

j=2

∑j
m=1 m ajm (vuuvss)

m−1 (vuvs)
j−m vuu,

v′ss = −vss −
∑k

j=2

∑j
m=1 m ajm (vuuvss)

m−1 (vuvs)
j−m vss,

v′u = rvu +
∑k

j=2

∑j−1
m=0(j −m) ajm (vuuvss)

m (vuvs)
j−m−1 vu,

v′s = −rvs −
∑k

j=2

∑j−1
m=0(j −m) ajm (vuuvss)

m (vuvs)
j−m−1 vs.

(16)

We note especially that the equations in (16) are integrable. That is, in addition to Hk being
conserved along any trajectory, the quantities (vuuvss) and (vuvs) are also conserved. This
may be quickly verified by noting that

d

dx
(vuvs) = v′uvs + vuv

′
s = 0

and

d

dx
(vuuvss) = v′uuvss + vuuv

′
ss = 0.

It then follows that the summations

k∑
j=2

j∑
m=1

m ajm (vuuvss)
m−1 (vuvs)

j−m

and

k∑
j=2

j−1∑
m=0

(j −m) ajm (vuuvss)
m (vuvs)

j−m−1

in (16) are also constant along trajectories. Thus, for any initial condition

(vuu(0), vss(0), vu(0), vs(0))

there are constants given by

γ1 =

k∑
j=2

j∑
m=1

m ajm (vuu(0)vss(0))m−1 (vu(0)vs(0))j−m

and

γ2 =

k∑
j=2

j−1∑
m=0

(j −m) ajm (vuu(0)vss(0))m (vu(0)vs(0))j−m−1
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so that the solutions of (16) can be written as

vuu(x) = e(1+γ1)x vuu(0),

vss(x) = e−(1+γ1)x vss(0),

vu(x) = e(r+γ2)x vu(0),

vs(x) = e−(r+γ2)x vs(0).

(17)

In short, even though the system (5) is not smoothly linearizable near the origin, any
set of initial conditions in a neighborhood about 0 evolves in a similarly predictable manner.
Each trajectory behaves as though it were controlled by a linear system, but the growth and
decay rates of this system vary slightly based on the initial conditions. The variations γ1 and
γ2 approach zero as ‖(vuu(0), vss(0), vu(0), vs(0))‖ → 0.

3. A geometric proof of Theorem 1. In this section, we use the properties laid out in the
previous section to analyze the flow in R

4 near U0(x) and to provide a proof of the bifurcation
described in Theorem 1. We break this procedure down into the following four steps:

1. We define Poincaré cross-sections Σin and Σout transverse to the pulse U0(x) inside
the region where the change of coordinates guaranteed by Lemma 4 is valid. This allows us to
separate the behavior near the origin in phase space, where the behavior is almost linear, and
the behavior away from the fixed point, where initial conditions evolve simply via rectilinear
flow. Additionally, we use the Hamiltonian to reduce the effective dimensions of Σin and Σout

for our search.
2. Let Φnear : Σin → Σout ∪ S1Σout be the local transition map induced by the evolution

equation (5). In this regime, near the origin, the behavior is dominated by linear effects, and
the orbit flip configuration described in Property 4 plays a key role.

3. Let Φfar from Σout to Σin represent the global transition map. Away from any fixed
points, the behavior is described by simple rectilinear flow. The properties of the transi-
tion map Φfar are heavily influenced by the nearby parameter r∗ where the pulse U0(x) is
degenerate, as described in Property 5.

4. Using the reversibility described in Property 2, we identify a pair of windows, Ωnear in
Σout and Ωfar in Σin, that are pulled back to reflections of themselves by the maps Φ−1

near and
Φ−1

far , respectively. These important regions help us to identify critical features of the Poincaré
map Φfar ◦ Φnear from Σin to S1Σin and therefore to isolate a mechanism for the creation of
N -pulses.

3.1. Definition of the Poincaré sections Σin and Σout. For any fixed parameter 0 <
r < 1, there is an integer k so that a C3 canonical transformation takes system (5) into the
truncated form given in (16) on some neighborhood of the origin. For simplicity, we normalize
our variables so that the unit box is in the interior of this neighborhood. We then define the
sections Σin and Σout as

Σin = {(vuu, vss, vu, vs) | vss = 1}

and

Σout = {(vuu, vss, vu, vs) | vuu = 1}.
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Figure 3. The cross-sections Σin, S1Σin, Σout, and S1Σout are set up transverse to the homoclinic orbits
U0(x) and S1U0(x). The first panel shows the two dimensional invariant subspace U containing the pulses
U0(x) and S1U0(x); the intersection of the Poincaré sections with this space are shown. The second panel
shows the two dimensional submanifold within the three dimensional section Σin for which {H = 0}; the axis
vuu corresponds to the set Σin ∩ U shown in the first panel.

Because the pulse U0(x) is in orbit-flip configuration (Property 4), these three dimensional
sections Σin and Σout are transverse to the homoclinic orbit U0(x) and intersect U0(x) at the
points (0, 1, 0, 0) and (1, 0, 0, 0), respectively. The homoclinic orbit S1U0(x) meets the sections
S1Σin and S1Σout similarly. See Figure 3.

Note further that any solution to the system (16) that approaches the origin as x → ±∞
must lie on the same level set of the Hamiltonian Hk as the origin itself, i.e., Hk = 0 on such
sets. Considering the intersections of the sets Σin and Σout with the level set of the Hamiltonian
{(vuu, vss, vu, vs) | Hk(vuu, vss, vu, vs) = 0}, we can restrict our attention to two dimensional
manifolds within either Σin or Σout. In particular, for vuu, vu, and vs sufficiently small, the
implicit function theorem guarantees that any point (vuu, 1, vu, vs) in the set Σin satisfying
Hk = 0 can be written as (vuu(vs, vu), 1, vu, vs). Similarly, any point in Σout, again with vss,
vu, and vs sufficiently small, that satisfies Hk = 0 can be written as (1, vss(vs, vu), vu, vs). In
this way, the maps Φfar : Σout → Σin and Φnear : Σin → Σout ∪ S1Σout can be specified simply
as maps from a subset of R

2 into R
2. In what follows, we will restrict our analysis to the level

set Hk = 0 inside Σin and Σout. With a slight abuse of notation, we will continue to refer to
these restricted sets as Σin and Σout and treat the maps Φnear and Φfar as transformations of
the two variables vs and vu.

3.2. Properties of the near map Φnear. In this subsection, we describe the transition
map Φnear that details the passage of trajectories near the origin. The flow in this region is
dominated by the presence of the fixed point, and we have already seen that in this regime
the flow is almost linear, as given in (17).

The map Φnear takes the section Σin to Σout ∪ S1Σout. (More precisely, we consider
only those initial conditions in Σin that leave the unit box in R

4 through Σout or S1Σout.)
First, observe that whether Φnear takes an initial condition in this domain to Σout or S1Σout

is determined solely by the value of vuu associated with (vs, vu) in Σin. If vuu > 0, then
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Φnear(vs, vu) ∈ Σout. Likewise, if vuu < 0, then Φnear(vs, vu) ∈ S1Σout. In particular, since

vuu = −rvsvu + O(v2
sv

2
u),

initial conditions (vs, vu) in the first and third quadrants are taken to S1Σout, while initial
conditions in the second and fourth quadrants are taken to Σout; see the second panel of
Figure 3.

Evolving via (17), one can quickly determine the behavior of the map Φnear. In particular,
since |vuu| = 1 in either exit slice Σout or S1Σout, the elapsed time T between the slices is
determined to be

1 = |vuu|e(1+γ1)T ,

|vuu|−1 = e(1+γ1)T ,

− ln |vuu| = (1 + γ1)T ,

T = −1
1+γ1

ln |vuu|.

Since γ1 and γ2 are both O(vsvu), the map Φnear takes the form

Φnear(vs, vu)

=
(
vse

−(r+γ2)T , vue
(r+γ2)T

)
=

(
vse

r+γ2
1+γ1

ln |vuu|, vue
− r+γ2

1+γ1
ln |vuu|

)

=

(
vs|vuu|

r+γ2
1+γ1 , vu|vuu|−

r+γ2
1+γ1

)

=
(
vs|rvsvu + O(v2

sv
2
u)|r+O(vsvu), vu|rvsvu + O(v2

sv
2
u)|−r+O(vsvu)

)
.

Although it may not be readily apparent from this equation, the qualitative behavior of
Φnear varies dramatically depending upon whether or not the parameter r satisfies r < 1/2.
In particular, we will note the differing behavior of Φnear in two separate examples:

1. for short curves in Σin terminating on the stable manifold at (vs, vu) = (0, 0), and
2. for short curves in Σin terminating elsewhere along the stable manifold, i.e., where

vs 
= 0.

3.2.1. Φnear acting on curves approaching (0, 0). For the first case, we consider a curve
Γ in Σin parameterized as (vs, vu) = (t, at+O(t2)) for some a 
= 0 and t small. We now consider
the manner in which the map Φnear acts upon Γ:

Φnear(t, at + O(t2))

=
(
t|art2 + O(t3)|r+O(t2), (at + O(t2))|art2 + O(t3)|−r+O(t2)

)
=

(
t|t|2(r+O(t2))|ar + O(t)|r+O(t2),

(at|t|−2(r+O(t2)) + O(t2−2r))|ar + O(t)|−r+O(t2)
)

→
(
|ar|r (sign t) |t|1+2r, a|ar|−r (sign t) |t|1−2r

)
,
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as t → 0. For r < 1/2, vs = O((vu)
1+2r
1−2r ), and so Φnear(Γ) approaches the origin tangent to

the vu-axis. On the other hand, when r > 1/2, the first component of Φnear(Γ) again goes to
zero, but the second component is unbounded. In this case the portion of Γ nearest the origin
is taken by Φnear out of any small neighborhood of (0, 0) in Σout.

3.2.2. Φnear acting on curves approaching (b, 0), b �= 0. In the second case, we consider
a curve Γ parameterized by (b− ct + O(t2), t) for b, c 
= 0, under the action of the map Φnear:

Φnear(b− ct + O(t2), t)

=
(
(b− ct + O(t2))|brt + O(t2)|r+O(t), t|brt + O(t2)|−r+O(t)

)
=

(
(b− ct + O(t2))|t|r+O(t)|br + O(t)|r+O(t),

t|t|−r+O(t)|br + O(t)|−r+O(t)
)

→
(
b|br|r |t|r, |br|−r (sign t) |t|1−r

)
,

as t → 0. For any 0 < r < 1, Φnear(Γ) approaches the origin. However, the direction of

approach again depends upon whether or not r > 1/2. If r < 1/2, then since vu = O((vs)
1−r
r ),

Φnear(Γ) approaches zero tangent to the vs-axis. On the other hand, for r > 1/2, we have

vs = O((vu)
r

1−r ) and Φnear(Γ) approaches zero tangent to the vu-axis.

3.3. Properties of the far map Φfar. In this subsection, we describe the transition map
Φfar that details the behavior near the pulse U0(x) during its excursion far from the origin.
Since there are no fixed points in this region, the behavior is governed by rectilinear flow, and
the map Φfar is a local diffeomorphism.

For r values nearby a parameter r = r∗ where the twin homoclinic orbits U0(x) and
S1U0(x) are degenerate, as in Property 5, the nearby degeneracy will play a major role in
defining the behavior of the far map.

Note that the coordinate system given by vuu, vss, vu, and vs in section 2.2 is valid only
in a small neighborhood of the origin. The pulse U0(x) likely leaves this region, and thus we
would need to switch to a different coordinate system as we follow the flow near the pulse.
However, the sections Σout and Σin both lie within the region where these coordinates are
available, and so in writing the map Φfar from Σout to Σin it is most convenient to use this
same coordinate system.

Now, suppose that at the parameter value r = r∗, the homoclinic orbit U0(x) is degenerate,
as specified in Property 5. At such a parameter value, Φfar takes the local unstable manifold
W u

loc(0) of the origin, which coincides with the vu-axis in Σout, to a curve that is tangent to
the local stable manifold W s

loc(0), i.e., the vs-axis in Σin. Conversely, Φ−1
far takes the vs-axis in

Σin to a curve in Σout that is tangent at the origin to the vu-axis. In particular, as a result
of the reversibility in Property 2, the following two conditions hold for the map Φfar when
r = r∗:

D2Φ
(1)
far(0, 0) = ±1 and D2Φ

(2)
far(0, 0) = 0,

where the notation DiΦ
(j)
far refers to the derivative of the jth component of Φfar with respect

to the ith variable.
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For parameters r > r∗, Lemma 2 purports that a tangent vector to the local unstable
manifold W u

loc(0) undergoes less spinning between Σout and Σin than it does for r = r∗; so for
ε small and positive and for r = r∗ + ε, it holds that

signD2Φ
(1)
far(0, 0) = signD2Φ

(2)
far(0, 0),(18)

where D2Φ
(1)
far(0, 0) = ±1 + O(ε) and D2Φ

(2)
far(0, 0) = O(ε).

Additionally, regardless of the value of r, all of the derivatives of even order vanish because
of the symmetry given in Property 3. For r near r∗, we make the following assumption
regarding the map Φfar:

sign D222Φ
(2)
far(0, 0) = − signD2Φ

(1)
far(0, 0).(19)

We would like to discuss this assumption in a bit more depth—it seems quite natural and
can be roughly considered in the context of the winding discussed in subsection 2.1. Recall
that the winding of the invariant manifolds along the pulse U0(x) is seen to decrease with
increasing r in (13). However, the inclusion of a nontrivial w component for any fixed r will,
in essence, work to increase the winding by increasing the influence of the nonlinearity. In
particular, had we included the nonlinear terms when deriving (13), the equation for θ would
have been

θ′ =
(
r2 − h2(U

2
c (τ), ρ2 cos2(θ))

)
cos2(θ) − sin2(θ).

This equation, which was independent of ρ in the linear regime, now shows a dependence upon
ρ both explicitly in the second component of the nonlinearity as ρ2 cos2(θ) and implicitly in
the first component, as it influences the equation for U2

c (τ), which is no longer decoupled.
For a focusing nonlinearity h2(·), the explicit action of the nontrivial second component is
to increase the winding in comparison with the linear case. Although the action through
the change in the profile of Uc(τ) is more subtle, we believe, but do not prove, that the
condition (19) holds in general.

3.4. The grand finale. In this subsection, we combine the properties of the transition
maps Φfar and Φnear in order to complete the proof of Theorem 1.

Suppose that the one-component pulse U0(x) is degenerate for a parameter r = r∗, with
0 < r∗ < 1 as described in Property 5. Lemma 4 guarantees that, since r∗ > 0, there is a
constant k so that the ordinary differential equation (5) can be reduced to its resonant normal
form of degree k in a neighborhood of the origin, for any r between r∗ and 1. This neighborhood
can be chosen uniformly in the interval between r∗ and 1, and since the constants ajm vary
smoothly with r, the sections Σin and Σout inside this neighborhood also vary smoothly with r.

Recall that D2Φ
(2)
far(0, 0) = 0 when r = r∗. Now, suppose that the condition given in (19)

is satisfied for r = r∗. Continuity dictates that this same relationship must then hold for all r

in a small neighborhood of r∗. In particular, D222Φ
(2)
far(0, 0) is nonzero on this neighborhood

and therefore can be bounded away from zero on some (possibly smaller) neighborhood.

Φ
(2)
far can then be seen to have the form

Φ
(2)
far(0, h) = h D2Φ

(2)
far(0, 0) +

h3

6
D222Φ

(2)
far(0, 0) + O(h5).
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Figure 4. The map Φfar. When r = r∗, the map Φfar takes the local unstable manifold Wu
loc in Σout to a

curve that is tangent to the vs-axis in Σin. For r slightly beyond r∗, these curves are no longer tangent and
a symetric pair of intersections of ΦfarW

u
loc and the vs-axis appear. (Note that the extreme scaling obscures

the tangency in this figure; in the right panel, the vu-axis is blown up roughly 100-fold versus the vs-axis; the
opposite holds on the left.) Because of the reversibility, the curves Φ−1

farW
s
loc and the vu-axis intersect similarly

in Σout.

Since D2Φ
(2)
far(0, 0) and D222Φ

(2)
far(0, 0) are of opposite sign on some interval r∗ < r < r∗ + ε1,

with D2Φ
(2)
far(0, 0) = 0 when r = r∗ and D222Φ

(2)
far(0, 0) bounded away from zero, we quickly see

that on some possibly smaller interval r∗ < r < r∗+ ε2 there is a positive value for h such that

Φ
(2)
far(0, h) = Φ

(2)
far(0,−h) = 0. These roots represent nontrivial intersections in Σin of the local

stable manifold W s
loc of the origin and the global unstable manifold W u (in particular, the

image under Φfar of the local unstable manifold W u
loc). Therefore, these intersections can be

identified as the multicomponent 1-pulse (and its reflection via the symmetry S2) described
in the theorem. See Figure 4.

Note that we were able to use properties of the far map Φfar alone to eke out the bifurcation
of a multicomponent 1-pulse from the “fast” single component pulse U0(x) near a parameter
value r = r∗ where U0(x) is degenerate. In order to find the alternating N -pulses, we will be
required to study the interaction of the transition maps Φfar and Φnear.

Before continuing further, we describe the vital role played by the reversibility, as de-
scribed in Property 2. (Both the reversibility involution R and the symmetries S1 and S2 can
be easily translated into the new coordinate system.) Because the Poincaré sections Σin and
Σout themselves are reflections of one another through the reversibility involution, reversibility
forces a particular symmetry in the maps Φfar and Φnear in relation to their inverses. Specifi-
cally, for any pairs (ξs, ξu) in Σout and (ζs, ζu) in Σin, if Φfar takes (ξs, ξu) to (ζs, ζu), then Φ−1

far

must take the reflection (ξu, ξs) in Σin back to the point (ζu, ζs) in Σout. Likewise, if Φnear

takes (ζs, ζu) to (ξs, ξu), then Φ−1
near must take (ζu, ζs) back to (ξu, ξs).

For r in the interval where a multicomponent 1-pulse can be found, i.e., r∗ < r < r∗ + ε2,
we can now identify two small regions, one in Σin and one in Σout, that are pulled back by
the reverse flow to their reflections in Σout and S1Σin, respectively.

First, consider a region Ωfar in Σin, defined as a bounded region between ΦfarW
u
loc and

W s
loc. In the right-hand side of Figure 4, this is the area between ΦfarW

u
loc and the vs-axis.

Φ−1
far clearly takes this region to the one bounded between W u

loc (the vu-axis) and Φ−1
farW

s
loc
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in Σout; see the left-hand side of Figure 4. However, each of these two curves is related to
the preimage of the other via the reversibility involution, and so Ωfar is simply taken to its
reflection RΩfar by Φ−1

far . (Be careful to note that this identification as a reflection holds as a
set and not pointwise.)

Second, we consider the subset of Φ−1
far(Ωfar) in Σout that lies within S1Φnear(Ωfar). In

particular, we let

Ωnear = Φ−1
far(Ωfar) ∩ S1Φnear(Ωfar).

The qualitative shape of Ωnear will vary depending upon whether or not r > 1/2; however,
in either case, Ωnear is taken to its reflection R S1Ωnear in S1Σin by the inverse of the local
transition map, Φ−1

near. See the central panel of either Figure 5 or Figure 6.
Note that both the reflected preimage S1Φ

−1
near(Ωnear) and the image Φfar(Ωnear) lie within

Ωfar in Σin. We remark that Ωnear is a subset of Φ−1
far(Ωfar) and that the return map Φnear◦Φfar

takes Ωnear to a different subset of S1Φ
−1
far(Ωfar). Careful consideration of curves within Ωnear

under the action of this composite map leads to the proof of Theorem 1.
We will now complete the proof of Theorem 1, considering the two cases separately. First,

we consider the case where r∗ < 1/2. Then we will consider the case when r∗ ≥ 1/2.

3.4.1. The case r∗ < 1/2. Suppose that the parameter r∗ for which the pulse U0(x) is
degenerate satisfies r∗ < 1/2. For r in the interval r∗ < r < r∗ + ε2, we have seen that a
multicomponent 1-pulse can be found near U0(x). We further choose ε3 with 0 < ε3 ≤ ε2 so
that ε3 satisfies r∗ + ε3 < 1/2. We now prove that there are alternating N -pulses near U0(x)
for any r satisfying r∗ < r < r∗ + ε3. In particular, we will prove the following lemma.

Lemma 5. Suppose that r∗ < r < r∗ + ε3 with r∗ + ε3 < 1/2. Consider any simple smooth
curve Γ0 in the window Ωnear in Σout having the following two properties:

i. Γ0 originates at (0, 0) tangent to W u
loc, i.e., the vu-axis.

ii. Γ0 terminates at a point on Φ−1
farW

s
loc distinct from the origin.

Then the image Φnear ◦ Φfar(Γ0) in S1Σout also contains a simple smooth curve Γ1 within
S1Ωnear satisfying these same properties.

The proof of this lemma concludes the proof of Theorem 1 in this case. We have already
described the multicomponent 1-pulse as an intersection between the curve ΦfarW

u
loc and the

vs axis within the Poincaré section Σin. For r∗ < r < r∗ + ε3, we will see that the loop
Φnear ◦ΦfarW

u
loc contains a curve satisfying the two properties of the lemma. The intersection

of this curve with Φ−1
farW

s
loc represents the alternating 2-pulse of the theorem. The lemma then

implies that every iterate (Φnear ◦Φfar)
(N−1)W u

loc, N ≥ 2, also intersects Φ−1
farW

s
loc nontrivially,

and we immediately identify these intersections with the desired N -pulses.
Proof. We begin by examining the shape of the region Ωnear in Σout for this case where

r < 1/2. We describe only the portion of Ωnear in the first quadrant of Σout; the portion in
the third quadrant is equivalent by way of the symmetry S2.

Now Ωnear is contained within the set S1Φnear(Ωfar). Ωfar was defined to be the set bounded
between the vs-axis and the curve ΦfarW

u
loc in Σin (recall the second panel of Figure 4, and

now also the first and last frames of Figure 5). Via the preliminary analysis of section 3.2, the
portion of the bounding curve ΦfarW

u
loc that approaches the origin is taken by Φnear to a curve

approaching the origin and tangent to the vu-axis in S1Σout. Since the portion of ΦfarW
u
loc
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Figure 5. The flow between successive sections in the case r∗ < 1/2. The shaded area in the middle frame
is Ωnear. This area is pulled back via Φ−1

near to its reflection in S1Σin, shown in the top frame. Ωnear is also
mapped forward by Φfar to another subset of Ωfar, as seen in the bottom frame. The manner of intersection of
the sets S1Φ

−1
near(Ωnear) and Φfar(Ωnear) as shown in this final frame is important to the creation of N-pulses.
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near the nontrivial intersection point with W s
loc is taken by Φnear to a curve approaching the

origin and tangent to the vs-axis in S1Σout, the image Φnear ◦ ΦfarW
u
loc is a closed loop in the

first quadrant of S1Σout. See, for example, the central frame of Figure 5, where this closed
loop extends out of the right-hand boundary of the figure. The region Φnear(Ωfar) is bounded
by this closed loop, and Ωnear is the intersection of the reflection of this region S1Φnear(Ωfar)
with Φ−1

far(Ωfar) in Σout, shown as the shaded region of the central panel of Figure 5.

The boundary of Φ−1
near(Ωnear) in S1Σin contains a portion of the curve Φ−1

near ◦ Φ−1
farW

s
loc

within S1Ωfar that leaves the origin tangent to the vs-axis before leaving S1Ωfar through the
curve ΦfarW

u
loc. See the upper frame of Figure 5. Note that Φ−1

near ◦Φ−1
farW

s
loc must leave S1Ωfar

since it returns to the origin tangent to the vu-axis. In fact, the point where Φ−1
near ◦ Φ−1

farW
s
loc

leaves S1Ωfar through ΦfarW
u
loc can be identified with the alternating 2-pulse, as promised

above.

Suppose that Γ0 is a simple smooth curve in the window Ωnear in Σout originating tangent
to W u

loc at (0, 0), and terminating at another point on Φ−1
farW

s
loc. Γ0 is taken by the transition

map Φfar to a curve Φfar(Γ0) within Ωfar in Σin that is tangent to ΦfarW
u
loc at the origin and

meets the manifold W s
loc, i.e., the vs-axis, at another point.

The end of Φfar(Γ0) approaching (0, 0) is tangent to ΦfarW
u
loc and lies within S1Φ

−1
far(Ωnear).

Except for the point (0, 0), however, the vs-axis is not in the set S1Φ
−1
far(Ωnear) and therefore,

since Φfar(Γ0) terminates on this axis, it must cross Φ−1
near ◦ Φ−1

farW
s
loc at some point.

Under the action of Φnear, Φfar(Γ0) is then clearly taken to a curve in Ωnear that leaves
(0, 0) tangent to the vu-axis and intersects Φ−1

farW
s
loc at some other point.

3.4.2. The case r∗ ≥ 1/2. Now, suppose that the parameter r∗ for which the pulse
U0(x) is degenerate satisfies r∗ ≥ 1/2. For r in the interval r∗ < r < r∗ + ε2, we have seen
that a multicomponent 1-pulse can be found near U0(x). Here, we further choose ε3 with
0 < ε3 ≤ ε2 so that ε3 satisfies r∗ + ε3 < 1. We now prove that there are alternating N -pulses
near U0(x) for any r satisfying r∗ < r < r∗ + ε3. In particular, we will prove the following
lemma.

Lemma 6. Suppose that r∗ < r < r∗ + ε3 with r∗ ≥ 1/2 and r∗ + ε3 < 1. Consider any
simple smooth curve Γ0 in the window Ωnear in Σout with the following two properties:

i. Γ0 originates at (0, 0).
ii. Γ0 terminates at a point on Φ−1

farW
s
loc, distinct from the origin.

Then the image Φnear ◦ Φfar(Γ0) in S1Σout also contains a simple smooth curve Γ1 within
S1Ωnear satisfying these same properties.

In this case, we need not assume that Γ0 is tangent to W u
loc, i.e., the vu-axis at (0, 0).

For r > 1/2, any curve in Ωnear originating at (0, 0) automatically satisfies this property. As
above, the proof of this lemma concludes the proof of Theorem 1 for this case.

Proof. The region Ωnear in Σout has a qualitatively different shape when r > 1/2 than it
does otherwise. We again describe only the portion of Ωnear in the first quadrant of Σout.

In this case, recalling once more the preliminary analysis of section 3.2, the portion of
ΦfarW

u
loc that approaches the origin in S1Σin is taken by Φnear out of any bounded region of

Σout. Since the portion of ΦfarW
u
loc near the nontrivial intersection point with W s

loc is now
taken by Φnear to a curve approaching the origin and tangent to the vu-axis in Σout, the
image Φnear ◦ΦfarW

u
loc is an unbounded curve in the first quadrant of Σout. See, for example,
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Figure 6. The flow between the successive sections for the case r∗ ≥ 1/2. The shaded area in the middle
frame is Ωnear. This area is again pulled back via Φ−1

near to its reflection in S1Σin, shown in the top frame and
mapped forward by Φfar to another subset of Ωfar, as seen in the bottom frame. The manner of intersection of
the sets S1Φ

−1
near(Ωnear) and Φfar(Ωnear) as shown in this final frame is important to the creation of N-pulses.
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the central panel of Figure 6. The region Φnear(Ωfar) is bounded between this curve and the
vu-axis, and Ωnear is the intersection of this region’s reflection S1Φnear(Ωfar) with Φ−1

far(Ωfar),
now shown as the shaded region in the central panel of Figure 6.

The set Φ−1
near(Ωnear) in S1Σin is again a reflection of Ωnear in Σout via the reversibility

involution R, as shown in the upper left panel of Figure 6. The boundary of Φ−1
far(Ωnear)

contains a portion of the curve Φ−1
near ◦Φ−1

farW
s
loc within S1Ωfar that leaves the origin tangent to

the vs-axis before leaving S1Ωfar through the curve ΦfarW
u
loc. This follows since Φ−1

near◦Φ−1
farW

s
loc

must leave the bounded region S1Ωfar, and the crossing again indicates the alternating 2-pulse
in the theorem.

Suppose that Γ0 is a simple smooth curve in the window Ωnear in Σout connecting (0, 0),
with another point on Φ−1

farW
s
loc. Γ0 is taken by the transition map Φfar to a curve Φfar(Γ0)

within Ωfar in Σin that is tangent to ΦfarW
u
loc at the origin and meets the manifold W s

loc, i.e.,
the vs-axis, at another point.

The end of Φfar(Γ0) near the nontrivial intersection with the vs-axis lies within S1Φ
−1
far(Ωnear).

However, Φfar(Γ0) is tangent at the origin to the curve ΦfarW
u
loc, while any curve within

Φ−1
farΩnear must be tangent to the vu-axis. So Φfar(Γ0) must have left S1Φ

−1
far(Ωnear), crossing

Φ−1
near ◦ Φ−1

farW
s
loc at some point before its approach to the origin.

Under the action of Φnear, Φfar(Γ0) is then clearly taken to a curve in Ωnear connecting
(0, 0) with some other point on Φ−1

farW
s
loc. This completes the proof.

4. Discussion. We have shown the mechanism for the bifurcation of not only a multicom-
ponent 1-pulse but also alternating N -pulses, for all positive N , near a parameter value r = r∗

where the original fast single component pulse is degenerate. The geometry of the bifurcation
differed significantly depending upon whether or not the parameter r∗ was smaller than 1/2.
In fact, when r∗ ≥ 1/2, the bifurcation can be described as a degenerate cusp horseshoe,
where the degeneracy here refers to the property that S1Φ

−1
far(Ωnear) intersects Φ−1

far(Ωnear)
at the single point (0, 0) for the left-hand side of the horseshoe; reference the final panel of
Figure 6.

We have made no claim concerning the uniqueness of the N -pulses described in Theorem 1.
In fact, especially in the regime near r∗ = 1/2, we expect that there may be multiple alter-
nating N -pulses present—and in this regime especially, multiple intersections of the curves
ΦfarW

u
loc and Φ−1

near ◦ Φ−1
farW

s
loc, as the diagram in the final panel of Figure 5 morphs into that

of Figure 6 with changing system parameters.

Moreover, we do not exclude the possibility that a whole host of other N -pulses may exist.
We proved the existence of N -pulses alternating in the first component but have not ruled
out the possibility of different configurations. It seems likely that there may in fact be pulses
near

N∑
i=1

(−1)si U0(x− Ti)

for any binary sequence s1s2 . . . sN ∈ Σn and appropriately chosen pulse spacings Ti. Such
pulses will, of course, intersect Σin outside of the window Ωnear that we defined and will require
a more careful analysis.
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Additionally, there may be secondary bifurcations where the multicomponent 1-pulse and
the N -pulses described here become degenerate themselves as they are continued farther from
the original bifurcation value r = r∗. However, since these multicomponent pulses no longer
respect the orbit-flip configuration described in Property 4, we do not expect a cascade of
N -pulses as in the case studied in this paper [21, 22]. Such a secondary bifurcation should be
covered by the results of Knobloch [18].

Finally, it is often possible to glean information about the stability properties of a pulse by
carefully examining the mechanism that spurred the pulse into existence in the first place. It
would be interesting to understand the differing stability properties of the fast one-component
pulse and the bifurcating multicomponent 1-pulse, as well as any variations in the stability
properties that arise for the N -pulses from the different geometries of the cases r∗ < 1/2 and
r∗ ≥ 1/2. Numerical evidence has suggested that the continuation of the multicomponent
1-pulse may be stable for a range of parameter values beyond r = r∗ [23]. Any subsequent
secondary bifurcations may then still be of physical importance, as these newly bifurcating
pulses may be stable, and their presence may explain the eventual loss of stability of the
multicomponent 1-pulse in some cases. In the sequel to this work [24] we study these very
problems, examining an instability criterion for the many pulses appearing via the bifurcation
studied in the current paper, as well as those spawned in secondary bifurcations.
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Three Is a Crowd: Solitary Waves in Photorefractive Media with Three Potential
Wells∗

Todd Kapitula†, P. G. Kevrekidis‡, and Zhigang Chen§

Abstract. In this paper we analytically, numerically, and experimentally study the dynamics of waves in
photorefractive media in the presence of a potential with three wells. The results contained herein
are also immediately applicable to the study of Bose–Einstein condensates in the weak interaction
limit. Motivated by the recent theoretical and experimental efforts in the case of two wells, we
systematically analyze the ways in which the bifurcation analysis of steady states and the stability
picture are modified in the presence of a third potential well. In particular, it is shown that the
presence of a third well causes all bifurcations to be of saddle-node type. Our analytical results
are based on a Lyapunov–Schmidt reduction in the modes of the underlying linear problem. We
corroborate the analytical predictions with numerical results which are based on fixed point methods.
Finally, we illustrate how these findings may be related to experimental observations obtained in
strontium-barium-niobate crystals.

Key words. Lyapunov–Schmidt reduction, Hamiltonian systems, solitary waves, stability
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1. Introduction. In the past few years, experimental progress in soft condensed matter
physics [1, 3] and nonlinear optics [6, 31] has rekindled theoretical and experimental interest
in looking at “small lattices” consisting of only a few potential wells and understanding the
interesting phenomena, such as symmetry breaking, that arise in such settings [5, 13]. In turn,
these experimental efforts have furthered theoretical investigations to address double well
potentials from an analytical point of view, using tools such as dynamical systems theory [20],
Galerkin decompositions, and Lyapunov–Schmidt reductions [45, 24, 31, 44], as well as exact
solutions [34]. However, most of these investigations have focused on the dimer case. On
the other hand, very few of these studies have focused on few-site lattices with three or more
potential wells. Some examples of this type, but restricted to discrete systems, are in the
works of [12, 17, 22].
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Arguably, it is important to understand how the behavior of the system changes between
the double-well potential and the infinite lattice. It is clear that there are some drastic
differences between them. For instance, in a double-well potential the recent studies of [20,
24, 31] showed that the asymmetric state localized in one of the wells bifurcates from the
symmetric one. This bifurcation results in the instability of the symmetric (“uniform” in
this case) state, leading to the asymmetric (“localized” in this setting) waveform becoming
the ground state of the system. This picture was directly confirmed by the experiments of
[1, 3, 6, 31]. On the other hand, in the case of the infinite lattice it is well known that
this picture may break down. For example, when considering focusing nonlinearities (to
which we will restrict ourselves herein), it is well known that the uniform solution is always
unstable for the infinite lattice due to modulational instability [19, 47], while the localized
state is always the stable ground state of the one-dimensional problem [48]. These conclusions
indicate that the picture with N = 2 wells is somewhat different than that of N → ∞
wells. This observation, along with the experimental feasibility of variable numbers of wells
that we discuss below, suggests that it would be particularly interesting to examine how this
transition between “few-site” and “many-site” lattices occurs. As a particularly important
and enlightening example, due to its nontrivial differences from the double-well case, we focus
here on the case of N = 3 potential wells for the model problem discussed in section 2. The
results contained herein are also immediately applicable to the study of weakly interacting
attractive Bose–Einstein condensates in the presence of the three-well potential (see the review
articles [4, 29, 37] and the references therein). The details will be left to the interested reader.

Our qualitative and quantitative findings illustrate that in the setting of N = 3 potential
wells, any state with multiple in-phase pulses is always unstable even when such a solution
may exist; furthermore, each adjacent pair of in-phase pulses produces a pair of purely real
eigenvalues for the linearized problem. The only configurations that can be linearly stable are
either single pulse states or ones where the adjacent pulses are out-of-phase. However, if there
exists a pair of out-of-phase pulses, then for the linearized problem there exists a pair of purely
imaginary eigenvalues with negative Krein sign; hence, these solutions are not ground states.
This result is akin to the infinite lattice case [2, 36, 42]. We also find that the bifurcations
that lead to the generation of nonlinear branches of solutions are qualitatively different than
those of the N = 2 problem; more specifically, we typically find saddle-node bifurcations
instead of the pitchfork bifurcation of the N = 2 case. (A cartoon of the situation is depicted
in Figure 3.) We derive these results on the basis of a Lyapunov–Schmidt reduction of the
nonlinear problem using the bound states of the underlying linear problem. Furthermore,
we complement the existence results with the analysis of the linear stability problem for the
emerging solutions.

The paper is organized as follows. In section 2 we present the mathematical framework
and the connection of the nonlinear partial differential equation model to the physical problem
of photorefractive crystals. In section 3 solutions to the relevant stationary nonlinear problem
are constructed via Lyapunov–Schmidt theory. In section 4 the spectral stability of these
solutions is determined. In fact, under a suitable assumption regarding existence, we also
consider the stability of solutions associated with Np-wells for any finite Np ∈ N. In section 5
we show how the analytic findings have excellent agreement with the full numerical results.
In section 6 we discuss the relevance of our theoretical findings with experimental results
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obtained in photorefractive strontium-barium-niobate (SBN) crystals. We present some final
thoughts in section 7. In Appendix A the point spectrum of the associated linear Schrödinger
operator given in (2.7) is determined. This technical section is necessary in that the results
contained therein allow one to more easily analyze the bifurcation equations in section 3. In
Appendix B the spectra of the linear operator of (2.7) is explicitly determined in the case of a
single square-well potential. Finally, in Appendix C a technical result is proved regarding the
finding of roots of a special sixth-order polynomial which arises in the discussion in section 3.

2. Model equation. Recently, the study of light dynamics in photonic structures, such
as materially fabricated photonic crystals (PCs) and optically induced photonic lattices in
nonlinear media, has witnessed a large number of ground-breaking advances; e.g., see [21,
32]. Among the many phenomena heavily explored are nonlinear effects associated with
propagation, localization, and discretization of light in optically induced photonic lattices [10],
including the formation of lattice solitons in one [14, 38] and two [9, 15, 35] dimensions, and
discrete vortex solitons [16, 39].

The model that we will use herein is based on a one-dimensional PDE describing the prop-
agation of light in a photorefractive crystal [11] (also see the recent exposition of [49]). More
specifically, we examine the dynamics of a probe beam that propagates in a photorefractive
crystal (e.g., SBN), being extraordinarily polarized, while a strong ordinarily polarized beam
creates an effective lattice potential for the probe. The equation for the spatial evolution of a
slowly varying amplitude U of the probe beam is

iqz +
1

2k0ne
Δq − 1

2
k0n

2
er33

E0

1 + I0(x) + |q|2 q = 0.(2.1)

In (2.1), z and x are the propagation distance and transverse coordinate, respectively; k0

is the wavenumber of the probe beam in the vacuum; ne is the refractive index along the
extraordinary axis; r33 is the electro-optic coefficient for the extraordinary polarization; E0 is
the bias electric field; and I0(x) ≥ 0 is the intensity of the ordinarily polarized beam, subject
to modulation in the transverse direction (all intensities are normalized with respect to the
crystal’s dark irradiance, Id). Measuring z in units of 2k0ne and E0 in units of 1/(k2

0n
4
er33),

(2.1) can be cast in a dimensionless form,

iqz + Δq − E0

1 + I0(x) + |q|2 q = 0,(2.2)

with z ∈ R
+ and x ∈ R

n for some n ∈ N.
Let us now put (2.2) into a form which is more convenient for analysis. If one sets

q := (1 + I0)
1/2q̃,(2.3)

then, upon dropping the tilde, (2.2) becomes

iqz + Δq − E0

(1 + I0(x))(1 + |q|2)q = 0.(2.4)

Looking for bound states of the form

q(x, z) := Q(x)e−iωz(2.5)
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yields the steady-state problem

LωQ− E0

1 + I0(x)

|Q|2
1 + |Q|2Q = 0,(2.6)

where

Lω := L − ω, L := −Δ +
E0

1 + I0(x)
.(2.7)

Henceforth it will be assumed that n = 1. The specific form for the potential I0(x) will
now be given. Let G(x) : R �→ R

+ be even, and assume that for some C, a ∈ R
+ it satisfies

|G(x)| ≤ Ce−x2/2a2
, x ∈ R.(2.8)

For L ∈ R
+ sufficiently large, we will consider in this paper symmetric potentials of the form

I0(x) = V0

⎛
⎝G(x) +

N∑
j=1

[G(x + 2jL) + G(x− 2jL)]

⎞
⎠(2.9)

(odd number of potential wells) or

I0(x) = V0

N∑
j=1

[G(x + (2j − 1)L) + G(x− (2j − 1)L)](2.10)

(even number of potential wells), where V0 ∈ R
+. In other words, the multiwell potential

will be modeled by several evenly spaced single-well potentials; furthermore, the interaction
between adjacent wells is of O(e−L2/2a2

). If N = 0, then it will be implicitly assumed that for
(2.9) one has that

I0(x) = V0G(x).(2.11)

The following assumption regarding σp(L) will be used throughout the rest of this article.
The implications of Assumption 2.1 regarding the stability of bifurcating nonlinear waves will
be discussed in detail in section 4.1.

Assumption 2.1. Assume that L has a finite number of point eigenvalues, and let the
eigenvalues of L for the single-well potential given in (2.11) be labeled γ0 < γ1 < · · · < γn <
E0 ∈ R. It will be assumed that for a given 0 ≤ k ≤ n,

(a) γj − γk �= γk − γ� for all choices of eigenvalues γ� < γk < γj ,
(b) γ� > 2γk − E0 for � = 0, . . . , k − 1.

Remark 2.2. Note that, in particular, Assumption 2.1 automatically holds if k = 0. Hence,
the assumption is truly needed only when considering the existence and stability of nonlinear
excited states.
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3. Existence. Consider the existence of real-valued solutions to (2.6). Since the potential
is even, solutions to (2.6) are invariant under the Z2 ⊕Z2-symmetry induced by the operators
R1 and R2, where

[R1q](x) := q(−x), [R2q](x) := −q(x).(3.1)

Each nonlinear solution found subsequently will generate a family of solutions which is invari-
ant under the Z2 ⊕Z2-symmetry; in other words, if Q is a solution, then so are [R1Q], [R2Q],
and [R1R2Q].

As in Appendix A, let Φ(x) represent a normalized eigenfunction for the operator L
given in (2.7), with the single-well potential given in (2.11). The eigenfunction, which by
the assumption on G(x) is either even or odd, is clearly independent of ω; hence, for this
eigenfunction one can let the parameter ω < E0 be chosen so that the associated eigenvalue
for Lω is λ = 0. When considering the potential given in (2.9), we will henceforth be interested
in the case that N = 1. In this case, upon applying the result of (A.13) to (A.11), one sees
that the exponentially small eigenvalues of O(e−2cωL) and cω :=

√
E0 − ω, as well as their

associated eigenfunctions, are given to leading order by

λ1 =
√

2 a±L , q1 :=
1

2
[Φ(x + 2L) +

√
2 Φ(x) + Φ(x− 2L)],

λ2 = 0, q2 :=
1

2
[−

√
2 Φ(x + 2L) +

√
2 Φ(x− 2L)],

λ3 = −
√

2 a±L , q3 :=
1

2
[−Φ(x + 2L) +

√
2 Φ(x) − Φ(x− 2L)].

(3.2)

Here

a±L := ±2Φ(L)Φ′(L),

and one takes a+
L if Φ(x) is even, and a−L otherwise. In (3.2) note that if Φ(x) is even, then

λ1 < λ2 < λ3; otherwise, the reverse ordering is taken. All of the eigenfunctions in (3.2) have
been scaled to have norm one. The expressions presented in (3.2) will be heavily used in all
of the subsequent analysis.

3.1. Lyapunov–Schmidt reduction. The idea is to apply a Lyapunov–Schmidt reduction
to (2.6). Since |λj | = O(e−2cωL), it will initially be assumed that the semisimple eigenvalue
λ = 0 for Lω has geometric multiplicity three. For 0 < ε � 1 write

Q = (xq1 + yq2 + zq3)ε
1/2 + O(ε),

ω = γk + Δω ε + O(ε2);
(3.3)

the parameter ε is introduced so that the nonlinear term is small. In the expansion for ω
given in (3.3) we are explicitly assuming that the parameter is free (see (2.6)). Note that to
leading order the power is given by

P (Q) :=

∫ +∞

−∞
Q2(t) dt

= (x2 + y2 + z2)ε + O(ε3/2).

(3.4)
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It is also important to note, if Φ(x) is a positive bound state, the fact that to leading order

〈Q, q1〉 = x ε1/2, 〈Q, q2〉 = y ε1/2, 〈Q, q3〉 = z ε1/2,

and the expansions in (3.2) then yield that the value of x corresponds to a projection onto a
bound state of three in-phase pulses, the value of y corresponds to a projection onto a bound
state of two out-of-phase pulses, and the value of z corresponds to a projection onto a bound
state of three out-of-phase pulses. Now define the inner product

〈f, g〉I0 :=

∫ +∞

−∞

1

1 + I0(x)
f(x)g(x) dx,

and set

gijk� := 〈qjqkq�, qi〉I0 ,

where the eigenfunction qα for α ∈ {1, 2, 3} is given in (3.2). Upon applying the standard
Lyapunov–Schmidt reduction theory, one sees that the assumption that the eigenvalue is
semisimple yields the set of existence equations

0 = Δω x + E0(g
1
111x

3 + 3g1
122xy

2 + 3g1
133xz

2 + 3g1
113x

2z + g1
333z

3 + 3g1
223x

2y),

0 = Δω y + E0(3g
1
122x

2 + 6g1
223xz + g2

222y
2 + 3g2

233z
2)y,

0 = Δω z + E0(3g
1
133x

2z + g1
113x

3 + 3g1
333xz

2 + 3g1
223xy

2 + 3g2
233y

2z + g3
333z

3).

(3.5)

In other words, if (x0, y0, z0) is a solution to (3.5), then by (3.3) the associated nonlinear
solution is given by Q ∼ (x0q1 + y0q2 + z0q3)ε

1/2. The fact that the eigenfunctions are either
even or odd was implicitly used in setting up (3.5).

Now let us use the functional form of the eigenfunctions given in (3.2) to simplify (3.5).
Upon using the fact that the tails of Φ(x) are of O(e−cωL), one quickly sees that up to an
exponentially small error term,

g1
133 = g3

333 = 3g1
113 = 3g1

333 =
3

2
g1
122 =

3

2
g2
233 = −3

2
g1
223 =

3

4
g2
222 = g1

111.(3.6)

Upon defining

Γ :=
3

4g1
111

1

E0
,(3.7)

and substituting the result of (3.6) into (3.5), one gets that (3.5) can be rewritten as

0 =
4

3
ΓΔω x + x3 + x2z + 3xz2 +

1

3
z3 + 2(x− z)y2,

0 =

(
ΓΔω +

3

2
(x− z)2 + y2

)
y,

0 =
4

3
ΓΔω z +

1

3
x3 + 3x2z + xz2 + z3 − 2(x− z)y2.

(3.8)
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As already stated, (3.8) is valid only in the case that λ = 0 is semisimple with multiplicity
three. In order to take into account the eigenvalue unfolding given in (3.2), the equations must
be appropriately modified. As stated in [18, Proposition IX.1.3], via the use of singularity
theory it is known that the universal unfolding associated with (3.8) contains minimally eight
free parameters. To the best of our knowledge this unfolding has not yet been written down.
Consequently, we take the following approach. Consider the subspace which has as a basis the
set {q1, q2}. If one were to perform a Lyapunov–Schmidt reduction with this set, then upon
using [18, Theorem X.2.4], one would get the universal unfolding of the bifurcation equations
to be of the form

0 =
4

3
Γ(Δω + Δλ)x + x3 + 2xy2,

0 =

(
ΓΔω +

3

2
x2 + y2

)
y.

(3.9)

In (3.9) the parameter Δλ ∝ λ2 − λ1 is an unfolding parameter. Since a±LΔλ > 0, one has
that Δλ > 0 if Φ(x) is even, and is negative otherwise. One arrives at a system similar to
(3.9) if the basis {q2, q3} is taken. Thus, it seems reasonable to conclude that a one-parameter
unfolding of (3.8) which is consistent with the results presented in Appendix A and which
preserves the Z2 ⊕ Z2-symmetry is given by

0 =
4

3
Γ(Δω + Δλ)x + x3 + x2z + 3xz2 +

1

3
z3 + 2(x− z)y2,

0 =

(
ΓΔω +

3

2
(x− z)2 + y2

)
y,

0 =
4

3
Γ(Δω − Δλ)z +

1

3
x3 + 3x2z + xz2 + z3 − 2(x− z)y2.

(3.10)

In (3.10), Δλ is an eigenvalue unfolding parameter that satisfies

Δλ ∝ λ2 − λ1 = λ3 − λ2.(3.11)

The remainder of this section will be devoted to the study of (3.10). While the results
for Δλ �= 0 will not be rigorous in predicting the bifurcation points in parameter space, the
numerical results presented in section 5 will justify the effort. A cartoon for the subsequently
described situation is given in Figure 1. In all that follows, the expressions for the nonlinear
wave and the total power will be given only to leading order. The power follows from (3.4),
while the expressions for the wave follow upon combining (3.2) with (3.3).

3.2. Solution: x = z = 0. In this subsection we consider the existence of odd solutions,
i.e., solutions which are fixed points for R1R2. When x = z = 0 the solution to (3.10) is
particularly easy: y2 = −ΓΔω, with

Q(x) = ε1/2
√

|ΓΔω|
2

(−Φ(x + 2L) + Φ(x− 2L)) , P (Q) = −ΓΔω ε.

This solution corresponds to the curve labeled (−0+) in Figure 1 and is a continuation from
the linear limit.
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P

0+0

-0+

-+-

+00

++0

+0+

+++

-+0

-++

Figure 1. The bifurcation diagram associated with (3.10) in the case that Δλ > 0. The “+” corresponds
to Φ(·) sitting in the potential well, the “−” corresponds to −Φ(·) sitting in the potential well, and the “0”
implies that the potential well is empty.

3.3. Solution: y = 0. In this subsection we consider the existence of even solutions, i.e.,
solutions which are fixed points for R1. When y = 0, (3.10) reduces to the system

0 =
4

3
Γ(Δω + Δλ)x + x3 + x2z + 3xz2 +

1

3
z3,

0 =
4

3
Γ(Δω − Δλ)z +

1

3
x3 + 3x2z + xz2 + z3.

(3.12)

Set

Δη :=
Δλ

Δω
,(3.13)

and write z = μx. Substitution of the above ansatz into (3.12) yields that

x2 = −4
1 + Δη

3 + 3μ + 9μ2 + μ3
ΓΔω,(3.14)

with

gz(μ,Δη) := μ4 + 6μ3 − 6μ− 1 − Δη(μ4 + 12μ3 + 6μ2 + 12μ + 1) = 0.(3.15)
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3.3.1. Δλ = 0. Upon setting Δλ = 0 in (3.15), one has that

gz(μ, 0) = (μ2 − 1)(μ2 + 6μ + 1).

If μ = 1, then x2 = −ΓΔω/4 with

Q(x) = ε1/2
√

|ΓΔω|
2

Φ(x), P (Q) = −1

2
ΓΔω ε,(3.16)

i.e., the solution curve labeled (0 + 0) in Figure 1, while if μ = −1, then x2 = −ΓΔω/2 with

Q(x) = ε1/2
√

|ΓΔω|
2

(Φ(x + 2L) + Φ(x− 2L)) , P (Q) = −ΓΔω ε,(3.17)

i.e., the solution curve labeled (+0+) in Figure 1. Now suppose that μ2 + 6μ + 1 = 0. One
sees that (3.14) reduces to

x2 =
1

4μ
ΓΔω,(3.18)

and the subsequent profiles are given by

Q(x) = ε1/2
√

|ΓΔω|
2

(Φ(x + 2L) + Φ(x) + Φ(x− 2L)) , P (Q) = −3

2
ΓΔω ε,(3.19)

(μ = −3 +
√

8) and

Q(x) = ε1/2
√

|ΓΔω|
2

(−Φ(x + 2L) + Φ(x) − Φ(x− 2L)) , P (Q) = −3

2
ΓΔω ε(3.20)

(μ = −3 −
√

8). These solutions correspond to the curves labeled (+ + +) and (− + −),
respectively, in Figure 1.

3.3.2. Δλ �= 0. In order to study the solution set to (3.15), it is natural to first determine
those points (μc,Δηc) for which

gz(μc,Δηc) =
∂

∂μ
gz(μ,Δη) = 0.

One initially sees that ∂μgz = 0 only if

Δη =
2μ3 + 9μ2 − 3

2μ3 + 18μ2 + 6μ + 6
.(3.21)

Substituting the result of (3.21) into (3.15) and simplifying then yields

gb
z (μ) := μ6 + 2μ5 + 15μ4 + 48μ3 + 15μ2 + 2μ + 1 = 0.(3.22)
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Upon using the result of Proposition C.1, one finds that the real-valued roots of gb
z are ap-

proximately given by

μ ∈ {−0.388,−2.574}.

Substitution of these values into (3.21) yields that

μ ∼ −0.388 =⇒ Δηc ∼ −0.281, μ ∼ −2.547 =⇒ Δηc ∼ 0.297.(3.23)

Upon substituting the result of (3.23) into (3.14), one sees that the solution is consistent;
i.e., x2 ∈ R

+ only if Δω = Δηc/Δλ < 0. If Δλ < 0, so that Δηc > 0, then upon consulting
(3.23), one sees that upon the appropriate substitution into (3.14),

x2 ∼ −0.137ΓΔω,(3.24)

and upon using (3.3), one sees that the resulting wave is given by

Q(x) ∼ ε1/2
√

|ΓΔω| (0.66Φ(x + 2L) − 0.41Φ(x) + 0.66Φ(x− 2L)) , P (Q) ∼ −1.045 ΓΔω ε.

(3.25)

If Δλ > 0, then by (3.14) one has that

x2 ∼ −0.918ΓΔω,(3.26)

with

Q(x) ∼ ε1/2
√

|ΓΔω| (0.67Φ(x + 2L) + 0.41Φ(x) + 0.67Φ(x− 2L)) , P (Q) ∼ −1.057 ΓΔω ε.

(3.27)

One finally has that the solutions defined by (3.17) and (3.19), i.e., the solutions (+0+) and
(+++), terminate as a consequence of a saddle-node bifurcation at either the solution defined
by (3.25) (Δλ < 0) or that defined by (3.27) (Δλ > 0).

3.4. Solution: x, y, z �= 0. We finally consider those solutions which are neither odd nor
even in the spatial variable. Solving the second equation of (3.10) yields

y2 = −ΓΔω − 3

2
(x− z)2.(3.28)

Substituting the result of (3.28) into the first and third equations of (3.10) then yields the
system

0 = Γ[(Δω − 2Δλ)x− 3Δωz] + 3x3 − 15x2z + 9xz2 − 5z3,

0 = Γ[−3Δωx + (Δω + 2Δλ)z] − 5x3 + 9x2z − 15xz2 + 3z3.
(3.29)

Upon using (3.13) and writing z = μx, one sees that a solution to (3.29) must satisfy

x2 = − 1 − 3μ− 2Δη

3 − 15μ + 9μ2 − 5μ3
ΓΔω,(3.30)
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with

gy(μ,Δη) := 2μ4 − 12μ3 + 12μ− 2 − Δη(5μ4 − 12μ3 + 30μ2 − 12μ + 5) = 0.(3.31)

Note that (3.28) can now be rewritten as

y2 = −ΓΔω − 3

2
(1 − μ)2x2,

where x2 is given in (3.30), i.e.,

y2 = −
(

1 − 3

2
(1 − μ)2

1 − 3μ− 2Δη

3 − 15μ + 9μ2 − 5μ3

)
ΓΔω.(3.32)

3.4.1. Δλ = 0. Upon setting Δλ = 0 in (3.31), one has that

gy(μ, 0) = (μ2 − 1)(μ2 − 6μ + 1).

If μ = 1, then x2 = −ΓΔω/4 and y2 = −ΓΔω with

Q(x) = ε1/2
√

|ΓΔω|
2

(−Φ(x + 2L) + Φ(x) + Φ(x− 2L)) , P (Q) = −3

2
ΓΔω ε,(3.33)

i.e., the solution curve labeled (− + +) in Figure 1, while if μ = −1, then x2 = −ΓΔω/8 and
y2 = −ΓΔω/4 with

Q(x) = ε1/2
√

|ΓΔω|
2

Φ(x + 2L), P (Q) = −1

2
ΓΔω ε,(3.34)

i.e., the solution curve labeled (+00) in Figure 1. Now suppose that μ2 − 6μ + 1 = 0. One
sees that (3.30) and (3.32) reduce to

x2 = − 1

8μ
ΓΔω, y2 = −1

4
ΓΔω,(3.35)

and the subsequent profiles are given by

Q(x) = ε1/2
√

|ΓΔω|
2

(−Φ(x + 2L) + Φ(x)) , P (Q) = −ΓΔω ε(3.36)

(μ = 3 +
√

8), i.e., the solution curve labeled (− + 0) in Figure 1, and

Q(x) = ε1/2
√

|ΓΔω|
2

(Φ(x + 2L) + Φ(x)) , P (Q) = −ΓΔω ε(3.37)

(μ = 3 −
√

8), i.e., the solution curve labeled (+ + 0) in Figure 1.
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3.4.2. Δλ �= 0. In order to study the solution set to (3.31), it is natural to first determine
those points (μc,Δηc) for which

gy(μc,Δηc) =
∂

∂μ
gy(μ,Δη) = 0.

One initially sees that ∂μgy = 0 only if

Δη =
2μ3 − 9μ2 + 3

5μ3 − 9μ2 + 15μ− 3
.(3.38)

Substituting the result of (3.38) into (3.31) and simplifying then yields

gb
y (μ) := μ6 +

10

3
μ5 − 51

3
μ4 +

164

9
μ3 − 51

3
μ2 +

10

3
μ + 1 = 0.(3.39)

Upon using the result of Proposition C.1, one finds that the real-valued roots of gb
y are given

by

μ ∈
{

1 ± 2

3

√
3,−3 ± 2

√
3

}
.

Substitution of these values into (3.38) yields that

μ = 1 ± 2

3

√
3 =⇒ Δηc = −1

2
, μ = −3 ± 2

√
3 =⇒ Δηc =

1

2
.(3.40)

Upon substituting the result of (3.40) into (3.30) and (3.32), one sees that the solution
is consistent, i.e., x2, y2 ∈ R

+ only if Δω = Δηc/Δλ < 0. First suppose that Δλ > 0, so
that upon consulting (3.40) one sees that one must have μ ∈ {1 − 2

√
3/3, 1 + 2

√
3/3}. If

μ = 1 + 2
√

3/3, then

x2 = − 9

32

(
1 −

√
3

3

)
ΓΔω, y = ±

(
10

3
+

16

9

√
3

)1/2

x, z =

(
1 +

2

3

√
3

)
x,(3.41)

which, upon using (3.3), yields

Q(x) ∼ ε1/2
√

|ΓΔω| (−0.82Φ(x + 2L) + 0.77Φ(x) + 0.42Φ(x− 2L)) ,

P (Q) = −
(

1 +
1

4

√
3

)
ΓΔω ε.(3.42)

One has that the solutions defined by (3.33) and (3.36), i.e., the solutions (−++) and (−+0),
terminate as a consequence of a saddle-node bifurcation at the solution defined by (3.42). If
μ = 1 − 2

√
3/3, then

x2 = − 9

32

(
1 +

√
3

3

)
ΓΔω, y = ±

(
10

3
− 16

9

√
3

)1/2

x, z =

(
1 − 2

3

√
3

)
x,(3.43)
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with

Q(x) ∼ ε1/2
√

|ΓΔω| (0.15Φ(x + 2L) + 0.40Φ(x) + 0.62Φ(x− 2L)) ,

P (Q) = −
(

1 − 1

4

√
3

)
ΓΔω ε.(3.44)

One has that the solutions defined by (3.34) and (3.37), i.e., the solutions (+00) and (+ + 0),
terminate as a consequence of a saddle-node bifurcation at the solution defined by (3.44).

If Δλ < 0, then for μ = −3 + 2
√

3 one has that

x2 = − 9

32

(
1 +

5

9

√
3

)
ΓΔω, y = ±

(
6 − 8

3

√
3

)1/2

x, z =
(
−3 + 2

√
3
)
x,(3.45)

with

Q(x) ∼ ε1/2
√

|ΓΔω| (−0.82Φ(x + 2L) − 0.77Φ(x) + 0.42Φ(x− 2L)) ,

P (Q) = −
(

1 +
1

4

√
3

)
ΓΔω ε.(3.46)

If μ = −3 − 2
√

3, then

x2 = − 9

32

(
1 − 5

9

√
3

)
ΓΔω, y = ±

(
6 +

8

3

√
3

)1/2

x, z =
(
−3 − 2

√
3
)
x,(3.47)

with

Q(x) ∼ ε1/2
√

|ΓΔω| (0.15Φ(x + 2L) − 0.40Φ(x) + 0.62Φ(x− 2L)) ,

P (Q) = −
(

1 − 1

4

√
3

)
ΓΔω ε.(3.48)

The bifurcation diagram is exactly as described in the previous for the case Δλ > 0.

4. Spectral stability of nonlinear solutions.

4.1. General spectral results. The purpose of this subsection is to provide a broad theo-
retical framework for the analysis of section 4.3. The general results presented in [26, 27, 41]
will be used. Upon taking real and imaginary parts via q := u+iv, and linearizing (2.4) about
a real-valued solution Q, one has the eigenvalue problem

L+u = −λv, L−v = λu,(4.1)

where

L+ := Lω − 3ε
E0

1 + I0(x)
Q2 + O(ε3/2), L− := Lω − ε

E0

1 + I0(x)
Q2 + O(ε3/2).

Eigenvalue problems of this type have been studied extensively (see [26] for a bibliography).
For (4.1) let kr represent the number of real positive eigenvalues, kc the number of eigenvalues
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with both positive real and imaginary parts, and k−i the number of purely imaginary eigen-
values with positive imaginary part and negative Krein sign. The Krein signature of a simple
eigenvalue λ ∈ iR+ is given by

K := sign(〈uλ, L+uλ〉),(4.2)

where the associated eigenfunction of (4.1) is given by (uλ, vλ) (see [26, section 2.2] for more
details). Let n(L±) correspond to the number of negative eigenvalues of L± and z(L±) =
dim(ker(L±)). The result of [26, Theorem 3.3] (also see [40]) states that

kr + 2k−i + 2kc = [n(L+) − n(D)] + n(L−),(4.3)

where

D := ∂ω〈Q,Q〉;(4.4)

furthermore,

kr ≥ |[n(L+) − n(D)] − n(L−)|.(4.5)

As a consequence of the existence results in section 3, i.e., the fact that Δω < 0, one has that
for all of the waves under consideration, n(D) = 1. Thus, (4.3) and (4.5) can be rewritten as

kr + 2k−i + 2kc = [n(L+) − 1] + n(L−),

kr ≥ |[n(L+) − 1] − n(L−)|.
(4.6)

Note that if both n(L±) are either even or odd, then as a consequence of (4.6) one has that
kr ≥ 1.

The perturbation calculation presented in section 4.2 may be insufficient for fully deter-
mining the spectral stability of the solutions, as it describes only those eigenvalues for L± and
(4.1) of O(ε). It is possible that O(1) eigenvalues of opposite sign collide, and hence create
an oscillatory instability. However, as will now be seen, this possibility is precluded under
Assumption 2.1 for ε > 0 sufficiently small.

First consider (2.6) under the assumption of the single-well potential given in (2.11).
Following the argument given in [23], it can be shown that for each 0 ≤ k ≤ n, and for
0 < ε � 1, there is a unique value ω = γk + O(ε) and a corresponding real-valued nonlinear
solution Qk = ε1/2qk + O(ε) to (2.6), where qk is the eigenfunction of L associated with the
eigenvalue γk. Furthermore, for this wave n(D) = 1. When discussing the spectral stability
of this nonlinear wave one has that

n(L+) = k + 1, n(L−) = k,

which by (4.6) implies that

kr + 2k−i + 2kc = 2k

[23, section 3.2]. Under this scenario it was further shown in [23, appendix] that the eigenvalues
γ1 − ω, . . . , γk−1 − ω, γk+1 − ω, . . . , γn − ω of Lω map to purely imaginary eigenvalues for
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Figure 2. The left-hand part of the figure gives the nonzero spectrum of Lω in the case of a 1-well potential
with ω = γ1. The right-hand part demonstrates the manner in which the spectrum of Lω is mapped to that
for (4.1) under Assumption 2.1. In this figure the cross represents a simple purely imaginary eigenvalue with
negative Krein sign, and the circle represents a simple purely imaginary eigenvalue with positive Krein sign.
The inset demonstrates the manner in which the single eigenvalue with negative sign becomes three eigenvalues
with negative sign when the number of potential wells increases from one to three.

the eigenvalue problem in (4.1); furthermore, the eigenvalues γ1 − ω, . . . , γk−1 − ω map to
∓i(γ� − ω) + O(ε), � = 0, . . . , k − 1, and have negative Krein sign, whereas the eigenvalues
γk+1 −ω, . . . , γn−ω map to purely imaginary eigenvalues ±i(γ�−ω) +O(ε), � = k+ 1, . . . , n,
and have positive sign.

Assume that Assumption 2.1(a) holds, i.e., that the eigenvalues are not in resonance. This
circumstance can be precluded via a proper choice of the potential, such as that described in
Appendix B. As a consequence of Assumption 2.1(a) one has that all of the O(1) eigenvalues
given above are simple. If Assumption 2.1(b) holds, then one further has that none of the
eigenvalues resides in the continuous spectrum when ε = 0, and consequently will not do so for
ε > 0 sufficiently small. Because the system is Hamiltonian, one can then conclude that all of
the eigenvalues remain on the imaginary axis for ε sufficiently small. It is interesting to note
that if Assumption 2.1(b) does not hold, then an eigenvalue with negative sign is embedded
in the essential spectrum, and it is generic that upon perturbation to the nonlinear state the
perturbed eigenvalue will have nonzero real part (e.g., see [33, 41]).

Now consider the case of the N -well potential. By [46] it is known that associated with
each simple O(1) eigenvalue given above for the 1-well potential there will exist a cluster of
N eigenvalues that are O(e−2cωL) close to the original 1-well eigenvalue. Assumption 2.1(a)
guarantees that each cluster of N eigenvalues will be isolated from all other clusters, while
Assumption 2.1(b) ensures that none of the eigenvalues will reside in the continuous spectrum.
Because the system is Hamiltonian, upon using an energy argument along the lines presented
in [26, section 3], one knows that each cluster of eigenvalues will be purely imaginary. An
illustration of the above discussion is given in Figure 2.

As a consequence of the above discussion, when applying the result of (4.6) under As-
sumption 2.1, it is sufficient to consider only those small O(ε) eigenvalues which are generated
by the perturbation from the linear state. The task of locating these small eigenvalues for
general Hamiltonian systems will be considered in the next subsection.
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4.2. General perturbation results. Consider the eigenvalue problem

JLu = λu,(4.7)

where J is a nonsingular skew-symmetric operator and L is a symmetric operator of the form

L = L0 + εL1 + O(ε2); L0 := diag(L0, L0), L1 :=

(
L+

1 Lc
1

Lc
1 L−

1

)
.

It will be assumed that z(L0) = n ∈ N and that the orthonormal basis for ker(L0) is given by

ker(L0) = Span{φ1, . . . , φn}.

One then has that z(L0) = 2n, with

ker(L0) = Span{φ+
1 , . . . , φ

+
n , φ

−
1 , . . . , φ

−
n }; φ+

j := (φj , 0)T, φ−
j := (0, φj)

T.

Upon using regular perturbation theory (see [28, Theorem 8.2.6]) and Lyapunov–Schmidt
theory (see the proof of [26, Theorem 4.1]), one can write the perturbed eigenfunctions and
eigenvalues as

u = u0 + εu1 + O(ε2), λ = ελ1 + O(ε2),

where u0 ∈ ker(L0) and the pair (u1, λ1) solves the equation

L0u1 = (λ1J
−1 − L1)u0.(4.8)

Upon writing

u0 =

n∑
j=1

c+j φ
+
j +

n∑
j=1

c−j φ
−
j(4.9)

and applying the standard solvability condition, one then sees that (4.8) can be solved if and
only if

(λ1J − S)c = 0 , c := (c+, c−)T,(4.10)

where

J :=

(
J+ Jc

−(Jc)T J−

)
; (J±)ij := 〈J−1φ±

i , φ
±
j 〉, (Jc)ij := 〈J−1φ−

i , φ
+
j 〉,

and

S :=

(
S+ Sc

Sc S−

)
; S±

ij := 〈L±
1 φi, φj〉, Sc

ij := 〈Lc
1φi, φj〉.

Note that S is symmetric and that J is skew-symmetric; furthermore, if J is in canonical
form, i.e.,

J =

(
0 1l

−1l 0

)
,
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then

J =

(
0 −1l
1l 0

)
.

Remark 4.1. If one considers the eigenvalue problem

Lu = λu,

then up to O(ε) one sees that

(λ11l − S)c = 0 .(4.11)

As an observation, which will be applicable to the real-valued solutions discussed in sec-
tion 3, suppose that Lc

1 = 0, which implies that Sc = 0 and that L±
1 are such that

S± = a±1l + b±S0,(4.12)

where S0 ∈ R
n×n and a±, b± ∈ R. The linearization given in (4.1) satisfies this assumption

with a± = −Δω, b− = 1, and b+ = 3. If {s0
1, . . . , s

0
n} = σ(S0), then one can easily show that

for (4.11), {a± + b±s0
1, . . . , a± + b±s0

n} = σ(S±). Now suppose that J is in canonical form.
One can then easily show that for (4.10) the eigenvalues are given by

λ±
j = ±i

√
(a− + b−s0

j )(a+ + b+s0
j ).(4.13)

Thus, in this case the eigenvalues will be either in R or in iR. Since the underlying system
is Hamiltonian, if the eigenvalues are simple, this situation will hold true to all orders in the
expansion. Finally, if λ ∈ iR is simple, then the Krein signature is given by

K = sign(a− + b−s
0
j ).(4.14)

This follows immediately upon using the diagonal structure of S and the result of [26, Theo-
rem 3.3].

4.3. Application: Np potential wells. As we will see herein, the perturbation results
presented in section 4.2 can be used to determine the spectral stability of waves in the case
of Np potential wells, where, following the notation of Appendix A, one has that Np ∈
{2N, 2N + 1} with N ≥ 1. All that is required is the following assumption on the form of the
wave, which has been shown in section 3 to be true in the event that Np = 3. An analysis
along the lines presented in section 3 also demonstrates its validity in the case that Np = 2.

Assumption 4.2. In the case of an odd number of potential wells one has that to leading
order the nonlinear wave is of the form

Q(x) = ε1/2
√

|Γ Δω|
2

Np∑
�=1

δ�Φ(x + 2tr(�)L) + O(ε),
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where δ� ∈ {−1, 0, 1}, Δω < 0, and tr(·) : Z �→ Z is monotone decreasing with tr(1) = N and
tr(Np) = −N . If the number of potential wells is even, then the wave is of the above form
with the mapping

2tr(�) �→ 2tr(�) − 1,

and tr(Np) = −N + 1. Any bifurcations occur for

|Δω| = O(e−2cωL).

In other words, as proved to be true in section 3 for the case Np = 3, we are assuming in
Assumption 4.2 that each potential well is filled with the same 1-well eigenfunction, and that
all sequences {δ1, . . . , δNp} are achievable. Furthermore, it is being assumed that any saddle-
node or pitchfork bifurcations are being controlled by the exponentially small interactions
between adjacent potential wells.

For a given sequence {δ1, . . . , δNp} extract all of the nonzero elements to form the subse-
quence {δs

1, . . . , δ
s
Nf
}, where 1 ≤ Nf ≤ Np is the number of filled potential wells. For example,

if the sequence is given by {−1, 0,+1, 0, 0,+1} (Np = 6), then the associated subsequence is
given by {−1,+1,+1} (Nf = 3). Now set

pi := {# times δs
�δ

s
�+1 = +1, � = 1, . . . , Nf − 1},

po := {# times δs
�δ

s
�+1 = −1, � = 1, . . . , Nf − 1}.

(4.15)

In (4.15) the quantity pi counts the number of adjacent pulses which are in-phase, while po

counts the number of adjacent pulses which are out of phase. Note that

pi + po = Nf − 1.

Upon letting k+
i represent the number of purely imaginary eigenvalues in the upper half of

the complex plane with positive Krein signature, the following theorem can now be proved.
The implications for the case of Np = 3 are depicted in Figure 3.

Theorem 4.3. Under Assumption 4.2, if ε > 0 is sufficiently small, then for the O(ε)
eigenvalues one has that

kr = pi, k−i = po, k+
i = Np −Nf , kc = 0.

Furthermore, the eigenvalues in the upper half-plane with positive signature are given by
i|Δω|ε + O(ε3/2), whereas all of the other nonzero eigenvalues are O(ε3/2).

Proof. For notational ease, and without loss of generality, it will be assumed that there is
an odd number of potential wells. Recall that the location of the O(ε) spectrum is given in
section 4.2.

Following (4.10), one has that

(S0)jk = E0〈Q2, qjqk〉I0 , j, k = 1, . . . , Np.

Since L is sufficiently large so that the interaction between adjacent pulses is exponentially
small, upon ignoring these exponentially small terms one has that to leading order

Q2(x) = −ε
Γ Δω

2

Np∑
�=1

δ2
�Φ

2(x + 2tr(�)L).
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Figure 3. The spectral stability diagram associated with the solutions found in section 3. The crosses
represent either real eigenvalues, or purely imaginary eigenvalues with negative Krein sign. The circle represents
a purely imaginary eigenvalue with positive Krein sign. See the caption associated with Figure 1 for further
details.

For the eigenvectors given in (A.13) associated with the Np-well eigenvalue problem, denote
the matrix whose columns are these vectors by E ∈ R

Np×Np . For the wave given in Assump-
tion 4.2, for each � such that δ� = 0 replace row � in E with the zero row, and denote this
new matrix by Er. Using the expression for the eigenfunctions given in (A.10) or (A.11) then
yields that to leading order

(S0)jk = E0〈Q2, qjqk〉I0

= −1

2
E0Γ Δω〈Erej ,Erek〉 〈Φ2,Φ2〉I0 ,

where ei ∈ R
Np denotes the ith unit vector. In other words, after ignoring the exponentially

small terms, one has to leading order

S0 = −1

2
E0Γ Δω〈Φ2,Φ2〉I0ET

r Er.(4.16)
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Write σ(S0) = {s1Δω, . . . , smΔω}. Upon following the discussion leading to (4.13), one
sees that to leading order the O(ε) eigenvalues in σ(L±) for j = 1, . . . , Np are given by

σ(L−) : −Δω(1 + sj)ε, σ(L+) : −Δω(1 + 3sj)ε.(4.17)

Since ker(ET
r Er) = ker(Er), the formulation of S0 in (4.16) implies that

z(S0) = z(ET
r Er) = Np −Nf .(4.18)

To leading order, the eigenfunctions of L± are in Span{Φ(x + 2tr(�)L)}. Since L−Q = 0,
by applying (4.17) one then has that the eigenvalue associated with sj = −1 has minimal
geometric multiplicity Nf . Combining this with (4.18) then yields that σ(S0) = {0,−Δω},
where −Δω is an eigenvalue with geometric multiplicity Nf , and 0 is an eigenvalue with
geometric multiplicity Np − Nf . As a consequence of this spectral decomposition of S0, as
well as (4.17) and Sturm–Liouville theory, one can finally conclude that

n(L+) = Nf , n(L−) = po.(4.19)

Upon using the result of (4.19) in (4.6), one can conclude that for (4.1),

kr ≥ [Nf − 1] − po = pi(4.20)

and

kr + 2k−i + 2kc = [Nf − 1] + po = pi + 2po.(4.21)

Now, there exist a total of 2Np − 2 eigenvalues of O(ε), which implies that at O(ε),

2kr + 2(k−i + k+
i ) + 4kc = 2Np − 2.(4.22)

Now recall (4.13), which shows that to leading order the O(ε) eigenvalues for (4.1) are given
by

λ±
j = ±i Δω

√
(1 + sj)(1 + 3sj) ε;(4.23)

furthermore, the Krein signature of purely imaginary eigenvalues is given by sign(1 + sj).
If sj = 0, then the associated eigenvalue is purely imaginary with positive sign. There are
2(Np −Nf) eigenvalues of this type, i.e.,

k+
i = Np −Nf .(4.24)

If sj = −1, then to leading order (4.23) yields no information, so that a more detailed analysis
is necessary. In conclusion, at O(ε) one has that

k+
i = Np −Nf , k−i = kr = kc = 0.(4.25)
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As a consequence of the above discussion one has that the eigenvalues satisfying (4.21)
are necessarily O(ε3/2). Furthermore, by (4.25) one has that the total remaining number of
nonzero small eigenvalues of O(ε3/2) satisfies

2kr + 2(k−i + k+
i ) + 4kc = (2Np − 2) − 2(Np −Nf)

= 2(pi + po).
(4.26)

Combining (4.21) with (4.26) yields the relationship

kr − pi + 2(k+
i + kc) = 0;

thus, as a consequence of (4.20), one necessarily has that

kr = pi, k+
i = kc = 0.

Substitution of the above into (4.21), as well as (4.24), yields the desired final counts for
k±i .

Remark 4.4. We expect that a more definitive determination of the location of the O(ε3/2)
point spectra will require the type of analysis presented in [46].

Remark 4.5. As a consequence of Theorem 4.3, (4.20), and the discussion presented in
[26, section 2.2], one has that for a fixed value of ε sufficiently small there is the upper bound

kc ≤ min{Np −Nf , po}

of O(ε) eigenvalues. In other words, for ε sufficiently small, complex eigenvalues with nonzero
real part can be created only by the collision of eigenvalues of opposite sign on the imaginary
axis.

Remark 4.6. It is interesting to note that the result of Theorem 4.3 exactly matches that
of [42, Theorem 3.6]. In particular, this seems to imply that there may be a strong correlation
between studies of soliton solutions to a discrete nonlinear Schrödinger equation (NLS) near
the anticontinuum limit and those studies initiated herein. In one sense this is not surprising,
as it was shown in [29, section 3] (also see the references therein) that in the case of a periodic
potential, (2.4) can formally be reduced to a discrete NLS. However, given that the potentials
discussed here are not periodic, the connection is still somewhat tenuous. It would be very
interesting to see whether the correlation still holds when discussing (2.4) in the case of two
space dimensions. (See [43] for a discussion of discrete vortices in two-dimensional lattices.)

5. Numerical results. We now numerically examine the solutions of the full (2.2) and
compare the results to the analysis presented in section 3. Nonlinear bound states of the
equation are localized solutions of the form q(x, z) = u(x) exp(iμz), where u obeys

uxx −
E0

1 + I0(x) + |u|2u = μu(5.1)

and μ is the “chemical potential” in BEC applications or the propagation constant in optics
applications. Note that u in (5.1) is Q in (2.6). Further note that μ = −ω, where ω is the
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Figure 4. The bifurcation diagram of various branches is shown on the left for the optical power P as a
function of μ. Figures 5–7 show the profiles and linear stability of each of the branches ( (a) through (i), labeled
accordingly below) shown in this bifurcation diagram. The right panel shows the potential (dashed line) and its
three linear eigenstates (solid lines).

frequency parameter used in the earlier sections; consequently, for the sake of comparison, the
results associated with Figure 3 should be reflected as if held to a mirror.

The 3-well potential that we will examine will be of the form given in (2.9) with

G(x) = exp

(
− x2

2ε2

)
;(5.2)

in other words, the potential corresponds to a superposition of three Gaussian beams. With
respect to (2.8) one is assuming that C = 1 and ε = a. We examine the case of E0 = 7.5 [49]
with L = 3, ε = 0.1, and V0 = 1/

√
πε [31]. Solutions to (5.1) with I0(x) given by (5.2)

are obtained via a fixed point iteration on a finite-difference grid. The linear stability of the
stationary states is subsequently determined by identifying the eigenvalues and eigenvectors
{λ, (a, b)} of the linearization equation. The latter are obtained using the ansatz

q(x, z) = exp(iμz) {u(x) + δ [exp(−λz)a(x) + exp(−λ�z)b�(x)]}

in (2.2) and identifying the terms of O(δ).
The bifurcation picture of the problem is presented in terms of the power of the nonlinear

bound state, P =
∫ +∞
−∞ |u(x)|2dx, as a function of μ. Figure 4 encapsulates the main findings

of the study. It shows the full bifurcation diagram (left panel) of the various branches present
in the 3-well problem and also illustrates the linear states (right panel) from which the corre-
sponding nonlinear ones stem. It is immediately worth noting here the excellent qualitative
agreement that this figure bears with Figure 1 of the existence analysis given in section 3. The
ground state of the system is the linear state at the top of the right panel with μ = −6.959.
The first excited state (middle of the right panel) is an odd state with μ = −6.978, while the
second excited state (bottom of the right panel) is again an even state with μ = −6.998. This
means in connection with the theoretical results that Δλ = 0.0197 ± 0.0011.

Now we can clearly observe on the left panel that there are three corresponding nonlinear
branches that bifurcate from these linear states, namely (a) (0 + 0), (d) [R2(−0+)], and
(i) [R2(− + −)] in the relevant diagram (also see Figure 1). For the chosen parameter values
there are no other localized states for the linear problem. Branch (a) persists for all values
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Figure 5. The top panel shows the 1-pulse configurations, and the bottom shows a typical example of the
spectral plane (λr, λi) of their eigenvalues. The labeling of the branches follows the bifurcation diagram of
Figure 4.

of μ, while the similar-looking one-pulse state of branch (b) (+00) (and similarly its mirror
image [R1(+00)]) disappears through a saddle-node bifurcation with the unstable branch (c)
(+ + 0). One of the most stringent tests to which we subject our theory is the comparison
of the full numerical results with the critical points for the relevant saddle-node bifurcations
from our analysis in section 3. In the case of branches (b) and (c), the relevant theoretical
prediction for the bifurcation is μ = −(λ2 + 2Δλ) = −6.9385 ± 0.0023 (based on the Δλ
given above). The relevant numerical finding is −6.937 ± 0.001, in excellent agreement with
the analysis presented above. The single pulse branches (a) and (b) (shown in Figure 5)
are stable throughout the domain of their existence, while branch (c) possesses two adjacent
pulses with the same parity and hence should be unstable (also see [25] and the references
therein).

On the other hand, the antisymmetric branch (d) [R2(−0+)] (a twisted-mode similar to
the ones of [30]; see also references therein) persists to the linear limit. Such a solution is
potentially unstable due to the existence of an eigenvalue of negative Krein signature, which
can lead to a quartet of complex eigenvalues upon the occurrence of a Hamiltonian Hopf
bifurcation; e.g., see [26] and references therein. Finally, as regards 2-pulse states (all of which
are shown in Figure 6), branch (f) [R2(−+ 0)] contains two opposite parity pulses, which are
nearest neighbors, while branch (e) (+0+) contains same parity, non–nearest-neighbor pulses.
The former branch also possesses an eigenvalue pair of negative Krein sign, while the latter has
a real eigenvalue pair leading to instability. Notice that branch (e) disappears in a saddle-node
bifurcation with the 3-same-parity-pulse branch (g) (+ + +) for μ ≈ −6.911 ± 0.001; in this
case, the theoretical prediction for the termination of the branch is μ = −(λ2 + 3.367Δλ) =
−6.9116± 0.0039, which again is in excellent agreement with the above numerical result. On
the other hand, branch (f) disappears in a saddle-node bifurcation with the 3-pulse asymmetric
branch (h) [R2(−− +)] for μ ≈ −6.933 ± 0.001. In this case, the theoretical critical point is
predicted to be at μ = −(λ2 + 2Δλ) = −6.9385± 0.0023, which is again close to the obtained
numerical result.

From the 3-pulse configurations, all of which are shown in Figure 7, only the symmetric
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Figure 6. Same as the previous figure, but for 2-pulse states. Once again the labeling of the branches is
consonant with the bifurcation diagram of Figure 4. In the bottom-right subplot, the behavior of (the real part
of) the most unstable eigenvalue is shown.

but alternating parity branch can be stable and persist to the linear limit. Any 3-pulse pair
that contains neighboring pulses of the same parity, i.e., (g) and (h), has one real eigenvalue
pair per same-parity-pulse pair and is thus always unstable. Notice that all of the stability
results reported above and illustrated in Figures 5, 6, and 7 fully corroborate the analytical
picture given in section 4 and illustrated in Figure 3.

6. Experimental results. Admittedly, the theoretical setup presented in this study cannot
be immediately connected with experiments in latices induced in photorefractive crystals; e.g.,
see [7, 8]. In the latter, typically a fully two-dimensional waveguide lattice is formed, as is
explained in detail below. A natural question that is then posed is how this setting can be
related to our results about 3-well configurations. We argue that this is a matter of scales,
i.e., of propagation distances. In particular, if two beams are launched between three lattice
sites (and along one dimension of the waveguide lattice), in the early stages of propagation
and due to the geometric proximity, the dynamics of light will be confined within these three
sites and will be effectively amenable to the description of the PDE with the three potential
wells. Obviously, for later stages of the evolution, the dynamics will be far more complex, but
as our experimental results will show, the three adjacent wells are still dominant. It is in that
light that our experimental results presented below should be considered.
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Figure 7. Same as Figure 6, but for 3-pulse configurations.

The experimental setup for our study is similar to those used in [7, 8]. A partially spatially
incoherent light beam of wavelength λ = 488 nm is generated by converting an argon ion
laser beam into a quasi-monochromatic light source with a rotating diffuser. Such a diffused
laser source has the advantage of providing an incoherent beam with a controllable degree
of spatial coherence and intensity suitable for experiments with partially coherent light. A
biased photorefractive crystal (strontium barium niobate, SBN:60) is employed to provide a
saturable self-focusing nonlinearity. To generate a two-dimensional waveguide lattice, we use
an amplitude mask to spatially modulate the otherwise uniform incoherent beam after the
diffuser. The mask is then properly imaged onto the input face of the crystal, thus creating
an intensity pattern of a square lattice with its principal axes oriented in horizontal/vertical
directions. This lattice beam is ordinarily polarized; thus it induces a nearly linear waveguide
array. An extraordinarily polarized Gaussian beam split from the same laser but without
passing through the diffuser is used as the probe beam propagating along with the lattice,
as in most of our experiments with discrete solitons [9, 35, 39]. The probe can be a single
component Gaussian beam, or it can be sent into a Mach–Zehnder interferometer to create two
extraordinarily polarized probe beams propagating collinearly through the crystal. With a
piezo-transducer mirror, the two beams can be made mutually incoherent or mutually coherent
with either in-phase or out-of-phase relation. The probe beams are monitored with a CCD
camera. In addition, a uniform incoherent beam is used as background illumination for fine-
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Figure 8. Experimental results for two probe beams launched between three potential wells embedded in an
optically induced two-dimensional photonic lattice. All photographs were taken at the output of a photorefractive
crystal. (a) and (b): only one probe beam is present, which tunnels into two nearby lattice sites. (c) and (d)
two in-phase and out-of-phase, respectively, probe beams are present, which tunnel into the central site (c) or
two lateral sides (d), depending on the relative phase.

tuning the nonlinearity.

First, a single Gaussian beam (λ = 488 nm) was used as a coherent probe beam propagat-
ing between two lattice sites in the vertical direction. When the probe beam was extraordinar-
ily polarized, we observed spontaneous symmetry breaking (SSB) towards an asymmetric state
(even though the input had a nearly symmetric profile) as the intensity of the probe beam was
increased gradually while keeping all other experimental conditions unchanged, which consti-
tutes a typical behavior expected in a double-well system [31]. To demonstrate that such SSB
was induced by nonlinearity, the experiment was repeated under the same conditions, except
that the 488 nm probe beam was replaced by a 632.8 nm laser beam, which is at a much
less photosensitive wavelength. The SSB did not occur at this wavelength, regardless of the
increase in the probe intensity.

Next, and more directly related to the theoretical work presented in this paper, two
Gaussian probe beams (λ = 488 nm) exiting the Mach–Zehnder interferometer were launched
between three lattice sites to test the dynamics in a 3-well potential. The two beams were
launched collinearly with the lattice beam, but aimed at two intensity minima in the y-
direction (rather than maxima, as in the experiments with discrete solitons) so as to have
inter-site excitations. Typical experimental results are shown in Figure 8. The intensity of
each probe is chosen so that each beam alone would give rise to a symmetric pattern (i.e.,
below the threshold for SSB in a double-well potential), as shown in the top panel of Figure 8.
When two beams are launched simultaneously, the outcome of the intensity pattern is quite
dependent on the relative phase between the probe beams. If the two beams are in phase,
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most of the energy goes to the central site due to constructive interference, leading to a stable
state of a nearly single pulse discussed before (branch (a) in Figure 4). Radiation to other
lattice sites in both x- and y-directions is clearly visible due to strong intersite coupling. On
the other hand, when the two beams are made out-of-phase, most of the energy goes to the
two lateral sites (in the y-direction) due to destructive interference, leading to a stable state of
two pulses with antiphase relation. This out-of-phase excitation corresponds to the branch (d)
of the bifurcation diagram discussed in section 5. Details of this experimental work will be
reported elsewhere.

As can be seen in Figure 8, the experimental context where our theoretical predictions
can be tested is in settings where two light pulses are injected between three wells of a quasi–
one-dimensional configuration. The relevant pulses can be in-phase (panel (c) of Figure 8)
or out-of-phase (panel (d) of Figure 8) between them. (For comparison, the case of a single
probe beam tunneling between two lattice wells is also shown in panels (a) and (b) of the
figure.) In the in-phase, 3-well case, the dynamics of the evolution results in a pulse centered
predominantly at the central lattice site. This is a natural consequence of our stability analysis,
since states with same parity pulses (with either two or three constituent pulses) are unstable,
and hence the only dynamically stable solution that such an in-phase configuration can explore
is the single pulse configuration (centered at the central site, given the constructive interference
of the two pulses injected between the three wells). On the other hand, the out-of-phase pulses
will result in destructive interference at the central well but will lead to a stable [R2(−0+)]
configuration of branch (d). Notice that these types of dynamical evolution are also supported
by the direct numerical results from the integration of (2.1). Such results are shown in Figure 9,
emulating the experimental setting. (The in-phase case is shown in the top panels, while the
out-of-phase case is given in the bottom panels.)

In concluding this section, we note that clearly the 3-mode approximation used for the
analytical results obtained in this paper is not directly applicable to the experimental results
of this section. However, the relevance can be seen from the predicted stability and exper-
imentally observed robustness of two of the configurations that were shown in the 3-mode
approximation and in the full numerical results of section 5, namely the single pulse (0 + 0)
as well as the anti-symmetric branch (−0+). In light of these connections, we feel that these
experimental results usefully corroborate the analytical and numerical predictions presented
herein.

7. Final remarks. From the results presented in sections 3 and 4 we can conclude that the
theoretical picture obtained by the Lyapunov–Schmidt reductions and the stability analysis
agrees very well with the numerically obtained results of section 5. In addition, some of the
predicted stable branches can also be observed to be of experimental relevance, as discussed
in section 6. It is interesting to compare/contrast the situation in the present setting with
that of the much simpler 2-well configuration, as well as with that of the infinite lattice of
wells, to illustrate how the passage from 1 → 2 → 3 → · · · → ∞ wells occurs. The case of a
single well is very simple, as a single stable mode exists and no bifurcations may occur. The
addition of a second well makes the problem considerably more interesting, but due to the
presence of conservation laws the cases are still pretty special [20, 45, 24, 31, 44]. For example,
in this case a symmetric same parity pulse pair may be stable if one is O(e−2cωL) close to the
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Figure 9. The top panels show the evolution of (2.1) for q(x, z) in the case of an initial condition of
two in-phase pulses initialized between three wells of the lattice. The left panel shows the contour plot of the
z-propagation of the field’s modulus. The right panel shows the initial condition and the profile of the solution’s
modulus at z = 50. The bottom panels illustrate similar features, but for an initial condition with two out-of-
phase pulses.

linear limit. Furthermore, the only bifurcation that can occur is that of an asymmetric mode
from the combination of the symmetric and antisymmetric states. In the 3-well case, things
are starting to look considerably more like the infinite lattice. The stability of all the states
examined herein coincides with the stability and potential instabilities that one would find
for these states in the infinite lattice limit [42]. While some bifurcations still occur, which
are spurious in the infinite well limit, these are now saddle-node, rather than the supercritical
pitchfork bifurcation of the 2-well case. Indeed the saddle-node bifurcations, such as those
annihilating branches like (b) and (c), will disappear in the infinite-lattice limit because of the
integer-shift invariance that will “collapse” branch (b) into branch (a), while it will distinctly
separate it from the two-site branch (c) [2]. We believe that the above picture illustrates how
in our setting three wells is a crowd, or, in fact, how three wells is starting to better resemble
an infinite lattice.

Appendix A. Spectral analysis for multiple wells. Herein we will compute σp(Lω) in the
case of a multiple-well potential, where Lω is the Schrödinger operator given in (2.7):

Lω := − d2

dx2
+

E0

1 + I0(x)
− ω, x ∈ R.

It will henceforth be assumed that the spectrum is known in the case of a single-well potential
given in (2.11). As seen in Appendix B, this calculation is straightforward in the case of a
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square-well potential. Since Lω is a Schrödinger operator, the eigenvalues for any potential
must all be simple and real-valued; furthermore, since the potential is assumed to be even, it
is known that the eigenfunctions will be either even or odd. For the single-well potential given
in (2.11), let ω < E0 be chosen so that {0} ⊂ σp(Lω), and let Φ(x) represent the eigenfunction
associated with the simple null eigenvalue which satisfies 〈Φ,Φ〉 = 1. Recall that Φ is either
even or odd in x. It is expected that for L � 1 one can apply an appropriate modification of
the results of [46] to determine the location of the 2N + 1 exponentially small eigenvalues for
the potential of (2.9) with (2N + 1) wells, or the 2N exponentially small eigenvalues for the
potential of (2.10) with 2N wells.

For the potential given in (2.11) and satisfying (2.8), rewrite the eigenvalue problem
Lωφ = λφ as

u′ = (A0(x) + λB)u, u :=
(
φ, φ′)T ∈ C

2,(A.1)

and note that as a consequence of (2.8) one has a A∞
0 ∈ R

2×2 such that

‖A0(x) −A∞
0 ‖ ≤ Ce−x2/2a2

.(A.2)

We are assuming that (A.1) has the exponentially decaying solution v0(x) := (Φ(x),Φ′(x))T

for λ = 0, and that the matrix A∞
0 is hyperbolic (i.e., λ = 0 is not in the essential spectrum).

Let ψ(x) = (−Φ′(x),Φ(x))T represent the exponentially decaying solution to the adjoint
problem associated with (A.1) at λ = 0.

In order to understand the following argument, it is necessary for the reader to become
acquainted with the ideas in [46, section 3]. Consider the system

u′ = (A0(x) + A1(x) + λB)u, x ∈ [0, Lj ],(A.3)

together with the appropriate matching and jump conditions at x = Lj and x = 0, respectively,
where A1(x) satisfies

‖A1(x)‖ ≤ Ce−L2/2a2
, x ∈ [0, L], L := min

j
{Lj}.(A.4)

One thinks of A1(x) as representing the tails of neighboring widely spaced copies of A0(x),
e.g., the matrix generated by considering the potential of (2.9). If A0(x) satisfies (A.2), then
A0(x − 2Lj) evaluated on [0, Lj ] will satisfy (A.4). Note that the estimate given in (A.4) is
stronger than is assumed in [46]; however, this is simply a consequence of (A.2).

In order to solve (A.3) for |λ| � 1, consider the ansatz

u(x) = uj(x) := djv0(x) + wj(x),(A.5)

which upon substitution into (A.3) yields the system

w′
j = (A0(x) + A1(x) + λB)wj + dj(A1(x) + λB)v0(x), x ∈ [0, Lj ].(A.6)

The matching condition at x = Lj reads

wj(Lj) + djv0(Lj) = wj+1(−Lj) + dj+1v0(−Lj),
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from which one finds the leading-order solution to be

wj(Lj) = dj+1v0(−Lj)

[46, equation (3.25)]. Proceeding as in [46], one gets the contribution

〈ψ(Lj),v0(−Lj)〉dj+1 −
(∫ +∞

0
〈ψ(x),Bv0(x)〉dx

)
λdj

to the jump 〈ψ(0),u+
j (0) − u−

j (0)〉 of the jumps evaluated in the ψ-direction. Indeed, the
additional term A1(x)v0(x)dj that appears in (A.6) compared with [46, equation (3.9)] is of

O(e−L2/2a2
), which is small relative to the leading-order O(e−2cωLj ), cω :=

√
E0 − ω. It is

at this point that the proof of the stability result in [46] would fail to give the leading-order
behavior if the ansatz in (A.5) had been used instead of the more accurate ansatz [46, equation
(3.5)], for in that context the correction A1(x)v0(x) is of O(e−2cωLj ).

Upon applying the above theory to the symmetric potential given in (2.9) (consequently,
Lj ≡ L), and using the fact that the eigenfunction has been normalized, one sees that for
N ∈ N one has the reduced eigenvalue problem

(A− λ1l)d = 0.(A.7)

In the case of an even number of potential wells one has that A ∈ R
2N×2N is a symmetric

tridiagonal matrix that satisfies

Aj,j = 0, j = 1, . . . , 2N,

Aj−1,j = a±L , j = 2, . . . , 2N,
(A.8)

whereas in the event of an odd number of potential wells the matrix A is that given in (A.8),
except that now A ∈ R

(2N+1)×(2N+1). Here

a±L := ±2Φ(L)Φ′(L), |a±L | = O(e−2cωL).(A.9)

The constant a+
L in (A.8) is taken if Φ is even; otherwise, a−L is taken. Note that a+

L < 0 and
a−L > 0. The vector d is such that for the given eigenvalue λ, the associated eigenfunction is
to leading order given by

q =

N−1∑
j=0

[dj+1Φ(x + (2(N − j) − 1)L) + dN+j+1Φ(x− (2(j + 1) − 1)L)](A.10)

(potential of (2.10)), or

q = dNΦ(x) +

N−1∑
j=0

[dj+1Φ(x + 2(N − j)L) + dN+j+2Φ(x− 2(j + 1)L)](A.11)

(potential of (2.9)). Upon setting m = 2N in the case of an even number of potential wells,
or m = 2N + 1 in the case of an odd number of potential wells, (A.7) can then be rewritten
as the autonomous difference equation for j = 1, . . . ,m,

aL(dj−1 + dj+1) = λdj , d0 = dm+1 = 0.(A.12)
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If for � = 1, . . . ,m one sets

θ� :=
π

m + 1
�,

then the solution pair (λ�, d�) to (A.12) is given by

λ� = 2a±L cos θ�; (d�)j = sin(jθ�), j = 1, . . . ,m.(A.13)

Note that for k = 1, . . . , N ,

λk = −λm+1−k;(A.14)

furthermore, in the case of an odd number of potential wells one has that λN = 0.

Appendix B. Spectral analysis for a square-well potential. Consider the operator L
given in (2.7) with the potential

I0(x) =

{
V0, |x| < L,

0, |x| ≥ L.

In this case the eigenvalue problem (L− λ)q = 0 can be solved explicitly, and it is a standard
exercise to do so. First, the operator L is self-adjoint, so that the spectrum is real. Second,
the essential spectrum is given by

σe(L) = {λ ∈ R : λ ≥ E0};

consequently, when searching for isolated point spectra, one must focus on λ ∈ R\[E0,+∞).
Since I0(x) is even in x, one knows that the eigenfunctions will be either odd or even; in
particular, the eigenfunctions will satisfy the following initial conditions:

even : (q(0), q′(0)) = (1, 0),

odd : (q(0), q′(0)) = (0, 1).
(B.1)

Set

γ :=
√
E0 − λ, μ :=

√
E0

1 + V0
− λ,(B.2)

and assume that γ(λ) ∈ R
+ for λ < E0. Note that μ(λ) has a branch point at λ = λb :=

E0/(1+V0). Define the branch cut so that μ(λ) ∈ iR+ for λ > λb. Upon solving the eigenvalue
problem with the initial conditions given in (B.1), and defining the two Evans functions

Ee(λ) := μ(λ) sinh(μ(λ)L) + γ(λ) cosh(μ(λ)L),

Eo(λ) := γ(λ)
sinh(μ(λ)L)

μ(λ)
+ cosh(μ(λ)L),

(B.3)

one sees that an even eigenfunction exists if and only if Ee(λ) = 0, and an odd eigenfunction
exists if and only if Eo(λ) = 0.
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Since μ(λ), γ(λ) ∈ R
+ for λ < λb, one clearly has that Ee,o(λ) �= 0 for λ < λb. Now

assume that λb < λ < E0. One has that Ee(λ) = 0 can be rewritten as

sin(|μ(λ)|L + φe(λ)) = 0,(B.4)

where

tanφe := − γ

|μ| ,
π

2
< φe < π,(B.5)

and Eo(λ) = 0 can be rewritten as

sin(|μ(λ)|L + φo(λ))

|μ(λ)| = 0,(B.6)

where

tanφe :=
|μ|
γ
, 0 < φo <

π

2
.(B.7)

Solving (B.4) and (B.6) then yields that the eigenvalues are solutions of the transcendental
equation

λ =
E0

1 + V0
+

(
kπ − φe,o(λ)

L

)2

, k ∈ N.(B.8)

Regarding (B.8), one has the following observations. First, since eigenvalues must satisfy
λ < E0, one is interested only in those solutions to (B.8) which satisfy the constraint

1 + V0

V0
(kπ − φe,o(λ))2 < E0L

2;(B.9)

if the inequality is reversed, then an isolated eigenvalue cannot exist for that value of k. As a
consequence of the constraints given in (B.5) and (B.7), for a particular value of k ∈ N one is
guaranteed a solution to (B.4) if

1 + V0

V0

(
k − 1

2

)2

π2 < E0L
2,(B.10)

and is guaranteed the nonexistence of a solution if

E0L
2 <

1 + V0

V0
(k − 1)2 π2.(B.11)

Similarly, one is guaranteed a solution to (B.6) if

1 + V0

V0
k2π2 < E0L

2,(B.12)

and is guaranteed the nonexistence of a solution if

E0L
2 <

1 + V0

V0

(
k − 1

2

)2

π2.(B.13)

As consequences, one then has that



630 TODD KAPITULA, P. G. KEVREKIDIS, AND ZHIGANG CHEN

(a) constraint (B.12) being satisfied automatically implies that (B.10) is satisfied,
(b) the number of eigenvalues increases as E0 increases,
(c) for a given value of E0, an application of (B.11) and (B.13) yields an upper bound on

the number of possible eigenvalues.
Finally, direct examination of (B.8) yields that

lim
E0→+∞

λ

E0
=

1

1 + V0
;

hence, the eigenvalues accumulate at the branch point of Ee,o(λ) as E0 → +∞.

Appendix C. Exact roots of a polynomial of degree 6. Consider the sixth-order polyno-
mial given by

p(x) := x6 + ax5 + bx4 + cx3 + bx2 + ax + 1.(C.1)

Upon noting that p(x) = 0 if and only if p(x−1) = 0, one can rewrite (C.1) as

p(x) =

3∏
j=1

(x2 − βjx + 1),(C.2)

where

β1 + β2 + β3 = −a,

β1β2 + β2β3 + β3β1 = b− 3,

β1β2β3 = 2a− c.

(C.3)

Note that once a solution to (C.3) has been found, then the corresponding solution to (C.1)
is given by

x±β :=
1

2
(β ±

√
β2 − 4).(C.4)

In particular, the result of (C.4) implies that in order to have a real-valued solution to (C.1),
one must require that a real-valued solution to (C.3) satisfy |β| ≥ 2.

The system (C.3) can be solved in the following manner. Solve the first equation for β3,
i.e.,

β3 = −(a + β1 + β2).(C.5)

Substitution into the second equation yields the reduced system

β1β2 − β3(β3 + a) = b− 3,

β1β2β3 = 2a− c,

i.e.,

β1β2 =
2a− c

β3
,(C.6)
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with β3 being a root of

z3 + az2 + (b− 3)z + c− 2a = 0.(C.7)

If β3 = z ∈ R is a solution to (C.6), then upon solving the system created by combining
(C.5) and (C.6) and defining

β± = −1

2

(
β3 + a±

√
(β3 + a)2 + 4

c− 2a

β3

)
,(C.8)

one has the solution pair

(β1, β2) = (β+, β−).(C.9)

Proposition C.1. Let β3 ∈ R be a solution to (C.7). The corresponding solutions to (C.3)
are given in (C.9). If βj ∈ R for some j ∈ {1, 2, 3} is such that |βj | ≥ 2, then the corresponding
pair of real-valued solutions to (C.1) is given by x±βj

, where x±β is defined in (C.4).
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Geometric Relations of Absolute and Essential Spectra of Wave Trains∗
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Abstract. We analyze geometric relations of absolute and essential spectra for certain linear operators on the
real line with periodic coefficients. These spectra correspond to accumulation sets of eigenvalues
for increasing domain length under separated and periodic boundary conditions, respectively. The
main result shows that critical isolated sets of essential spectra contain absolute spectra and yields
an algorithm for its numerical computation. Linearizations of reaction diffusion systems in wave
trains are used as an illustration, and we present a detailed numerical study of absolute and essential
spectra for a wave train in the Schnakenberg model.
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1. Introduction. We consider spectral properties of certain linear operators on the real
line with periodic coefficients. Posed on an interval (−L,L) with periodic boundary condi-
tions, eigenvalues of these operators accumulate, as L → ∞, on the essential spectrum of the
operator posed on the real line. However, for generic separated boundary conditions eigen-
values accumulate on the so-called absolute spectrum introduced in [13]. In the presence of
convection, absolute and essential spectra typically differ, and the absolute spectrum may be
contained in the open left half plane, while the essential spectrum intersects the open right half
plane. The absolute spectrum has been characterized in [13] via a complex dispersion relation
of temporal and spatial modes. It was formulated for asymptotically constant coefficients, but
all main results remain valid for the periodic case; cf. [13, p. 239].

In this article we analyze the relation of absolute and essential spectra for the case of
periodic coefficients. Our main result, Theorem 4.5, shows that critical isolated sets of essential
spectra contain absolute spectra. The proof provides an algorithm for the detection of this
absolute spectrum, which we use for numerical computations in a specific example. A weaker
version of this theorem is contained in [10, Theorem 3.3].

The main application for the abstract framework are linearizations of parabolic partial
differential equations (PDEs), e.g., reaction diffusion systems, in traveling waves that are
asymptotically periodic or that have an extended periodic region and are asymptotically con-
stant in space. We refer to spatially periodic traveling waves as wave trains. In fact, absolute
and essential spectra are determined by the spatially asymptotic states and we can restrict our
attention to wave trains for their study. We summarize the relevance of the absolute spectrum
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of traveling waves on large bounded domains as follows and refer the reader to [12, 13] for
details.

1. Accumulation of eigenvalues. On a bounded domain of length L only point spectrum
occurs, but most of it accumulates as L → ∞: For periodic boundary conditions at
the essential spectrum, but for generic separated boundary conditions at the absolute
spectrum.

2. Absolute, remnant versus convective instabilities. If the absolute spectrum is unstable,
then perturbations grow pointwise or are convected in both directions. Pointwise
growth occurs when a branch point of the dispersion relation (Definition 3.1) in the
absolute spectrum is unstable.

3. Absolute instabilities are inherited . If the profile of a traveling wave on the real line
with constant asymptotics is close to another uniform steady state or wave train for a
segment of length L, then, as L → ∞, point spectrum accumulates at certain parts of
the absolute spectrum of that state. An absolutely unstable state implies instability
for all sufficiently large L.

4. Linear spreading speeds. The largest and smallest speeds of comoving frames in which
the absolute spectrum is marginally stable yield linear predictions for spreading speeds
of instabilities.

More formally, we consider linear operators on the real line as in [13], but explicitly assume
periodicity of the coefficient matrix. These are a family T (λ), λ ∈ C, where

T (λ) : H1(R,Cn) → L2(R,Cn), u �→ du

dξ
−A(·;λ)u

for the usual Sobolev space H1 of L2 functions with weak derivative in L2. Here A(ξ;λ) ∈ R
n×n

is a matrix-valued function that satisfies the following.
Hypothesis 1. The matrices A(ξ;λ) are smooth in ξ ∈ R and analytic in λ ∈ C.
1. Periodic coefficients. There is L > 0 such that A(ξ +L;λ) = A(ξ;λ) for all ξ ∈ R and

λ ∈ C.
2. Well-posedness. There exists ρ ∈ R such that for all λ ∈ C with real part �(λ) ≥ ρ

the period map of the evolution of T (λ)v = 0 has no Floquet exponent in iR.
We use Hypothesis 1 as the abstract basis for studying absolute spectra and illustrate the

results using reaction diffusion systems. In Lemma 3.3 we will show that Hypothesis 1 holds
for the matrices arising in eigenvalue problems of wave trains in reaction diffusion systems in
one space dimension.

Reaction diffusion systems consist of N “species” U = (U1, . . . UN ) ∈ R
N that are spatially

coupled by diffusion, D := diag(d1, . . . , dN ) with dj > 0, and driven by pointwise reaction
kinetics F : R

N → R
N in the form

Ut = DUxx + F (U).(1.1)

We assume this equation is posed on a function space X so that D∂xx can be cast as a
closed and densely defined operator, and the Nemitskij operator FN derived from F satis-
fies FN ∈ C1(X,X). For example X = BC0

unif(R,RN ), domain of definition dom(D∂xx) =
BC2

unif(R,RN ), and F ∈ C1(RN ,RN ); cf. Chapter 2 in [17].
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In a comoving frame with the variable ξ = x− ct and speed c system (1.1) becomes

Ut = DUξξ + cUξ + F (U),(1.2)

and we call t-independent solutions traveling waves. These solve the spatial ordinary differ-
ential equation (ODE)

DUξξ + cUξ + F (U) = 0(1.3)

and are called wave trains if U(ξ + L) = U(ξ) for all ξ and some L > 0.
In case dj = 0 for one or more j, spectra of linearizations of (1.3) about traveling waves

with c �= 0 are typically continuous as dj → 0 [10, Theorem 3.5].
This article is organized as follows. In section 2 we define and mention the relevance

of spectra for stability. Absolute and essential spectra are characterized in section 3. In
section 4, we investigate the relative location of absolute and essential spectra and prove
the main result. We present numerical computations of (generalized) absolute and essential
spectra for a specific example in section 5.

2. Spectra and stability of wave trains. Following [13], we define the so-called essential
spectrum of T .

Definition 2.1. We say that λ ∈ C lies in the essential spectrum Σess of T if T (λ) is not
boundedly invertible. The essential spectrum of T is called (strictly) stable if it lies in the
(open) left half plane {�(λ) ≤ 0} and unstable if it intersects the open right half plane.

As an illustration, consider a solution U∗ to (1.3) as a steady state of (1.2). Its spectral
stability is determined by the spectrum of the linearization of (1.2) about U∗, which is the
linear operator

L := D∂ξξ + c∂ξ + ∂UF (U∗).(2.1)

Generally, λ lies in the spectrum of L if the eigenvalue problem

λV = LV(2.2)

has a bounded solution V . More precisely, we define the spectrum of U∗ as follows.
Definition 2.2. The spectrum of L, Σ(L), is the set of λ ∈ C for which the operator L − λ

is not boundedly invertible in X. The point spectrum of U∗, Σpt(L), is the set of all λ ∈ Σ(L)
for which L − λ is a Fredholm operator with index zero. The essential spectrum of L is
Σess(L) := Σ(L) \Σpt(L). We call these spectra (strictly) stable, respectively, if they lie in the
(open) left half plane, and unstable if parts lie in the open right half plane.

Definitions 2.1 and 2.2 are consistent in the sense that for a wave train U∗ the spectrum
of L equals that of T for the period L of U∗; see, e.g., [6, 14]. In this case, the connection of
L and T is as follows. We cast (2.2) as a linear nonautonomous first order ODE in R

2N

v̇ = AL(ξ;λ)v,(2.3)

corresponding to T (λ)v = 0 and, according to (1.2), it has the matrix

AL(ξ;λ) =

(
0 Id

D−1∂UF (U∗(ξ)) D−1c

)
− λ

(
0 0

D−1 0

)
.
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For any traveling wave U∗ of (1.1), the derivative ∂ξU
∗ solves the eigenvalue problem

(2.2), and zero lies in the spectrum of U∗ (“Goldstone mode”). Therefore, we cannot expect
asymptotic stability on unbounded or periodic domains. Nevertheless, two types of weak-
ened nonlinear stability can be concluded from spectral properties: nonlinear stability with
asymptotic phase and diffusive stability. The former follows from a simple zero eigenvalue
and a spectral gap to the strictly stable rest of the spectrum: a perturbed wave converges
exponentially to a selected translate of the original wave; see, e.g., [8, Chapter 5.1]. However,
the required spectral gap does not occur for wave trains on the real line, where the essential
spectrum comes in curves. Instead, wave trains can be stable in the sense that perturbations
“diffuse” self-similarly over the wave train [16].

On the other hand, an unstable spectrum causes nonlinear instability for any traveling
wave [8].

3. Essential and absolute spectra. Let Φλ(ξ, ζ) denote the evolution of (2.3). It has a
Floquet representation with L-periodic matrix Sλ(ξ), Sλ(0) = Id, of the form

Φλ(ξ, 0) = Sλ(ξ)e
R(λ)ξ.

Definition 3.1.

• The complex dispersion relation d : C
2 → C of T is defined by

d(λ, ν) = det(R(λ) − ν) = 0,

• a branch point λ ∈ C at ν ∈ C is such that d(λ, ν) = ∂νd(λ, ν) = 0,
• the spatial Morse index i(λ) counts the center unstable dimensions of R(λ),
• eigenvalues ν(λ) of R(λ) are called spatial Floquet exponents.

Under Hypothesis 1, the matrix R(λ) is analytic in λ; cf., e.g., [3]. Note that spatial
Floquet exponents are unique modulo 2πi.

It is well known that the essential spectrum of T consists of those λ for which a spatial
Floquet exponent is purely imaginary [6], that is,

λ ∈ Σess ⇔ ∃k ∈ R : d(λ, ik) = 0.(3.1)

Hence the spatial Morse index i(λ) is constant in connected components of C \ Σess and
whenever ∂λd(λ, ν)∂νd(λ, ν) �= 0 in the essential spectrum, the implicit function theorem
locally yields a unique smooth curve of Σess. We expect either that singularities occur on a
discrete set or that d(λ, ν) has a multiple factor; note that d(λ, ν) contains the term R(λ)n so
that the Weierstrass preparation theorem applies (cf. [9]), which reduces d(λ, ν) = 0 locally
to roots of a polynomial with analytic coefficients in ν.

Concerning the global topology of Σess, for constant matrix A(ξ;λ) = A(λ) the essential
spectrum is a connected set of curves in the closed complex plane; cf., e.g., [10]. However, for
the present case with periodic matrix A(ξ;λ), it can consist of several connected components.
For instance, the essential spectrum of wave trains in reaction diffusion systems that are
sufficiently close to a pulse (constant spatial asymptotics) decomposes in a certain way [7, 14];
see also Corollary 4.4 and section 5 below.
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(a) (b)

Figure 1. We plot sample configurations of 5 Floquet exponents and i∞ = 2 for some λ: (a) λ not in the
absolute spectrum, (b) λ in the absolute spectrum.

Hypothesis 1 implies that i(λ) is constant for all �(λ) ≥ ρ. The absolute spectrum,
introduced first in [13], is defined in terms of this constant as follows.

Definition 3.2. The generalized absolute spectrum of T with Morse index j is

Σj
abs := {λ ∈ C | �(νj) = �(νj+1)},

where �(ν1) ≥ �(ν2) ≥ · · · ≥ �(νn) is counted with multiplicity. The generalized absolute
spectrum, Σ∗

abs, is the union of Σj
abs for j = 1, . . . n− 1.

Finally, the absolute spectrum for T satisfying Hypothesis 1 is defined as

Σabs := Σi∞
abs ,

where i∞ is the constant number of Floquet exponents with positive real part given by the
well-posedness in Hypothesis 1 for �(λ) ≥ ρ.

To illustrate this definition we plot sample configurations of spatial Floquet exponents
ν in Figure 1. By the implicit function theorem Σ∗

abs consists of smooth curves away from

singularities. The additional requirement of a certain Morse index for Σj
abs typically causes

corners in Σj
abs at points where smooth curves in Σ∗

abs cross transversely. Therefore, computing
Σ∗

abs is a natural first step for the computation of the absolute spectrum; cf. [11]. Similar to
the essential spectrum, the absolute spectrum is connected for constant coefficients (cf. [11])
but is, e.g., not connected for wave trains close to a pulse; see Corollary 4.4.

We next show that the abstract framework indeed applies to wave trains in reaction
diffusion systems with i∞ = N . In section 2, we identified the spectrum of the linearization
of a reaction diffusion system about a wave train as the essential spectrum of T for a certain
matrix A = AL. The arising operator T satisfies Hypothesis 1 as follows.

Lemma 3.3. The family of operators TL(λ) derived from (1.1) for a wave train U∗ as in
(2.3) satisfies Hypothesis 1. More precisely, there is R ∈ R such that for �(λ) > R the spatial
Morse index is i(λ) = N , and for all spatial Floquet exponents ν corresponding to TL(λ) = 0
it holds that |�(ν)| → ∞ as �(λ) → ∞.

Proof. Consider DV̈ + cV̇ + ∂UF (U∗(ξ))V − λV = 0. Rescaling to fast “spatial time”
ξ = εζ, ′ = d

dζ , and λ = λ̃/ε2, we obtain

DV ′′/ε2 + cV ′/ε + ∂UF (U∗(εζ))V − λ̃/ε2V = 0,

(ε �= 0) ⇔ DV ′′ + εcV ′ + ε2∂UF (U∗(εζ))V − λ̃V = 0.
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For ε = 0 the latter “fast system” is DV ′′ = λ̃V and has dispersion relation ΠN
j=1(djν

2 − λ̃) =

0, dj > 0. For �(λ̃) > 0 its spatial Morse index is N and there are no spatial Floquet
exponents on the imaginary axis. Therefore, for all �(λ̃) > 0, the fast system has exponential

dichotomies on R
± with Morse index N and exponential rate min{�(

√
λ̃/dj)}. By roughness

of exponential dichotomies (e.g., [4]), the spatial Morse index and the exponential rate (with
o(1)ε→0 adjustment) persist for small bounded perturbation, i.e., for ε > 0 sufficiently small.

In particular, the exponential rates of the dichotomies in the normal “time” ξ for 0 < ε � 1
are bounded from below by

1

2
min

⎧⎨
⎩�

⎛
⎝ε−1

√
λ̃

dj

⎞
⎠
⎫⎬
⎭ = ε−1 1

2
min

⎧⎨
⎩�

⎛
⎝
√

λ̃

dj

⎞
⎠
⎫⎬
⎭ .

Since the precise exponential rate is given by the spatial Floquet exponent ν that is closest to
the imaginary axis, the lower bound implies that all spatial Floquet exponents have unbounded
real part as �(λ) → ∞, i.e., ε → 0 for fixed λ̃.

Periodicity and smoothness in ξ are evident, which completes Hypothesis 1.

4. Relative location of absolute and essential spectra. A straightforward constraint for
the location of the absolute spectrum is that it must lie on or to the left of the essential
spectrum in the complex plane. To be definite we formulate the following lemma.

Lemma 4.1. Under Hypothesis 1, the connected component Ω∞ ⊂ C \ Σess that contains
an unbounded interval of R+ is well defined. Any curve that connects Σabs and Ω∞ inter-
sects Σess.

Proof. By (3.1) and Hypothesis 1 we have {λ | �(λ) ≥ ρ} ∩ Σess = ∅, and hence Ω∞ ⊃
{λ | �(λ) ≥ ρ}. Therefore, Ω∞ is well defined and i(λ) = i∞ for any λ ∈ Ω∞. This is not
possible for λ ∈ Σabs, because there i(λ) ≥ i∞ + 1 or i(λ) ≤ i∞ − 1. Since ∂Ω∞ ⊂ Σess, the
intersection claim follows.

If the spatial Morse index changes at some λ0 ∈ Σess while moving within the essential
spectrum, then λ0 ∈ Σ∗

abs, because two spatial Floquet exponents have the same real part,
namely, zero. Typically, λ0 is an intersection of two curves in the essential spectrum, which
gives some more information about the location of absolute spectrum; see also Figure 2 and
section 5.

Lemma 4.2. Suppose that two curves in Σess intersect at λ0, but ∂λd(λ0, ν) �= 0 for all
spatial Floquet exponents ν ∈ iR. Then λ0 lies in the generalized absolute spectra with Morse
indices j−+1, . . . , j+−1, where j− = lim infε→0{i(λ) | ε = |λ−λ0|} and j+ = lim supε→0{i(λ) |
ε = |λ− λ0|}.

Assume further that these curves intersect transversely and are λι(ik) with λ0 = λι(ikι),
d
dk |k=kιλι(ik) �= 0 for ι = 1, 2, and that �(ν) �= 0 for any other solution to d(λ0, ν) = 0. Then

there exists a locally unique curve C ⊂ Σj
abs, j = j+ − 1 = j− + 1, crossing at λ0 from the

region where i(λ) = j− into the region where i(λ) = j+.

Proof. Such an intersection point lies in the generalized absolute spectrum, because either
two different purely imaginary spatial Floquet exponents have the same real part, or it is a
branch point. Since the Morse index counts the number of unstable and purely imaginary
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Figure 2. We sketch intersection points in Σj
abs of two curves of Σess (solid lines) oriented by increasing

k, and show the Morse indices in the neighboring regions. Dashed lines indicate the curve of Σj
abs that typically

crosses the intersection point and insets in (a) the distribution of νj and νj+1 in C (vertical line is iR). Plots
(b) and (c) illustrate the case of isola.

Floquet exponents, it follows from the ordering of spatial Floquet exponents at λ0 by decreas-
ing real parts that the largest and smallest indices � so that �(ν�) = �(ν�+1) are j+ − 1 and
j− + 1.

The regularity assumptions imply that precisely two curves of essential spectrum intersect
transversely so that C \Σess is divided into four sectors near λ0 and i(λ) = j in two opposing
sectors, and i(λ) = j ± 1 in the other two, respectively. By the implicit function theorem
there exists a locally unique curve C ⊂ Σj

abs, which crosses λ0 transversely. Finally, note that
C cannot intersect the sector with index j or Σess near λ0.

Remark 1. In a weighted space Xη with norm supξ∈R eηξ|u(ξ)| the essential spectrum is
Ση

ess = {λ | d(λ, ik − η) = 0}. For reaction diffusion systems (1.1), the asymptotics of �(ν)
stated in Lemma 3.3 imply that for any weight η there is a connected component Ωη

∞ ⊂ C

with the same constant Morse index i∞ and Ω0
∞ = Ω∞. Therefore, constraints on the relative

location of essential and absolute spectra hold true for the absolute spectrum and Ση
ess as

well. We expect that a singularity in Σess can be removed by changing η; hence regularity
assumptions, as in Lemma 4.2, should not be very restrictive. In fact, it can be more efficient
to numerically continue the essential spectrum in an exponential weight and thereby infer the
location of the absolute spectrum than to compute the absolute spectrum itself, e.g., [11].

Our main result implies absolute spectrum within isola in Σess, i.e., closed bounded curves.
As a motivation, consider the aforementioned wave trains near a pulse on a large bounded
domain. Unstable essential spectrum might “only” cause a convective instability that is not
seen under separated boundary conditions. However, an instability of the point spectrum
of a pulse should heuristically destabilize nearby wave trains. Indeed, point spectrum in
Ω∞ generates isola of essential spectrum for nearby wave trains [7, 14] that contain absolute
spectrum on account of Corollary 4.4 below. Therefore, instabilities of point spectrum of
pulses are inherited to nearby wave trains, at least on sufficiently large domains.

A Jordan curve in the complex plane is a closed, bounded curve γ ⊂ C without self-
intersections. It is well known that such a curve divides the complex plane into an “exterior”
set, which is an unbounded connected component of C, and its complementary “interior” set,
int(γ), which is a bounded connected component of C. More generally, for an isola γ ⊂ C,
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i.e., γ is a closed bounded curve, we define

M(γ) :=
⋂

{int(γ′) | γ′ is a Jordan curve and γ ⊂ int(γ′)},
int(γ) := M(γ) \ ∂M(γ).

Note that int(γ) may consist of several connected components and may also be empty, e.g., if
γ is an interval.

We say λ0 ∈ Σess is a regular point if ∂λd(λ0, ν)∂νd(λ0, ν) �= 0 for all ν ∈ iR with
d(λ0, ν) = 0 and a simple regular point if this is unique.

Proposition 4.3. Assume Hypothesis 1 and that an isola in Σess contains a nonempty con-
nected component K ⊂ C \ Σess with a regular point on ∂K and i(λ) is constant for λ ∈ ∂K.
Then K̄ ∩ Σj

abs �= ∅, where j = i(∂K) if i(K) < i(∂K), and j = i(∂K) − 1 otherwise.
The proof of this proposition follows below. Note that the spatial Morse indices i(∂K)

and i(∂K) − 1 distinguish an increasing or decreasing Morse index when entering K. For an
isola at the origin this is (typically) determined by the group velocity −dλ/dν|ν=0.

Using the Cauchy–Riemann equations, Proposition 4.3 yields Theorem 3.3 in [10]. To-
gether with Theorem 2.1 in [14] it directly implies the following corollary about wave trains
near a pulse, which we formulate for reaction diffusion systems (1.1). Here the pulse is re-
quired to be a generic homoclinic orbit of (1.3) in the sense that the underlying parameter
provides a transverse unfolding and the variational equation has a unique bounded solution
(up to constant multiples); see [14].

Corollary 4.4. Suppose U∗
L is a family of wave trains of (1.1) with the following properties.

As solutions to (1.3) we have U∗
L → U∗

∞, as L → ∞, which is a generic homoclinic orbit
to an equilibrium (i.e., it satisfies the assumptions of Theorem 5.1 in [14]). For any λ∗
in the point spectrum of U∗

∞ there are positive constants L∗, C, and κ, such that for any
L ≥ L∗ there is an isola γL ⊂ Σess(U

∗
L) with λ∗ ∈ int(γL) and diam(γL) ≤ Ce−κL. Moreover,

int(γL) ∩ Σ∗
abs(U

∗
L) �= ∅ and γL ⊂ ∂Ω∞(U∗

L) implies int(γL) ∩ Σabs(U
∗
L) �= ∅.

Remark 2. It appears natural that isola in Ω∞ contain branch points (Definition 3.1) in
the absolute spectrum. This would be meaningful, because such points distinguish remnant
and absolute instabilities. However, the problem is the Morse index: Having located a branch
point by a homotopy, it seems difficult to exclude the possibility of an index change during this
homotopy. Indeed absolute spectra without branch points can occur; see [11, section 5.1].

We combine the most relevant parts of Lemma 4.2 for isola and Proposition 4.3 in the
following theorem; recall the definition of j± in Lemma 4.2.

Theorem 4.5. Assume Hypothesis 1 and that Σess contains an isola γ so that an open
neighborhood V of its interior satisfies i(V \ int(γ)) ≡ j. Suppose one of the following.

(i) i(int(γ)) ≡ j + 1 or i(int(γ)) ≡ j − 1, and i(λ) is constant for λ ∈ γ.
(ii) γ self intersects at a regular point where j− + 1 ≤ j ≤ j+ − 1,
(iii) int(γ) = ∅ and γ contains a regular point.

Then int(γ) ∩ Σj
abs �= ∅, in particular, γ ⊂ ∂Ω∞, implies γ contains absolute spectrum.

Note that assumption (ii) is satisfied for an exterior loop that is connected to the rest of
the curve as in a figure eight shape; see Figure 2(b) and Lemma 4.2.

Proof. Case (i) follows directly from Proposition 4.3 and case (ii) immediately from
Lemma 4.2.
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At a regular point λ0 ∈ γ in case (iii), the Cauchy–Riemann equations imply that a
Floquet exponent crosses the imaginary axis as λ crosses λ0. By assumption, the Morse index
cannot change when λ has crossed λ0; hence a second Floquet exponent crosses the imaginary
axis in the opposite direction. Therefore, two spatial Floquet exponents are purely imaginary
at λ0, and their indices in the ordering of decreasing real parts are necessarily j and j + 1, so
γ ∩ Σj

abs �= ∅.
Last, note that γ ⊂ ∂Ω∞ yields j = i∞.

Proof of Proposition 4.3.

Definition 4.6. We say that a bounded curve λ(s) ∈ C, s ∈ [0, s0], s0 > 0, is Σ-connecting
if there exists a curve ν(s) ∈ C, s ∈ [0, s0], such that

• λ(0) ∈ Σess is a simple regular point,
• d(λ(s), ν(s)) = 0 for all s ∈ [0, s0],
• either ∂νd(λ(s0), ν(s0)) = 0 or λ(s0) ∈ Σess, ν(s0) �∈ iR,
• i(λ(0)) = i(λ(s0)) in case ν(s0) ∈ iR,
• for s ∈ (0, s0) any solution ν to d(λ(s), ν) = 0 satisfies �(ν) �= 0.

We prove Proposition 4.3 in two steps. First, we show that a Σ-connecting curve emanates
from any regular point on ∂K. More precisely, we show that ν(s) = ik0 + s or ν(s) = ik0 − s
can be used for certain k0, which corresponds to continuing the essential spectrum in an
exponentially weighted space as in Remark 1. Second, we prove that a Σ-connecting curve
generally implies the presence of absolute spectrum with a certain Morse index.

To illustrate the approach, consider the scalar constant coefficient equation uxx = cux. It
has the dispersion relation d(λ, ν) = ν2 − cν − λ = 0; hence Σess = {cik − k2|k ∈ R} and
Σabs = (−∞,−c2/4]. In this case, for fixed k ∈ R, the roots of d(λ, s + ik) = 0 form the
Σ-connecting curve λ(s) = s2−k2− cs+ik(2s− c) with ν(s) = s and appropriately chosen s0.
This curve indeed intersects the absolute spectrum at s = c

2 , where λ( c2) = −c2/4−k2 ∈ Σabs.
In fact, d(λ, ik + c

2) = 0 gives the entire absolute spectrum.

Lemma 4.7. Assume the hypotheses of Proposition 4.3. For any simple regular point λ0 ∈
∂K there exists a Σ-connecting curve with λ(s) ∈ int(K) for s ∈ [0, s0] and λ(0) = λ0.

Proof. The implicit function theorem provides s0 > 0 and a locally unique curve λ(s) for
|s| ∈ [0, s0) with λ(0) = λ0 and d(λ(s), s + ik0) = 0. Note that the Morse index i(λ) changes
by one at λ0, but remains constant in K, because K ∩ Σess = ∅.

Assume first that λ(s) ∈ K for s > 0. In case ∂λd(λ0, ik0 + s0) = 0, we can use Rouché’s
theorem (cf., e.g., [1]) to continue λ(s) to larger values of s. Indeed, if roots could not be chosen
continuously for increasing s, then the number of roots of d(·, ik0 + s0) and d(·, ik0 + s0 + ε)
would differ in a small neighborhood of λ0 for any sufficiently small ε > 0, which contradicts
Rouché’s theorem since d(·, ·) is smooth.

Using K ∩ Σess = ∅ we can choose s0 > 0 minimal, so that either ∂νd(λ(s0), s0 + ik0) = 0
or λ(s0) ∈ ∂K. The assumption of constant Morse index on ∂K implies i(λ(0)) = i(λ(s0)).

In case or λ(s) ∈ K for s < 0 the same holds for smaller, maximally chosen s0.

Lemma 4.8. Assume Hypothesis 1 and that there exists a Σ-connecting curve. Then there
exists 0 < s∗ ≤ s0 such that λ(s∗) ∈ Σj

abs, where j = i(λ(0)) if i(λ(s0/2)) < i(λ(0)), and
j = i(λ(0)) − 1 otherwise.

Proof. By definition of the spatial Morse index and Σ-connecting curves, either i(λ(s)) is
constant for [0, s0] or i(λ(0)) > i(λ(s)) for s ∈ (0, s0). By regularity at λ0, the definition of j
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νj+1(λ(s2))
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Figure 3. Configuration of spatial Floquet exponents in the proof of Proposition 4.3.

covers all cases and we focus on i(λ(0)) = j +1, i.e., �(ν(s)) > 0 for s ∈ (0, s0), and comment
on the case i(λ(0)) = j. The idea of the proof with ν(s) = ik0 + s is sketched in Figure 3.

Step 1. We show that whenever the Σ-connecting curve contains generalized absolute
spectrum involving ν(s2) for some s2 ∈ [0, s0], then it also contains absolute spectrum. We
thus assume that λ(s2) ∈ Σ�

abs and ν� = ν(s2) in the ordering of decreasing real parts.
Since i(λ(s)) ≡ j + 1 for s ∈ (0, s0), no Floquet exponent crosses the imaginary axis and
� ∈ {1, . . . , j + 1}. The unique spatial Floquet exponents on the imaginary axis at λ(0) are
ν(0), and hence ν(0) = νj+1. Since Floquet exponents are continuous along λ(s), there is

s∗ ∈ [0, s2] such that λ(s∗) ∈ Σj
abs; see Figure 3(b) for an illustration.

(Case i(γ) = j. The real parts of two stable Floquet exponents coincide, and ν(0) = νj in
the ordering, so � ∈ {j, . . . , n}. Again we infer � = j at some point.)

Step 2. We establish generalized absolute spectrum in the Σ-connecting curve and apply
the first step. In particular, the first step applies if λ(s0) is a branch point at ν(s0) so
that we may assume this is not the case. Therefore, λ(s0) ∈ Σess and there is a solution
zν(s0) ∈ iR to d(λ(s0), ·) = 0. By assumption, the Morse index is constant on ∂K and thus,
if λ(s0) is a branch point at zν(s0), then it lies in Σj

abs. Otherwise, Rouché’s theorem (and
typically the implicit function theorem) yields a curve zν(s) ∈ C for s ≤ s0 near s0 solving
d(λ(s), zν(s)) = 0. As in the proof of Lemma 4.7, we can choose maximal 0 ≤ s1 ≤ s0 so
that either λ(s1) is a branch point at zν(s1), or s1 = 0. Since the above first step applies
analogously to λ(s) ∈ Σ∗

abs involving zν(s), and a branch point lies in this set, we next assume
s1 = 0.

(Case i(λ(0)) = j. We can choose s1 ≥ s0 and zν(s0) so that �(zν(s)) < 0.)

The regularity of λ(0) implies that ik0 is the locally unique solution to d(λ(0), ν) = 0 for
ν ∈ iR, and λ(0) that of d(λ, ik0) = 0 for λ ∈ C. Therefore, �(zν(0)) > 0 and by construction
�(zν(s0)) = 0, �(ν(s0)) > 0, �(ν(0)) = 0. Hence, by continuity, �(zν(s2)) = �(ν(s2)) at
some s2 ∈ (0, s0), so that λ(s2) lies in the generalized absolute spectrum at ν(s2). Applying
the first step concludes the proof.

Lemmas 4.7 and 4.8 together prove Proposition 4.3. Note that Lemma 4.8 applies to
any Σ-connecting curve, including ones that emanate from unbounded curves of essential
spectrum.

Remark 3. The constructive nature of the proof of Proposition 4.3 yields an algorithm for
the location generalized absolute spectrum in an isola by numerical continuation (see also [11]):
Given an isola γ, pick λ ∈ γ and continue the solution λ(s) to d(λ, s+ ik0) = 0 in s such that
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it moves into int(γ). We expect that ∂λd(λ, ν) �= 0 along this curve, and either a branch point
occurs, or λ(s) intersects γ for some |s0| > 0. In the latter case, compute d(λ(s0), ik1) = 0
with ik0 �= ik1 and continue the two Floquet exponents back along the curve λ(s) until either
a branch point occurs or the difference in real parts is zero.

Thus, a point Σ�
abs has been located (unless a double root with respect to λ occurred), and

in practice often � = j; see section 5 for examples. To handle the case � �= j, we can extend
the algorithm as follows. Pick λ ∈ γ and find all n solutions to d(λ, ν) = 0; in particular,
there is ν = ik. Then continue all solutions simultaneously as above in s. The theorem
guarantees (unless a double root with respect to λ occurred) that there is 0 ≤ |s| ≤ |s0| such
that �(νj) = �(νj+1). We refer to [11] for algorithms to find all initial ν, and for notes on
the implementation in the software auto [5].

5. An example. We present computations of essential and generalized absolute spectra
for a wave train that occurs in the Schnakenberg model [15] using the numerical methods
described in Remark 3 and [11] with the software auto [5]. Both absolute and essential
spectrum of this wave train are unstable. We aim to illustrate the possible structures of
(generalized) absolute and essential spectra of wave trains, and the use of Theorem 4.5 in
calculating them.

We use the Schnakenberg model in the form

ut = Duuxx + 0.9 − uv2,

vt = Dvvxx + 0.1 + uv2 − v,

and consider a wave train U∗ of period L = 3 for the parameters Du ≈ 0.45, Dv ≈ 0.0045 and
velocity c ≈ 0.029. The profiles of U∗ are plotted in Figure 4.

This wave train can be located as follows. For Du ≡ 1 the unique equilibrium u = v = 0
undergoes a Turing bifurcation at Dv ≈ 0.12. We continue the bifurcating Turing pattern
with period L = 3 to Du = 1, Dv = 0.01 and then fix the ratio Dv/Du ≡ 0.01. A bifurcation
to a traveling wave train occurs as Du decreases and we consider the solution U∗ on this
branch at Du ≈ 0.45 in the comoving frame with its speed c ≈ 0.029.

Recall that essential and generalized absolute spectra are determined by solutions of the
(complex) dispersion relation (3.1). All (λ, ν) ∈ C

2 in the following are such solutions, viewed
as local functions λ(ν) or ν(λ). The essential spectrum consists of all branches of λ(ik) and
the generalized absolute spectrum consists of all λ for which two branches ν(λ) have the same
real part. For this model there are four Floquet exponents ν at each λ, i.e., four branches
of ν(λ), and these connect at branch points (Definition 3.1). To locate λ in the absolute
spectrum (here i∞ = N = 2) the spatial Morse index i(λ) is needed, and therefore all four
Floquet exponents at λ.

The search for essential spectrum was guided by predictions from eigenvalues of first order
finite difference approximations. Figure 5 plots the critical parts of the essential spectrum
computed with auto [5] as well as eigenvalues computed via finite difference discretization
with lapack [2]. The latter was performed under periodic boundary conditions on domains
with length 3 (the period of U∗) for 800 grid points, and length 6 for 1600 grid points. Since
any curve of the essential spectrum connects eigenvalues from lengths 3 and 6, computing
these spectra helps to locate isola of the essential spectrum.
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(a) (b)

Figure 4. (a) u-component of the wave train U∗. (b) v-component.

(a) (b)

Figure 5. (a) Parts of essential spectrum of the wave train computed with auto (black curves) and eigen-
values computed with finite differences on [0, 3] (stars) and [0, 6] (crosses). Letters denote isola referred to in
the text. (b) magnifies part of (a) and insets magnify the indicated isola.

(a) (b)

Figure 6. (a) Curve of absolute spectrum inside isola D. (b) This curve together with isola D. For the
point Dabs see also Figure 9.

Here the isolas D, E, F, G lie in the boundary of the region Ω∞, satisfy the assump-
tions of Theorem 4.5, and therefore contain absolute spectrum as plotted in Figures 6, 7,
and 8, respectively. The isolas within the curves C and H do not have constant Morse index
on their boundaries. While Theorem 4.5 cannot be applied directly, Lemma 4.2 implies that
the self-intersection points in C and H lie in curves of Σ1

abs, and these cross from Ω∞ into the
interior isolas; see also Figure 2. Since isola E and F are contained in the right half plane, the
wave train is absolutely unstable.
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(a) (b)

Figure 7. (a) Parameterization of the curve of absolute spectrum from Figure 6 by γ = �(ν2 − ν3) with
period 2π/3 ∼ 2.1. For Dabs see also Figures 9 and 6. (b) Isola G and the imbedded curve of absolute spectrum.

(a) (b)

Figure 8. Isolas and imbedded curves of absolute spectrum. (a) isola E (b) isola F.

(a) (b)

Figure 9. (a) Isola C and D of essential spectrum; see also Figure 5. (b) Branches of Floquet exponents
for λ ∈ R in the range of (a). Intersections with essential spectrum and generalized absolute spectrum can be
read off as indicated; compare also the location of points with (a).

Details of the essential spectrum and curves of Floquet exponents for the isola C and D
are plotted in Figure 9. Each crossing point of two branches �(ν(λ)) in Figure 9(b) lies in
the generalized absolute spectrum. For �(λ) > −0.05 the real parts of the Floquet exponents
are separated into two unstable and two stable exponents, as predicted for the region Ω∞.
Computations on the real line fail to indicate the instability of the small isola E and F in
C \ R; see Figure 5.
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(a) (b)

Figure 10. Branches of two spatial Floquet exponents within isola C for λ ∈ R. Only one branch of a
complex conjugate pair is plotted. (a) Real part, magnified from Figure 9(b). (b) Imaginary part with period
2π/3 ∼ 2.1; horizontal lines correspond to real spatial Floquet exponents.

As to generalized absolute spectrum, recall λ ∈ Σj
abs, if �(νj(λ)) = �(νj+1(λ)) for �(ν1) ≥

· · · ≥ �(νn). The spatial Morse index j is one plus the number of Floquet exponents with
larger real part; e.g., in Figure 9(b) it is one plus the number of curves above a point in the
generalized absolute spectrum.

Due to symmetry, Σ∗
abs∩R consists of λ, where two ν(λ) are complex conjugate or coincide

(branch points), or a positive and negative Floquet multiplier have the same modulus. In the
latter case two Floquet exponents differ by the factor eiπ, which cannot occur for spatial
eigenvalues of a uniform steady state. By symmetry, intervals in Σabs ∩ R with a complex
conjugate pair terminate at branch points, while a curve of Σabs typically crosses R with
vertical tangent at a point where multipliers in Σabs∩R have opposite sign; cf. [11, section 4.3].

Figure 6 shows a curve of absolute spectrum (index i∞ = N = 2) crossing the real line at
the point Dabs; see also Figure 9(b). This curve was predicted above using Theorem 4.5 and
was computed using the algorithm of its proof as described in Remark 3. Figure 7(a) shows
the parameterization of this curve of absolute spectrum by the difference of imaginary parts
κ = �(ν2 − ν3). Since the period of U∗ is 3, the period in κ is 2π/3 ∼ 2.1. There are branch
points at κ = j2π/3, j ∈ Z, the endpoints of the curve of absolute spectrum. At κ = −π/3,
j ∈ Z, the Floquet exponents are real, which corresponds to the point λ = Dabs ∈ R. Since
the Floquet exponents’ real parts plotted in Figure 9(b) differ for λ ∈ int(D) ∩ R \ {Dabs},
there is no further Σ∗

abs in D that intersects the real line.

We next investigate some intervals of generalized absolute spectrum on the real axis. Since
we strive for illustration, we disregard the points of Σ∗

abs that are marked with dotted arrows
in Figure 9(b).

As mentioned above, Theorem 4.5 does not apply to isola C directly. However, for suitable
exponential weights (see Remark 1, e.g. η = 1.1), part of isola C continues in η to a Jordan
curve C’ ∈ C ∪ Ωη

∞. In this weighted space, Theorem 4.5 applies and predicts a curve of
Σabs = Σ2

abs inside C’ and hence inside C. Indeed, continuing the branches of ν(λ) for λ ∈ R

there is an interval of Σabs on the real line confined within isola C; see Figures 9 and 10.
In addition, isola C contains an interval of Σ3

abs. Figures 10(a) and (b) show that two real
distinct Floquet exponents meet in branch points and become a complex conjugate pair at
the endpoints of these intervals. Concerning other Morse indices, Figure 9(b) shows a branch
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(a) (b)

Figure 11. We plot two curves of Σ1
abs that cross within isola B at Bbif . (a) Spectrum in λ-plane.

(b) Location of the crossing point at a local extremum of �(ν) for λ ∈ R.

point in Σ1
abs ∩ R between the points C1 and C2 in isola C’. The attached interval of Σ1

abs

crosses the self-intersection point of isola C as predicted by Lemma 4.2 and extends into
isola B; see Figure 11(a). The curves of imaginary parts in Figure 11(b) illustrate again how
two Floquet exponents become a complex conjugate pair at the endpoints of the interval.

Without including a figure we remark that isola A contains an interval of Σ1
abs ∩ R as

predicted by Theorem 4.5. In fact, more intervals and crossing curves of generalized absolute
spectrum on the real line occur as the branches of Floquet exponents repeatedly cross at the
dotted arrows in Figure 9(b).

Finally, we expect the bifurcation of a curve of Σj
abs into the complex plane at a critical

point of the imaginary part �(ν(λ)) in any interval of Σj
abs ∈ R bounded by branch points;

see [11, section 4.2.3]. More precisely, we expect a curve of Σ∗
abs crosses vertically at a point

where d
dλ�(ν(λ)) = 0. Indeed, we can numerically locate such bifurcation points and switch

to the bifurcating branch. An example for this in isola B is plotted in Figure 11.
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Abstract. Understanding fish-like locomotion as a result of internal shape changes may result in improved un-
derwater propulsion mechanisms. We use a geometric framework to consider the simplified problem
of an articulated two-dimensional body in a potential flow. This paper builds upon the current
geometric theory by showing that although the group of Euclidean transformations is non-Abelian,
certain tools available for Abelian groups may still be exploited, making use of the semidirect-product
structure of this group. In particular, the holonomy in the rotation component may be explicitly
computed as a function of the area enclosed by a path in shape space. We use this tool to develop
open-loop gaits for an articulated body with two shape variables, using plots of the curvature of
the mechanical connection, which relates motion in the shape space to motion of the overall body.
Results from numerical computations of the mechanical connection are compared to theoretical re-
sults assuming the joints are hydrodynamically decoupled. Finally, we consider a simple method for
trajectory tracking in the plane, using a one-parameter family of gaits.
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1. Introduction. In this paper, we study articulated bodies in a potential flow and their
locomotion as a result of internal shape changes. In particular, we seek to answer the following
question: Given a desired motion, what are the changes in shape that will achieve such a
motion?

Fish swimming has been studied for many decades in order to understand the physical
mechanisms involved and ultimately to improve upon conventional methods of underwater
propulsion. The interaction of solid bodies with an ideal fluid was first studied by Kirchhoff
in the 1870’s [7, 9]. In the 1960’s, analytical models by Wu examined the swimming of a
two-dimensional flexible plate with a small amplitude traveling wave [24, 25], while Lighthill
considered the propulsion of slender-body fishes [12, 13, 14, 15]. More recently, Kelly [5, 6]
studied the self-propulsion of fish-like and amoeba-like swimmers in potential and Stokes
flow from a geometric point of view, by viewing the configuration space as a principal fiber
bundle, in which the base space consists of the internal shape variables, and the fibers are
the group of rigid motions of the overall body. The motion along the fiber is related to the
motion in the base space by a principal connection, called the hydromechanical connection,
a term which comes from the geometric mechanics community [19]. These techniques were
used in [8] to study geometric phases in articulated free rigid bodies, and similar techniques
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were used in [21, 23] to study the motion of deformable bodies and articulated rigid bodies
in a fluid, assuming small amplitude motions, and assuming that the individual links were
hydrodynamically decoupled ; that is, that the added inertia of each link is independent of
the position or velocity of the other links. Kanso et al. [4] later formulated the potential
flow problem explicitly as a reduction by stages [1] (although such a formulation was already
implicit in [5]) and accurately computed the added inertia terms using a boundary element
method. Tools from control theory and geometric mechanics have also been used to generate
gaits for locomotion of underwater vehicles [11, 21, 22].

Benefits of the geometric formulation. One of the advantages of formulating the equations
using the structure of a fiber bundle is that one may use the hydromechanical connection to
design swimming gaits to achieve desired motions. In this paper, we use the formulation of
[5, 4] to develop open-loop swimming gaits to achieve arbitrary rotations in two dimensions.
The technique we use is well known for Abelian groups; we show that they may also be used for
the rotation component of the Euclidean group, exploiting the semidirect product structure
SE(2) = SO(2) � R

2, since SO(2) is Abelian. Whereas some previous results were limited to
small amplitude gaits or assumed hydrodynamically decoupled links, our results allow us to
develop finite amplitude gaits and accurately compute the motion. By numerically computing
the curvature of the hydromechanical connection, it becomes possible to develop such gaits
by inspection.

It is well known that fish propulsion relies in part on the shedding of vorticity, for instance,
as demonstrated in the experiments of [3]. Although we ignore the effects of viscosity and
do not model vortex shedding, our model captures the inertial forces associated with fish-like
swimming, which are most important during quick maneuvers. In other words, our model is
not valid as representative of real fish swimming unless maneuvers are performed quickly. We
consider this to be a first step at developing fish-like gaits and plan to incorporate the effects
of vorticity in future models.

This paper is organized as follows. In section 2 we introduce the problem of a three-link
fish-like articulated swimmer in a potential flow. Section 3 includes the geometric framework
necessary to study the present problem and includes a formula for computing the holonomy
in a semidirect product group S = G�V , where G is an Abelian group and V is a vector
space. This theory is applied in section 4 to find open-loop gaits from plots of the curvature of
the local connection to achieve a desired net rotation in the fish-like body. For the three-link
geometry, it is found that the most efficient turning gaits involve motions where the body
is “C”-shaped, rather than “S”-shaped. Further, we investigate different shape geometries
for maneuvering, including the effect of removing the middle link. The curvature plots are
compared to the case where the links are assumed to be hydrodynamically decoupled. We
then show how the curvature plots can be used to generate small-amplitude gaits for the non-
Abelian group components. Finally, in section 5 we consider a family of gaits and present a
method for following a trajectory in the plane.

2. Problem formulation. Consider a fish-like body modeled as a set of articulated rigid
links connected by hinged joints. The body is assumed to be two-dimensional and neutrally
buoyant. The example we will consider here is a three-link body with two joints, as in Figure 1,
which begins at rest, and is immersed in a perfect fluid. The formulation we use is the same
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Figure 1. A three-link swimmer.

as that in [4], but here we review the main ideas and define the notation used.

Kinematics. The overall motion of the body is represented by the position and orientation
of the middle body relative to an inertial frame of reference and is given by an element
s = (x, y, β) ∈ SE(2), the special Euclidean group. As noted earlier, we will exploit the
semidirect product structure of this group. The shape of the body is determined by the
angles θ1 and θ2 between the joints, which we call the shape variables. In computations, it
will be useful to express the positions of the outer links relative to this middle link by elements
x1, x2 ∈ SE(2), where we label the outer links as 1 and 2 as in Figure 1. These elements x1

and x2 are of course determined completely by the angles θ1 and θ2.

Dynamics. The lack of external forces or torques acting on the body or the fluid leads
to the conservation of a momentum-like quantity of the body plus fluid system. We assume
the fluid is inviscid, incompressible, and because there is no mechanism for the generation of
vorticity, irrotational for all time. Thus the velocity field can be represented as the gradient
of a scalar potential,

u = ∇φ.(2.1)

To determine the equations of motion, we use the Lagrangian formulation, as in [9, 5, 4]. The
Lagrangian of the system is equal to the total kinetic energy of the body plus the fluid,

L = TB + TF ,(2.2)

where the fluid kinetic energy TF is given by

TF =
1

2

∫
F
ρF |u|2 dV,(2.3)

where ρF is the fluid density. For an ideal fluid, it is well known that the motion of the
fluid is determined completely by the motion of the solid bodies [9]; that is, the total kinetic
energy may be expressed solely in terms of the velocities of the bodies, with the role of the
fluid appearing only as added inertias that of course depend on the configuration of the solid
bodies. This formulation is originally due to Kirchhoff [7, 9] and may also be understood as
an explicit reduction by the particle-relabeling symmetry [4].



MOTION PLANNING IN A PERFECT PLANAR FLUID 653

The potential φ may therefore be written as a sum of translational and rotational velocity
potentials corresponding to each link. The Neumann boundary condition of no penetration is
imposed along the surface, requiring that the normal velocity of the fluid, ∇φ · n = ∂φ

∂n , at a
point along the body surface be equal to the normal velocity of the body at that point.

Since the fluid has infinite extent, the total momentum of the system is indeterminate.
However, we may consider the system “impulse,” a momentum-like quantity defined by Lord
Kelvin [9]. The impulse is a product of the total link inertias (actual plus added inertias) and
the body velocities of each link, and may be expressed as in [4] as

hs =

3∑
j=1

(
AdT

x−1
1

(I1jξj) + AdT
x−1
2

(I2jξj) + I3jξj

)
,(2.4)

where ξj ∈ R
3 ∼= se(2) is the velocity of link j with respect to a reference frame attached to

that link, where links 1, 2 are the outer links as before, and link 3 is the middle link. The
matrices Iij are the total inertia terms such that the total kinetic energy of the body plus
fluid system is

T =
1

2

3∑
i,j=1

ξTi Iijξj(2.5)

and AdT
x−1
j

are operators that map the momenta term corresponding to body j from the j

body-fixed frame to the body-fixed frame of the middle body (see [17, 4] for more discussion
of the Ad operator and background on Lie groups). Defining ζj = x−1

j ẋj as the velocity of
link j relative to the middle link, expressed with respect to a frame fixed to body j, we then
can write the velocities ξj as

ξj = ζj + Adx−1
j
ξ3, j = 1, 2.(2.6)

The system impulse may also be expressed with respect to an inertial frame, in which case it
will remain unchanged due to the lack of external forces and moments. As currently defined
with respect to the body frame, in general, the value will change in time. However, when
the system begins at rest, the system impulse hs remains zero for all time. In this case, (2.4)
combined with (2.6) can be rewritten as

Iloc ξ3 +

2∑
α,β=1

(
AdT

x−1
α

Iαβ + I3β

)
ζβ = 0,(2.7)

where

Iloc =

2∑
α,β=1

(
AdT

x−1
α

IαβAdx−1
β

+ AdT
x−1
α

Iα3 + I3βAdx−1
β

)
+ I33(2.8)

is the locked moment of inertia. We may then write (2.7) as

Iloc

(
ξ3 + A(x)ẋ

)
= 0,(2.9)
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where A is the local form of the mechanical connection, an se(2)-valued one-form on the shape
space. When the locked moment of inertia is nondegenerate, (2.9) simplifies to ξ3+A(x)ẋ = 0.
Due to the constraint on the joint between the links, the rigid motion xα can be parameterized
by the single variable θα. Also, considering that ξ3 = g−1ġ, the equations of motion for the
system can be written as

ṡ(t) = −TeLs(t)

(
A(θ)θ̇(t)

)
(2.10)

or in shorthand notation

ṡ = −sA(θ)θ̇,(2.11)

where s ∈ S, s = TeS, and A : TQ → s is the (local) mechanical connection, a Lie algebra-
valued one form on the shape space. It maps a prescribed shape velocity element θ̇ = (θ̇1, θ̇2)
to the negative of the body velocity of the middle body, an element of se(2). The connection
is a function of the added inertias and is computed numerically at each time step. The motion
of the fish can be solved by prescribing a path for θ in shape space and integrating equation
(2.10) in time. Trial and error was used in [4] to determine gaits which generate forward
and turning motions. Here, we ask the reverse question: Given a desired motion, what is the
closed path in shape space required to achieve this motion?

3. Holonomy in semidirect product groups. If the group S is Abelian, then for a given
path in shape space given by θ(t), t ∈ [0, 1], the solution to (2.11) with initial condition
s(0) = e is simply

s(1) = exp

(
−
∫ 1

0
A(θ)θ̇(t) dt

)
.(3.1)

If θ(t) is a closed path for t ∈ [0, 1], then this result is equivalent to integrating the connection
along this path in shape space, or by the Stokes theorem, to integrating the curvature of the
connection over the area enclosed by the path,

exp

(
−
∫ 1

0
A(θ)θ̇(t) dt

)
= exp

(
−
∫
∂C

A(θ) dθ

)
= exp

(
−
∫∫

C
DA(θ) dA

)
,(3.2)

where the curvature DA : TqQ × TqQ → s is the covariant derivative of the connection A,
given by

DA(X,Y ) = dA(X,Y ) − [A(X),A(Y )],(3.3)

where X,Y are vector fields on Q [20]. This is a powerful result because it greatly simplifies
the problem of generating gaits to achieve a desired motion. First, one selects the desired
element in the group space and solves for the right-hand side of (3.1) by taking the logarithm
of both sides. Then, using the equality in (3.2), one finds an area in shape space that encloses
the corresponding volume of the curvature of the connection.

Unfortunately, the case when S is non-Abelian has no explicit solution. This is the case
for motion in the plane, where the Lie group is S = SE(2). However, SE(2) can be expressed
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as the semidirect product SO(2) � R
2. When the Lie group component (G) of the semidi-

rect product group is Abelian, it can be shown that the solution for this component of the
semidirect product group is the same as that for the Abelian case (3.1).

Semidirect products. Recall that if G is a Lie group that acts on a vector space V , then
one can define the semidirect product G�V as the usual product, with the group operation
(g1, v1)(g2, v2) = (g1g2, g1v2+v1), where g1, g2 ∈ G, v1, v2 ∈ V . The Lie algebras corresponding
to the various groups are g = TeG, V = TeV , and s = TeS.

Theorem 3.1. Let S = G�V , where G is Abelian. Consider a closed curve θ(t) ∈ Q for
t ∈ [0, 1], and let A : TQ → s be a principal connection with components Ag : TQ → g and
AV : TQ → V . Then if s(t) = (g(t), v(t)) ∈ S satisfies

ṡ = −sA(θ)θ̇(3.4)

with s(0) = (e, 0), then

holonomyG := g(1) = exp

(
−
∫
∂C

Ag dθ

)
= exp

(
−
∫∫

C
DAg dA

)
.(3.5)

Proof. Since θ(t) is given, we may rewrite (3.4) as ṡ = −sξ(t), where ξ = A(θ)θ̇ is given.
Writing ξ = (ξg, ξv), where ξg ∈ g and ξv ∈ V , this becomes (see [18])

ġ = −TeLgξg,(3.6)

v̇ = −ρ(g)ξv.(3.7)

Clearly, (3.6) is decoupled from (3.7), and since G is Abelian, the solution is

g(t) = exp

(
−
∫ t

0
ξg(τ)dτ

)
.(3.8)

The holonomy of S in the G component is then

holonomyG = g(1) = exp

(
−
∫
∂C

Ag dθ

)
= exp

(
−
∫∫

C
DAg dA

)
,

where the last equality is by the Stokes theorem.
This result is used to generate gaits for the Abelian component of the Lie group which

correspond to turning maneuvers for the fish. As demonstrated in Figure 6(a), this result does
not apply in the general case, and we cannot use this method to generate finite amplitude
translational gaits.

4. Results. For the fish-like body depicted in Figure 1, the shape space Q is parameterized
by (θ1, θ2), so the local connection A(θ1, θ1) : T(θ1,θ2)Q → se(2) is a Lie-algebra-valued one-
form on Q, which may be written as

A(θ1, θ2) = f(θ1, θ2)dθ1 + g(θ1, θ2)dθ2,(4.1)

where f, g : Q → se(2) depend on the added inertia terms, which depend on the shape of the
body and are computed from (2.9). A boundary element method using source distributions is
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employed to compute the added inertia terms at each time step. For details of the computation,
see [4]. The curvature DA is then a Lie-algebra-valued two-form on Q, computed from (3.3)
as

DA =

[(
∂g

∂θ1
− ∂f

∂θ2

)
− [f, g]

]
dθ1 ∧ dθ2(4.2)

= γ(θ1, θ2)dθ1 ∧ dθ2,(4.3)

where γ : Q → se(2) is the bracketed term in (4.2). The curvature has three components: one
corresponding to rotational body velocity and two corresponding to translational body velocity
terms. The translational components, denoted u and v, correspond to motion parallel to the
direction of the major and minor axes of the middle link, respectively. The three components
of γ are computed numerically on a grid in the (θ1, θ2) plane and plotted in Figure 2. The
plots correspond to a fish-like body with three equal size elliptical links where the dimensions
(as in Figure 1) are a = 20, c = 2 and the aspect ratio of the ellipses is 10.

(a) (b) (c)

Figure 2. (a) ω, (b) u, and (c) v components of curvature.

4.1. Using the curvature for gait generation. Since SO(2) is Abelian and SE(2) =
SO(2) � R

2, one can use the ω component of the curvature plot to develop finite-amplitude
turning gaits, using the theory in section 3. The ω-component plot is shown enlarged in
Figure 4. Note that the regions of largest curvature occur in two opposite corners of the
shape space. These regions correspond to the fish configuration where the joints are bent in
a “C”-shape. The most efficient turning gaits will enclose these regions of high curvature.
Intuitively, this makes sense as one would expect a turning fish to coil its body into a “C”-
shape to minimize the inertial resistance of the fluid as it turns. Likewise, a fish in an extended
or “S”-shape configuration trying to rotate would encounter larger inertial forces and would
not be expected to turn easily.

The procedure for gait-generation for the Abelian subgroup component is straightforward:
1. Choose the desired Abelian Lie group element (here, the desired net rotation).
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2. Determine the corresponding Lie algebra element by applying the logarithm map.
3. Find a path in shape space that encloses a volume equal to the negative value of the

Lie algebra element found in the previous step.
Note that, since the net rotation depends only on the enclosed area, the initial shape config-
uration need not be a point on the path, as shown in Figure 3.

(a) (b)

Figure 3. Two paths resulting in the same holonomy in the Abelian subgroup component, but starting and
ending at different points in shape space.

Exponential map. The exponential map takes elements of the Lie algebra and maps them
to the Lie group. For SE(2), the exponential map is given by exp(u, v, ω) = (x, y, β), where

β = ω,(4.4)

(x, y) =

{
(u, v), ω = 0,
1
ω (u sinω + v(1 − cosω), u(cosω − 1) + v sinω), ω �= 0.

(4.5)

For the purposes of this paper, we will require only the component of this map given by (4.4),
so for this component, the exponential map, and its inverse, the log map, are just the identity.

As an example of gait-generation, we choose a desired net rotation of β = π/4. Thus,
ω = π/4 and we seek a closed path in (θ1, θ2) space that encloses a volume equal to −π/4.
Figure 4 illustrates one such path, given by

θ1(t) = −1.5 + .46 cos(t),

θ2(t) = 1.5 − .46 sin(t),
(4.6)

where t ∈ [0, 2π]. Note that the holonomy is independent of the speed of travel along this
path.
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Figure 4. Path in shape space resulting in net rotation of π
4

radians: θ1(t) = −1.5 + .46 cos(t); θ2(t) =
1.5 − .46 sin(t).

The fish middle link begins at a zero degree angle from the horizontal and, after one shape
space loop, has rotated 45 degrees counterclockwise, as in Figure 5. The angles of the joints
are the same in the original and final configuration.

The start and end points of the closed path have no effect on the net rotation, as implied
by (3.5). However, the choice for the start and end points will affect the net holonomy in the
translational component of motion. Figure 6 shows the trajectory of the center of the fish for
various starting points in the prescribed path. The starting points are labeled in Figure 4 in
the same color as the corresponding paths in Figures 6(a) and 6(b). In each case, the path
is in the clockwise direction. Because the net holonomy in these directions depends on the
starting point of the path, it is clear that for the translational component in SE(2), as is
the case for general non-Abelian groups, a formula analogous to (3.5) is not possible, as the
holonomy cannot depend only on the area enclosed by the path.

As a second example, we present a gait to achieve a net rotation of π/2, while starting
and ending with the fish in a straight configuration (unlike the previous example, where
the fish starts and ends in a “C”-shape). In order to begin and end with a straightened
out configuration, we choose the gait shape space path to begin and end at the origin, and
numerically find an area in shape space that encloses a volume of −π/2. The path selected
is shown in red in Figure 7 along with the initial and final configurations of the swimmer. A
video animation of the turning gait is available.

4.2. Determining degree of maneuverability of fish shape via numerical experiments.
A numerical study was performed to determine how the body geometry affects the rotational

http://www.princeton.edu/~jmelli/siads/fishrotate90.mov
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Figure 5. Turning gait path in shape space in red with the rotation holonomy in blue along with the
final configuration for a three-link swimmer after one turning gait. See also the accompanying animation
(64988 01.gif [190KB]).

maneuverability of the fish. This was done by examining the ω component of the curvature
plots for various shape geometries along the line θ1 = −θ2, corresponding to “C”-shapes,
which have been shown to be the most efficient configurations for turning gaits. The variables
examined were the aspect ratio of each individual ellipse as well as the gap between the joints.
The number of bodies was held fixed at three and the sizes of all three bodies are assumed to
be equal. It was found (see Figure 8(b)) that a larger aspect ratio cross section results in a
larger curvature for a given shape configuration. Also, as illustrated in Figure 8(a), increasing
the gap between joints improves the maneuverability as well, though the effect saturates for
larger gap values. Thus for improved turning, a slender fish with large gaps between joints is
preferred to a rounder body with the individual links close together.

4.3. Hydrodynamically coupled versus decoupled. The swimming of an articulated body
in a potential flow has been studied by Radford [22], in which it was assumed that the bod-
ies were dynamically coupled, but hydrodynamically decoupled; that is, the added inertias
for each body component are determined assuming it is hydrodynamically isolated from all
the other bodies. Our current numerical scheme removes this approximation and accurately
computes the added inertias of the system, and thus provides a way of validating the hydro-
dynamically decoupled assumption.

We compare the curvature plots for both the hydrodynamically coupled and decoupled
cases. Figure 9 is a plot of the ω component of the curvature for both cases. The plots
are qualitatively similar in many respects: both show relatively small curvature in the areas
of shape space corresponding to the fish in an “S” configuration. Likewise, the decoupled
case accurately predicts that the curvature is greatest when the fish is in a “C” configuration.

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64988_01.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64988_01.gif
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(a) (b)

Figure 6. Group motion: (a) Translation and (b) rotation resulting from the prescribed paths in shape space:
θ1(t) = −1.5+ .46 cos(t+ δ); θ2(t) = 1.5− .46 sin(t+ δ) for various values of δ. The start and end points of the
closed path have no effect on the net rotation but do affect the net holonomy in the translational component.
Because the net translational holonomy depends on the starting point of the path, a formula analogous to (3.5)
is not possible, as the holonomy cannot depend only on the area enclosed by the path.

Figure 7. Turning gait path in shape space in red with the rotation holonomy in blue along with the
initial (dotted) and final (solid) configurations for a three-link swimmer after one turning gait. See also the
accompanying animation (64988 02.gif [138KB]).

http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64988_02.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64988_02.gif
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(a) (b)

Figure 8. Parametric study of various fish geometries. r is the distance from the origin along the line
θ1 = −θ2: (a) The gap between links is varied, while the aspect ratio is held fixed at a value of 10. (b) The
aspect ratio of each link is fixed. The gap and overall length of the fish are held fixed.

However, the decoupled assumption incorrectly predicts a maximum curvature when the joints
are at approximately ±π/2. Also, the decoupled assumption underpredicts the curvature in
the highest curvature region. However, overall the hydrodynamically decoupled assumption
is surprisingly accurate at predicting curvature of the connection, and thus predicting the
overall rotation for any given gait.

4.4. Removing the middle link. It has been observed that carangiform fish have devel-
oped a narrow necking region in the peduncle, the region anterior of the tail (see Figure 10).
Lighthill has proposed that the reduced added mass in this region minimizes the recoil forces
experienced by a fish [13]. We crudely model this necking region and reduction in size by
removing the middle link and studying the effect on the maneuverability of the fish.

Consider the same three-link, two hinged swimmer as before, but now with the middle
link removed, as in Figure 11. Here, the front link can be thought of as representing the dorsal
fin, and the rear link as representing the caudal fin in a carangiform fish. (The interactions
of these fins in real fishes were considered in the experiments of [2]. For more on undulatory
propulsion in carangiform fishes, see [10].) The curvature plots for the two-link swimmer
are shown in Figure 12. They are qualitatively similar to those of the three-link swimmer;
however they are quantitatively considerably different. The ω-component plot, Figure 12(a),
has some characteristics similar to those of the three-link ω curvature plot—most notably
a relatively flat surface, except in the two shape space regions corresponding to a “C” type
configuration in the three-link body. Unlike the three-link plot, however, the two-link plot has
a local maximum in the high curvature region. This is similar to what was found in the case of
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(a) (b)

Figure 9. (a) Hydrodynamically coupled and (b) hydrodynamically decoupled ω component of curvature plot.

Figure 10. Bluegill Sunfish (Lepomis macrochirus), a carangiform mode swimmer. Notice the narrow
necking region between the body and tail. (Photo courtesy George Lauder, Harvard University.)

the hydrodynamically decoupled three-link body. Perhaps the lack of a middle link and thus
increased distance between links improves the assumption of hydrodynamic isolation which
results in the similarity between these two figures. As a clearer example of this effect, consider
the ω-component curvature plots in Figure 13 for the two-link body under the assumption of
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Figure 11. A two-link swimmer. The two links may be viewed as representing the dorsal and caudal fins
of a carangiform swimmer.

(a) (b) (c)

Figure 12. (a) ω, (b) u, and (c) v components of curvature for a two-link, two hinge body assuming
hydrodynamically coupled links.

both hydrodynamically coupled and hydrodynamically decoupled links. The curvature plots
for both cases are qualitatively and quantitatively very similar.

Finally, for a more direct comparison, Figure 14 shows the ω curvature component for the
three-link body versus that of the two-link body (both under the assumption of hydrodynam-
ically coupled links) along the cross section defined by the line θ1 = −θ2. The curvature value
is plotted as a function of distance r from the origin. We see that for a body that is restricted
to small angular deformations, the three-link configuration is preferred to the two-link configu-
ration. A body that is able to achieve larger angular displacements of its joints may prefer the
two-link configuration over the three-link configuration, as it allows for increased rotational
maneuverability for some gaits. For example, for the same path prescribed in (4.6), the net
holonomy for the two-link body is 0.99 radians, compared to 0.79 radians for the three-link
body.
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(a) (b)

Figure 13. (a) Hydrodynamically coupled and (b) hydrodynamically decoupled ω component of curvature
for a two-link body.

Figure 14. Comparison of the ω curvature component versus distance from the origin along a line defined
by θ1 = −θ2 for a two-link and three-link body.
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4.5. Trajectory generation. As noted in section 3 and illustrated in Figure 6(a), Theo-
rem 3.1 cannot be applied to the vector space component of a semidirect product group, so
curvature plots cannot be used to develop large-amplitude gaits for translation in the plane.
However, the curvature plots can be used to develop small-amplitude gaits to achieve local
trajectory tracking.

Using the Magnus expansion [16], Radford [23] obtained a local expansion of the group
displacement resulting from a closed path α in shape space for systems in the form of (2.11)
where the connection A is a function of the shape variables. The expansion, to third order, is

z(α) = −1

2
Fij

∫
α
dθidθj +

1

3
(Fij,k − [Ai, Fjk])

∫
α
dθidθjdθk + . . . ,(4.7)

where Fij is the curvature of A,

Fij ≡ Aj,i −Ai,j − [Ai,Aj ],(4.8)

which is equivalent to (4.3), and the subscript j represents differentiation with respect to θj .
F and A are evaluated at the starting point on the path. The coefficient of the first term is
proportional to the local curvature value. Thus, for small-amplitude loops in shape space, the
curvature plots can be used to develop gaits. The coefficient of the next term is a function of
the local connection and curvature values as well as a higher order derivative of the curvature.
This term is nonzero for 2:1 Lissajous-type paths in shape space. Assuming the system is
controllable with up to second order bracket motions, (4.7) can be used to determine 1:1
and 2:1 small-amplitude Lissajous-type gaits to achieve the desired trajectory in the group.

Note also that small-time local controllability for the system can be shown from the Lie
algebra rank condition. One checks numerically that the vector fields of the local connection
plus iterated Lie brackets of those vector fields span the Lie algebra se(2) at each point in
shape space. (For our three-link swimmer, only the first Lie bracket is required for most points
in shape space, and then one checks that second-order brackets span the remaining directions
of se(2) at degenerate points.) It is then possible to design small-amplitude gaits to achieve
group trajectory tracking following a constructive procedure similar to that in [11].

As an example of an application of the curvature plots for non-Abelian Lie groups, we
develop a gait to achieve pure net lateral motion, that is, so that the fish swims “sideways.”
Consider the contour plot of the v component of curvature in Figure 15. Superimposed on
this plot are the zero-value contours of both the ω and u curvature components, in blue
and magenta, respectively. At the intersection of these two zero-value contours, only the v
curvature component is nonzero. A closed path taken about this point, as depicted with
a black curve, results in nearly pure net sideways motion of the fish. The net motion will
approach a pure lateral direction as the area enclosed by the path approaches zero.

5. Motion planning. Motivated by cross-sectional plots of Figure 14, we consider a family
of gaits to develop a method for tracking a desired trajectory. In particular, we focus on gaits
in which the displacement per gait period is small compared to the overall desired trajectory
displacements. We find that a circular path in shape space about the origin results in pure net
forward motion. From the ω curvature plot in Figure 4 and from the cross-sectional plot in
Figure 14, we see that shifting the gait away from the origin along the line θ1 = −θ2 increases
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Figure 15. Contour lines of the v curvature component, with the zero-value contours of the ω and u
curvature components in blue and magenta, respectively. A gait represented by a black curve at the intersection
of the two zero-value contours results in nearly pure net lateral motion.

the net rotation. From numerical experiments we find that the net motion is a rotation plus
a displacement.

The gait (θ1(t), θ2(t)) is given by the rapidly oscillating complex-valued function

θ(t) = θ1(t) + iθ2(t) = Aeiωt + B(t)(1 − i).(5.1)

The slowly varying offset B corresponds to shifting the circular trajectory about the line
θ1 = −θ2. Here we choose B(t) so that the body follows a desired trajectory in the plane. We
hold A, the amplitude of the path, fixed. We perform numerical experiments to compute the
displacement δ and rotation β from the forward direction (which is defined as the direction
in which the body moves for B = 0) over a single period T of oscillation, as functions of B.
The average velocity and curvature are given by

〈v〉(B) =
δ

T
=

ωδ(B)

2π
, 〈κ〉(B) =

2 sin
(
β(B)

2

)
δ(B)

.(5.2)

For a fixed value of A, we compute 〈v〉 and 〈κ〉 for several values of B, a polynomial fit is
applied, and finally the inverse function, B = P (〈κ〉), is found. We want to follow a specified
trajectory, r(t) = (x(t), y(t)), where the velocity and curvature along the path are given by

v(t) =
√

ẋ2 + ẏ2, κ(t) =
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
.(5.3)
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Since B(t) is slowly varying (sometimes referred to as an adiabatic approximation), we ignore
the contribution of Ḃ to θ̇. We match 〈v〉(ω,B) = v(t) and 〈κ〉(B) = κ(t) and solve for ω and
B as functions of time:

B(t) = P (κ), ω(t) = 2π
v

δ(B)
.(5.4)

Finally, the prescribed path in shape space to approximately track the desired trajectory is

θ(t) = Aei
∫ t
0 ω(t′)dt′ + B(t)(1 − i).(5.5)

This method works well only for smoothly varying trajectories where the displacement per
gait period is small compared to the dimension of the trajectory. Figure 16 shows the desired
path in black along with the actual path in blue due to prescribing open loop controls. An
animated video shows the shape deformations as the body follows the desired path.

Figure 16. The desired and actual trajectories in black and blue, respectively, resulting from open-loop
controls based on the adiabatic approximation. See also the accompanying animation (64988 03.gif [841KB]).

6. Conclusions. We have considered the swimming of an articulated fish-like swimming
mechanism in a two-dimensional potential flow. We have extended the geometric theory to
apply previously known results for systems on Abelian groups to the rotation component of
SE(2), exploiting the semidirect product structure. Using plots of the curvature of the local
connection form, we developed gaits to achieve a desired rotation for a three-link swimmer.
It was found that the most efficient turning gaits correspond to “C”-shaped configurations
of the body. A parametric study was performed to assess the degree of maneuverability of
different geometries, and it was found that large aspect ratio links with large gaps between
the joints result in larger curvature values and are better suited for rotational maneuvering.
The curvature plots were used to validate the hydrodynamically decoupled assumption used
in previous works and to study the difference between two-link and three-link swimmers. It
was shown that removing the middle link can improve the turning gait motion for some gaits.
Although the main result is not applicable to non-Abelian groups in general, the curvature
plots can be used to develop small-amplitude gaits to follow a desired trajectory. Finally,
motivated by the cross section of the ω curvature plot, we considered a family of finite-
amplitude gaits and developed a method for tracking a desired trajectory in the plane.

http://www.princeton.edu/~jmelli/siads/motionplanning.mov
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64988_03.gif
http://epubs.siam.org/sam-bin/getfile/SIADS/articles/64988_03.gif
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Abstract. We introduce distributed axonal transmission speeds and a long-range constant feedback loop into
the standard neural field model. We analyze the stability of spatially homogeneous equilibrium
solutions for general connectivity kernels. By studying reduced models based on the assumption of
small delays, we determine the effects of the delays on the stability and bifurcations. We show in
a reduced model that delayed excitatory feedback generally facilitates stationary bifurcations and
Turing patterns, while suppressing the bifurcation of periodic solutions and traveling waves. The
reverse conclusion holds for inhibitory feedback. In case of oscillatory bifurcations, the variance of
the distributed propagation and feedback delays affects the frequency of periodic solutions and the
phase speed of traveling waves. Moreover, we give a nonlinear analysis of traveling fronts and find
that distributed transmission speeds can maximize the front speed.
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1. Introduction. Several models of coupled neurons have recently attracted much atten-
tion, including topological neural networks [25, 34, 42, 47, 55] and networks involving spatial
structures [1, 6, 18, 23, 27, 31, 59, 61]. This paper considers the latter networks describing a
continuous synaptically coupled neural field extended in space, whose dynamics are governed
by an integro-differential equation. We expand this classical model by incorporating two
novel elements suggested by experimental evidence, namely a distribution of signal transmis-
sion speeds within the field, and a long-range feedback term involving distributed time delays.
These elements constitute two sources of temporal delays with different character and have
significant consequences for the dynamics of the neural ensemble. The present work studies
their effects on the dynamics through the stability of equilibria, the bifurcations leading to
spatial patterns and oscillations, and the analysis of traveling fronts. The measured activity
of the neural system indicates that such spatio-temporal dynamics are intimately related to
various brain functions and cognition. We mention the space-time instabilities during several
types of hallucinations [5] and epileptic seizures [40, 41], the stimulus-evoked traveling waves
in turtle visual cortex [48], and the evoked traveling pulses in somatosensory brain slices [46].
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Figure 1. Estimated distribution of propagation velocity in myelinated cortico-cortical fibers (after Nunez
[44, Figure 2-6, p. 85], reprinted by permission of Oxford University Press, Inc.; data originally reviewed in [35]).
Different symbols refer to data taken from different parts of the brain.

The mathematical analysis is thus an important step in understanding the relation between
neural processes and the model parameters.

The spatial structure in most cortical areas is not known in detail; therefore, the spatial
field is usually assumed to be homogeneous, with an underlying arbitrary spatial connectivity.
On the other hand, the temporal structure of neural activity is well studied. Multiple time
scales are present in real neural areas, which may originate from the delayed impulse response
of chemical synapses [20], the finite axonal speed [44], or the presence of feedback loops [56]. To
be more specific, finite axonal transmission speed results in a space-dependent delay between
two distant locations; i.e., the neural field shows retarded interaction. Moreover, experimental
studies reveal not a single axonal speed but statistically distributed speeds in cortico-cortical
connections in rats [44] and in intracortical connections in visual cortex of cats and monkeys
[7, 16]. In all studies, the histogram of axonal speeds follows a gamma-distribution with
maxima between 5 m/s and 12 m/s in rats and at about 0.2 m/s in the cat and monkey brain
(Figure 1). To our best knowledge, such distributions of propagation speeds have not been
considered yet in dynamical neural models.

In addition, feedback loops play an important role in real neural processing [53]. For
instance, detailed studies of interhemispheric connections [17], connections of the visual areas
of different functional order [8, 43], and reciprocal thalamic connections [14, 45, 57] indicate
interareal feedback loops. In sum, most experimental findings indicate a network of inter-
acting neural areas [52], which allows the brain to accomplish complex tasks, such as motor
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coordination or visual feature binding [54]. Due to this network structure, some theoretical
studies examined the effects of delayed self-interaction and the interactions of different neural
areas [32]. In this context, a well-known example is corticothalamic feedback connections [45],
which have been modeled recently by a simple constant feedback delay [49, 51]. The present
work extends these previous studies by introducing arbitrary nonlocal feedback kernels; in
other words, we consider the case in which the distance between the initial and the final spa-
tial locations of the loop obeys an arbitrary probability density distribution. Furthermore,
the time delays in the loop are also described by a general distribution function.

In the following sections, we study the stability of equilibrium solutions of neural fields
subject to two sources of temporal delays, namely the transmission delays and the delays in
the nonlocal feedback loops. These two delay types turn out to have quite different characters,
which are reflected in their dynamical effects. Our aim is to draw general conclusions about the
dynamics of the model without reference to specific choices of the connectivity, transmission
speed, or feedback delay distributions. The model is introduced in section 2, and the stability
of spatially homogeneous equilibria is analyzed in section 3 for arbitrary kernels. In section 4
we introduce approximate models under the assumption of large but finite axonal speeds and
small feedback delays. Based on such a model, in section 4.2 we are able to give further
details of the effects of the delays on stability and bifurcations. The theoretical analysis is
supplemented by numerical simulations in section 5 for some commonly used choices of the
connectivity and delay distribution functions. Section 6 treats traveling fronts. The discussion
in section 7 closes the work.

2. Distributed speeds and nonlocal feedback. This section aims to motivate the model
equation [2, 30]. A detailed review of the derivation of the basic model can be found in, e.g.,
[6, 28]. Here we additionally introduce the distribution of transmission speeds and the delayed
long-range feedback loop.

An essential ingredient of neural activity is the input-output behavior of synapses which
convert incoming pulses to postsynaptic potentials. In the coarse-grained population model,
at time t and some point x in the field, ensembles of excitatory (e) and inhibitory (i) chemical
synapses respond to incoming pulse activity Pe,i(x, t) by temporal convolution with some
impulse response function h(t). Specifically,

Ve,i(x, t) = ge,i

∫ t

−∞
h(t− t′) Pe,i(x, t

′) dt′(2.1)

= ge,iI ◦ Pe,i(x, t),

where ge,i denotes the efficacy of excitatory and inhibitory synapses, I is the integral operator,
and Ve,i denotes the excitatory and inhibitory postsynaptic potential. The presynaptic pulse
activity Pe,i(x, t) originates from the somatic pulse activity P s

k (x, t) of distant neural ensembles
of neuron type k and is given by

Pe,i(x, t) = g0

∫ ∞

0
g(v)

∫
Ω
Ke,i(x− x′)P s

k

(
x′, t− |x− x′|

v

)
dx′dv

+ μ̄e,i

∫ ∞

0
f(τ)

∫
Ω
Fe,i(x− x′)P s

k (x′, t− τ) dx′dτ + Ee,i(x, t).(2.2)
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Here, Ω represents a spatial domain, which is taken to be the real line in this paper. The ker-
nels Ke(x) and Ki(x) represent the spatial distributions for excitatory and inhibitory synaptic
connections, respectively, while Fe(x) and Fi(x) give the distributions of excitatory and in-
hibitory long-range delayed feedback connections, respectively. The factors μ̄e, μ̄i weight the
corresponding feedback connections, and g0 > 0 weights the interareal contribution towards
the delayed feedback distribution. Moreover, the somatic conversion of the effective membrane
potential V = Ve − Vi to ensemble pulse activity P s can be modeled by a sigmoidal function
P s
k (x, t) = S(V (x, t) − V0) with the mean firing threshold V0 [21, 28]. The present model

does not distinguish different neuron types and thus presumes P s
k (x, t) = P s(x, t); though

the relaxation of this constraint may give additional insights into neural dynamics [37], its
discussion would exceed the aim of the present work. The sigmoidal function S : R → R

+ is
differentiable and monotone increasing. The terms Ee and Ei represent the external stimuli
terminating at excitatory and inhibitory synapses, respectively. Equation (2.2) incorporates
several realistic mechanisms as sources of time delays in the neural field, including the signal
propagation delays within the field and the delays in the long-range feedback loop. The finite
speed v of signal propagation within the field gives rise to distance-dependent delays; such
delays have been discussed in some recent studies [10, 13, 30, 32, 46]. As a novel aspect, in
this paper we relax the constraint of a single transmission speed v and consider more naturally
a distribution function of speeds g(v). As mentioned in the introduction, the motivation for
distributed transmission speeds originates from experimental findings. In addition, we take
into account the feedback delays τ in the feedback loop, whose distribution is given by the
function f . In contrast to the transmission speeds, only a few details on the distribution
of feedback delays are known from experiments; we mention the corticothalamic feedback
delay [14], the feedback delay between visual areas V1 and V2 in monkeys [24], and the de-
layed inhibitory response in the retina of the horseshoe crab Limulus polyphemus [26]. The
distribution functions g and f are probability densities on [0,∞), i.e., nonnegative functions
satisfying ∫ ∞

0
g(v) dv =

∫ ∞

0
f(τ) dτ = 1.(2.3)

Combining (2.1) and (2.2), we find the equation

V (x, t) =

∫ t

−∞
h(t− t′)

[
ᾱ

∫ ∞

0
g(v)

∫ ∞

−∞
K(z)S(V (x + z, t′ − |z|/v)) dz dv

+ β̄

∫ ∞

0
f(τ)

∫ ∞

−∞
F (z)S(V (x + z, t′ − τ)) dz dτ + E(x, t′)

]
dt′(2.4)

with K = aeKe − aiKi, F = μeFe − μiFi, ae,i = g0ge,i, μe,i = ge,iμ̄e,i and the external input
E = Ee − Ei. The kernels K,F : R → R are continuous, integrable, and even; that is,
K(−z) = K(z), F (−z) = F (z) for all z ∈ R. They can have different signs for small and large
values of |z|, showing different local and lateral contributions of excitation and inhibition.
Furthermore, with the help of the nonnegative scaling factors ᾱ and β̄, they can be assumed
to satisfy the normalization conditions∫ ∞

−∞
|K(z)| dz =

∫ ∞

−∞
|F (z)| dz = 1.(2.5)
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By introducing a temporal differentiation operator L = I−1, where Lh(t) = δ(t) and δ is the
Dirac delta function, (2.4) can be written as an integro-differential equation. Thus, h plays
the role of the Green’s function corresponding to L. In this way we obtain our main equation

L

(
∂

∂t

)
V (x, t) = ᾱ

∫ ∞

0
g(v)

∫ ∞

−∞
K(z)S(V (x + z, t− |z|/v)) dz dv

+ β̄

∫ ∞

0
f(τ)

∫ ∞

−∞
F (z)S(V (x + z, t− τ)) dz dτ + E(x, t).(2.6)

As an example for Green’s function h, we mention the form suggested by experiments [15],
namely h(t) = (exp(−t/T1)− exp(−t/T2))/(T1 − T2) with synaptic time constants T1, T2 > 0.
Letting T1 → T2 = T yields the well-studied case h(t) = t exp(−t/T )/T (see, e.g., [50]),
corresponding to a second order differentiation operator with time scale T . We shall consider
this case in sections 4.2 and 5, as well as a first order operator in section 6. However, the
general formulation will be given for an arbitrary order operator L, often with the assumption
that L is stable, i.e., that all its characteristic values have negative real parts.

We close this section with several comments about the model (2.6). To begin with, the
unbounded spatial domain (−∞,∞) is physically unrealistic; however, it gives a good approx-
imation when boundary effects are negligible inside the domain. Our results also hold when
the domain is a circle, corresponding to a bounded region with periodic boundary conditions,
and we use the circle as the spatial domain when we do numerical simulations in section 5.
Since an unbounded domain is merely a mathematical convenience, the kernels K and F
will typically have compact support, especially when they are experimentally determined, al-
though the model allows arbitrary kernels defined on (−∞,∞). In a similar vein, it may be
more desirable to formulate the model in terms of v−1 instead of v, because the probability
density for v−1 will have a compact support. Moreover, in terms of v−1 it makes sense to
discuss the perturbation of the distribution about the Dirac delta at zero, corresponding to
instantaneous information transmission. We keep v in (2.6) mainly because it allows slightly
more intuitive and less cumbersome notation, and because the experimental measurements
of the distribution are given in terms of v. Similarly, the probability density f for the feed-
back delays will have compact support, making all delays in (2.6) bounded. In summary, the
unbounded spatial and temporal domains appearing in the model are mostly for convenience
of notation and reduce to finite ranges for physically reasonable choices of distributions. A
main point of interest is the different nature of the two delay types in the two terms on the
right-hand side of (2.6), which we study in the subsequent sections.

3. Equilibrium solutions. In this section we consider the basics of a stability analysis
for spatially uniform equilibria of the model (2.6). The material here is essentially a brief
version of sections 2 and 3 of [2], with the purpose of indicating the differences introduced by
distributed speeds and nonlocal feedback.

For a constant input E(x, t) ≡ E∗, a spatially uniform equilibrium solution V (x, t) ≡ V ∗

of (2.6) satisfies V ∗ = κS(V ∗) + E∗, where

κ = ᾱ

∫ ∞

−∞
K(z) dz + β̄

∫ ∞

−∞
F (z) dz.
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It is easy to see that if S is a continuous and increasing function (such as a sigmoid) and κ ≤ 0,
then V ∗ is unique for any E∗ ∈ R, whereas if κ > 0, then there may be multiple equilibria
V ∗ [2]. The stability of the equilibrium solution V ∗ is determined by the linear variational
equation

L

(
∂

∂t

)
u(x, t) = α

∫ ∞

0
g(v)

∫ ∞

−∞
K(z)u(x + z, t− |z|/v) dz dv

+ β

∫ ∞

0
f(τ)

∫ ∞

−∞
F (z)u(x + z, t− τ) dz dτ ,(3.1)

where u(x, t) = V (x, t) − V ∗ and

α = ᾱS′(V ∗) ≥ 0, β = β̄S′(V ∗) ≥ 0.(3.2)

Note that the values of α and β depend implicitly on the external input E∗ through the value
of V ∗. Using the ansatz u(x, t) = eλteikx in (3.1), where λ ∈ C and k ∈ R, we obtain the
dispersion relation between the temporal and spatial modes as

L(λ) = α

∫ ∞

0
g(v)

∫ ∞

−∞
K(z) exp(−λ|z|/v) exp(−ikz) dz dv

+ β

∫ ∞

0
f(τ)e−λτdτ

∫ ∞

−∞
F (z) exp(−ikz) dz.(3.3)

Notice that the last term in (3.3) factors as the product of the Laplace transform of f
and the Fourier transform of F . By contrast, such a factorization does not arise for the
term multiplying α. This difference accounts for the different character of the two delay
sources, whose effects are further studied in section 4.2. For now we make some elementary
observations regarding the stability of the equilibrium solution. When the characteristic values
of the operator L have negative real parts, the zero solution of (3.1) is stable for α = β = 0.
It follows that V ∗ is stable for small α, β, as quantified by the next theorem.

Theorem 3.1. Suppose that L is a stable polynomial. If

α + β < min
ω∈R

|L(iω)|,(3.4)

then V ∗ is asymptotically stable. In particular, if L(λ) = λ + ρ, ρ > 0, then the condition

α + β < ρ(3.5)

is sufficient for the asymptotic stability of V ∗. If L(γ) = λ2 + γλ + ρ with γ, ρ > 0, then V ∗

is asymptotically stable, provided that the condition

γ2

2
> ρ−

√
ρ2 − (α + β)2(3.6)

holds in addition to (3.5).
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Proof. In the ansatz u(x, t) = eλteikx let λ = σ + iω, where σ and ω are real numbers.
We will prove that σ < 0 if (3.4) holds. Suppose by way of contradiction that (3.4) holds but
σ ≥ 0. From the dispersion relation (3.3),

|L(σ + iω)| =

∣∣∣∣α
∫

g(v)

∫ ∞

−∞
K(z) exp(−(σ + iω)|z|/v) exp(−ikz) dz dv

+ β

∫ ∞

0
f(τ) exp(−(σ + iω)τ) dτ

∫ ∞

−∞
F (z) exp(−ikz) dz

∣∣∣∣
≤ α

∫
g(v)

∫ ∞

−∞
|K(z)| |exp(−σ|z|/v)| dz dv + β

∫ ∞

0
f(τ)dτ

∫ ∞

−∞
|F (z)| dz

≤ α

∫ ∞

−∞
|K(z)|dz + β

∫
|F (z)| dz

= α + β,(3.7)

where we have used (2.3) and (2.5). On the other hand, by Lemma 2.2 in [2],

|L(iω)| ≤ |L(σ + iω)|

for all σ ≥ 0 and ω ∈ R, which together with (3.7) implies

|L(iω)| ≤ α + β.

This, however, contradicts (3.4). Thus σ > 0, and the first statement of the theorem is proved.
The remainder is similar to the proof of Theorem 2.1 in [2].

The change of stability as the parameters α, β are increased beyond the quantity given in
(3.4) is characterized by the existence of an eigenvalue λ = iω, ω ∈ R. The dispersion relation
(3.3) then implies that

L(iω) = α

∫ ∞

0
g(v)

∫ ∞

−∞
K(z) exp(−i(kz + ω|z|/v)) dz dv

+ β

∫ ∞

0
f(τ)e−iωτdτ

∫ ∞

−∞
F (z) exp(−ikz) dz.(3.8)

The bifurcating solutions near such critical cases can be qualitatively classified as stationary or
oscillatory, depending on whether ω = 0 or ω 	= 0, respectively, and as spatially homogeneous
or inhomogeneous, depending on whether k = 0 or k 	= 0, respectively, as summarized in
Table 1.

Table 1
Classification of possible local bifurcations of equilibria.

Stationary (ω = 0) Oscillatory (ω �= 0)

Homogeneous (k = 0) Spatially constant equilibrium Global oscillations

Inhomogeneous (k �= 0) Spatial patterns Traveling waves
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For stationary bifurcations which are spatially homogeneous (ω = k = 0), the bifurcating
solution is also an equilibrium. From (3.8), this case occurs when

L(0) = α

∫ ∞

−∞
K(z) dz + β

∫ ∞

−∞
F (z) dz.(3.9)

Suppose L(0) > 0. If β = 0, (3.9) can be satisfied only when
∫∞
−∞K(z) dz > 0, that is, when

the connectivity is dominantly excitatory. On the other hand, if β > 0, such a bifurcation
can occur even with inhibitory connectivity kernels, provided that

∫∞
−∞ F (z) dz > 0. Hence,

excitatory nonlocal feedback can induce this type of bifurcation even when inhibitory connec-
tions dominate the field. Conversely, inhibitory feedback can prevent this bifurcation from
occurring.

The stationary bifurcations which are spatially inhomogeneous (ω = 0 and k 	= 0) yield
spatial patterns, also called Turing modes. The condition for their appearance is given by
(3.8) as

L(0) = α

∫ ∞

−∞
K(z) exp(−ikz) dz + β

∫ ∞

−∞
F (z) exp(−ikz) dz

= αK̂(k) + βF̂ (k), k 	= 0,(3.10)

where K̂ and F̂ denote the Fourier transforms of K and F , respectively. Reasoning as in
the above paragraph, we conclude that excitatory nonlocal feedback can induce stationary
bifurcations and patterns, whereas inhibitory feedback can stabilize the equilibrium against
such bifurcations.

By (3.9) and (3.10), stationary bifurcations are independent of the propagation speeds
and the feedback delays, as well as the temporal differentiation operator L (except through
L(0)). The oscillatory bifurcations, however, are very much influenced by the delays and
may even be absent if delay effects are small. Indeed, in terms of the mean feedback delay
E[τ ] =

∫∞
0 τf(τ) dτ and the mean propagation delay τp, defined by

τp =

∫ ∞

0

g(v)

v
dv︸ ︷︷ ︸

1/v̄

∫ ∞

−∞
|zK(z)| dz︸ ︷︷ ︸

ξ

(3.11)

(where the first integral is the mean value of v−1 and ξ is a characteristic interaction distance
within the field), the following estimate can be derived.

Theorem 3.2. Suppose L(λ) = ηλ2 + γλ + ρ, where η ≥ 0 and γ, ρ ∈ R. If

ατp + βE[τ ] < |γ|,(3.12)

then (3.1) has no solutions of the form u(x, t) = exp i(ωt + kx) with ω real and nonzero.
Proof. From (3.8),

L(λ) = α

∫ ∞

0
g(v)

∫ ∞

−∞
K(z) exp(−λ|z|/v) cos kz dz dv

+ β

∫ ∞

0
f(τ)e−λτdτ

∫ ∞

−∞
F (z) cos(kz) dz
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since the functions F (z) and K(z) exp(−λ|z|/v) are even in z. The imaginary part of the
above expression at the value λ = iω is

ImL(iω) = −α

∫ ∞

0

∫ ∞

−∞
g(v)K(z) sin(ω|z|/v) cos(kz) dz

− β

∫ ∞

0
f(τ) sin(ωτ) dτ

∫ ∞

−∞
F (z) cos(kz) dz.(3.13)

If L(λ) = ηλ2 + γλ + ρ, then ImL(iω) = γω, and comparing the magnitudes in (3.13) gives

|γω| ≤ α

∫ ∞

0

∫ ∞

−∞
g(v)|K(z) sin(ωz/v)| dz dv + β

∫ ∞

0
f(τ)|sinωτ | dτ

∫ ∞

−∞
|F (z)| dz

≤ α

∫ ∞

0

∫ ∞

−∞
g(v)|K(z)ωz/v| dz dv + β|ω|

∫ ∞

0
τf(τ) dτ,

where we have used the normalization (2.5) and the estimate |sin(x)| ≤ |x|, x ∈ R. If ω 	= 0,
then ω may be canceled to yield

|γ| ≤ α

∫ ∞

0

g(v)

v
dv

∫ ∞

−∞
|zK(z)| dz + β

∫ ∞

0
τf(τ) dτ = ατp + βE[τ ].

This, however, contradicts the assumption (3.12). Hence ω = 0, which now proves the theo-
rem.

We note that the mean propagation delay τp can be estimated for cortico-cortical con-
nections in humans [35, 58], and we find v̄ ≈ 8 ms−1, ξ ≈ 0.10 m, leading to τp ≈ 12 ms.
Similarly, for the corticothalamic loop in humans E[τ ] ≈ 120 ms [14], while the feedback loop
between V1 and V2 exhibits E[τ ] ≈ 2 ms [24]. Such estimates together with Theorem 3.2
give a practical means of determining the possibility of oscillatory bifurcations of spatially
uniform equilibria. The importance of oscillatory bifurcations stems from the prevalence of
oscillatory activity in neural systems. For instance, a spatially homogeneous and oscillatory
bifurcation (ω 	= 0 and k = 0) corresponds to spatially uniform, or synchronous, oscillations,
whereas the spatially inhomogeneous case (ω 	= 0 and k 	= 0) corresponds to traveling waves,
with wave speed given by ω/k. The analysis of these bifurcations by solving (3.8), however,
is not straightforward. Obtaining general results without making specific assumptions about
the kernels is particularly difficult. In the next section we will use an approximation scheme
to draw qualitative conclusions for general classes of connectivity and feedback kernels and
delay distributions. Based on this analysis, we will show in section 4.2 that the stabilizing ef-
fect of inhibitory connectivity and feedback against stationary bifurcations is accompanied by
their tendency to induce oscillatory bifurcations when delays are present. Similarly, excitatory
feedback, which can induce stationary bifurcations, can also prevent oscillatory bifurcations.
We are thus able to connect the effects of field connectivity and nonlocal feedback with the
effects of delays.

4. Reduced models. We now investigate the bifurcations of equilibria in reference to the
two novel aspects of the neural field introduced in section 2—namely, distributed propagation
speeds and feedback delays. Our aim is to obtain an analytical understanding of the general
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dynamical features of the model, without recourse to specific forms for the connectivity and
feedback kernels as well as speed and delay distributions. To make the problem tractable
under such generalities, we study an approximate model for which stability and bifurcations
can be analytically calculated and the effects of delays can be determined. Based on this
analysis, we make qualitative predictions and obtain parameter values which serve as the
starting point for numerical investigation of the full model. We return to the original model
in section 5 to numerically verify the predictions for particular choices of kernels.

4.1. Series approximation. To investigate the stability and bifurcations of the equilibrium
solution, we introduce the power series expansions

u(x + z, t− |z|/v) =
∞∑

m=0

(−|z|/v)m
m!

∂m

∂tm
u(x + z, t),

u(x + z, t− τ) =

∞∑
m=0

(−τ)m

m!

∂m

∂tm
u(x + z, t)

into the linearized equation (3.1) and obtain

L

(
∂

∂t

)
u(x, t) = α

∫ ∞

−∞

∞∑
m=0

(−1)mE[v−m]

m!
|z|mK(z)

∂m

∂tm
u(x + z, t) dz

+ β

∫ ∞

−∞

∞∑
m=0

(−1)mE[τm]

m!
F (z)

∂m

∂tm
u(x + z, t) dz,(4.1)

where E[τm] =
∫∞
0 τmf(τ) dτ and E[v−m] =

∫∞
0 v−mg(v) dv are the expected values of τm and

v−m, respectively. Now consider the case when the above equation can be well approximated
by using the first N+1 terms of the infinite series. This assumption is justified when the delays
arising from signal propagation and nonlocal feedback are not too large and their distributions
are sufficiently concentrated near their mean values, and when the connection kernel K decays
sufficiently fast away from the origin [2]. For example, K is typically of exponential order;
that is, there exist positive constants κ1 and κ2 such that

|K(z)| ≤ κ1 exp(−κ2|z|), z ∈ R.

Then, using the fact that K is even,

1

m!

∫ ∞

−∞
|zmK(z)| dz ≤ 2κ1

m!

∫ ∞

0
zm exp(−κ2z) dz

= 2κ1κ
−(m+1)
2

Γ(m + 1)

m!
= 2κ1κ

−(m+1)
2 .

So if κ2 > 1, the contribution of the terms |z|mK(z)/m! to the integral in (4.1) becomes
negligible for large m.
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We thus have the reduced model for the neural field near the equilibrium solution

L

(
∂

∂t

)
u(x, t) = α

∫ ∞

−∞

N∑
m=0

(−1)mE[v−m]

m!
|z|mK(z)

∂m

∂tm
u(x + z, t) dz

+ β

∫ ∞

−∞

N∑
m=0

(−1)mE[τm]

m!
F (z)

∂m

∂tm
u(x + z, t) dz.(4.2)

The corresponding dispersion relation has the form

L(λ) =

N∑
m=0

(−1)mλm

m!

(
αE[v−m]K̂m(k) + βE[τm]F̂ (k)

)
,(4.3)

where

K̂m(k) =

∫ ∞

−∞
|z|mK(z)e−ikz dz

denotes the Fourier transforms of the moments of K. We also use the usual notation K̂ for
K̂0. All the transforms K̂m as well as F̂ are real-valued since the kernels K and F are even
functions. The next theorem gives conditions for the stability of the zero solution of (4.2).
Recall that the leading principal minors of a q×q real matrix A = [aij ] are the q real numbers

a11,det

(
a11 a12

a21 a22

)
,det

⎛
⎝ a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ , . . . ,det(A).

Theorem 4.1. Let L(λ) =
∑n

m=0 lmλm, and suppose that the pair (λ, k) satisfies (4.3). Let

cm(k) = lm − bm(k),

where

bm(k) =

{
(−1)m

m!

(
αE[v−m]K̂m(k) + βE[τm]F̂ (k)

)
, m = 0, 1, . . . , N,

0, m > N.

Let

q = max{m : cm(k) 	= 0},

and define the q × q real matrix

Q(k) = sign(cq) ·

⎛
⎜⎜⎜⎜⎜⎝

cq−1 cq 0 · · · 0
cq−3 cq−2 cq−1 · · · 0
cq−5 cq−4 cq−3 · · · 0

...
...

...
. . . 0

0 0 · · · c1 c0

⎞
⎟⎟⎟⎟⎟⎠ .
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Then Reλ ≥ 0 if and only if some leading principal minor of Q(k) is nonpositive. Conse-
quently, the zero solution of (4.2) is asymptotically stable if and only if all leading principal
minors of Q(k) are positive for all k.

Proof. The relation (4.3) can be viewed as a qth order polynomial equation in λ, where
the coefficients depend on k. We thus write (4.3) as

pk(λ) =

q∑
m=0

cm(k)λm = 0,

where cm(k) are as in the statement of the theorem. The stability of pk(λ) is given by the
Routh–Hurwitz criteria, which can be expressed as the leading principal minors of Q(k) being
positive; see, e.g., [3].

Theorem 4.1 allows us to determine the temporal stability of the spatial mode correspond-
ing to a particular wave number k. In this way, it is possible to systematically investigate
the bifurcation structure and its dependence on the parameters. As an application, we next
analyze a special case where the stability and bifurcations can be completely characterized
and a detailed description of the effects of delays can be given.

4.2. Effects of delays in a second order model. The reduced model (4.2) with N = 0
is equivalent to neglecting all delays in the original field model. Taking N = 1, on the other
hand, gives an equation that depends only on the mean values of the delays and not on their
distributions. Hence, the lowest order model which exhibits the effects of distributed speeds
and feedback delays is obtained with N = 2. We now consider the case N = 2 in some detail
to gain insight into the effects of speed and delay distributions. For definiteness, we focus on
the second order temporal differential operator

L

(
∂

∂t

)
=

∂2

∂t2
+ γ

∂

∂t
+ ρ, γ, ρ > 0,(4.4)

which has been considered by several authors in models of neural field dynamics, e.g., [6, 28,
30, 50, 60]. As we will make use of the approximation scheme introduced above, the results
here hold for sufficiently large transmission speeds. The analysis is based on the following
result, which essentially follows from Theorem 4.1.

Theorem 4.2. Consider (4.2) with N = 2 and L given by (4.4). Then the following hold:
1. (stability) Let (λ, k) be a solution of the dispersion relation (4.3) such that

αE[v−2]K̂2(k) + βE[τ2]F̂ (k) < 2.(4.5)

Then Re(λ) < 0 if and only if the conditions

ρ− αK̂(k) − βF̂ (k) > 0(4.6)

and

γ + αE[v−1]K̂1(k) + βE[τ ]F̂ (k) > 0(4.7)

are satisfied. The conclusion remains valid if all inequalities in (4.5)–(4.7) are simul-
taneously reversed. When αE[v−2]K̂2(k) + βE[τ2]F̂ (k) = 2, Re(λ) < 0 if and only if
the left-hand sides of (4.6) and (4.7) have the same (nonzero) sign.
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2. (stationary bifurcations) The pair (λ, k) with λ = 0 satisfies (4.3) if and only if

ρ− αK̂(k) − βF̂ (k) = 0.(4.8)

3. (oscillatory bifurcations) The pair (λ, k) with λ = iω, ω ∈ R\{0}, satisfies (4.3) if and
only if

γ + αE[v−1]K̂1(k) + βE[τ ]F̂ (k) = 0(4.9)

and

ω2 =
ρ− αK̂(k) + βF̂ (k)

2 − αE[v−2]K̂2(k) − βE[τ2]F̂ (k)
> 0.(4.10)

Proof. With N = 2 and L as given in the statement of the theorem, (4.3) is a quadratic
equation in λ:

pk(λ) = c2(k)λ2 + c1(k)λ + c0(k) = 0,(4.11)

where

c0(k) = ρ− αK̂(k) − βF̂ (k),

c1(k) = γ + αE[v−1]K̂1(k) + βE[τ ]F̂ (k),

c2(k) = 1 − 1

2
αE[v−2]K̂2(k) − 1

2
βE[τ2]F̂ (k).

It is easy to see that, in case c2(k) 	= 0, the roots of pk have negative real parts if and only if
all the coefficients cm(k) are nonzero and have the same sign. Furthermore, p(0) = 0 if and
only if c0(k) = 0, and p(iω) = 0 if and only if c1(k) = 0 and ω2 = c0(k)/c2(k) > 0. In case
c2(k) = 0, pk has the unique root λ = −c0(k)/c1(k).

We note that Theorem 4.2 actually holds without the assumption that γ and ρ are positive.
When α = β = 0 (corresponding to the “uncoupled” dynamics), the equilibrium solution

is asymptotically stable since γ and ρ are positive in (4.4). By (4.6) and (4.7), stability persists
for sufficiently small α, β, in agreement with Theorem 3.1. As α or β is further increased,
stability can be lost through a stationary or oscillatory bifurcation, characterized by the
conditions (4.8) and (4.9)–(4.10), respectively. Note that the stationary bifurcation condition
(4.8) depends only on the connectivity kernels and not on the delays. Furthermore, in case
of instantaneous signal transmission, E[τ ] = E[v−1] = 0, and by (4.9) oscillatory bifurcations
cannot occur, which agrees with Theorem 3.2. For nonzero delays both types of bifurcations
become possible. In case of small delays, one can assume that (4.5) holds throughout some
parameter range. Then studying the validity of conditions (4.6) and (4.7) while increasing α
or β from zero yields an important result: the condition that is first violated determines the
type of bifurcation that actually occurs, i.e., whether a stationary or oscillatory bifurcation
takes place, as either (4.8) or (4.9) is satisfied. We now give a qualitative account of the
effects of delays on these bifurcations. Under the assumption of small delays as stated in
section 4, the conclusions drawn will also hold for the full model (2.6) at nearby parameter
values. Numerical solution of (2.6) will be used in section 5 to confirm the results for specific
choices of kernels.
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1/α

k2k1

k

φ1(k)
φ2(k)

Figure 2. Schematic diagram of the competition between stationary and oscillatory bifurcations. The curves
φ1 and φ2 denote the first and the second terms inside the braces in (4.12). As the bifurcation parameter α
is increased from zero, the horizontal line 1/α becomes tangent to one of the curves. The tangency with φ1

is equivalent to a stationary bifurcation, while the tangency with φ2 is equivalent to an oscillatory bifurcation.
Since these tangencies depend only on the maxima of the curves, located at k1 and k2, respectively, the type of
bifurcation can be determined by comparing φ1(k1) and φ2(k2).

Propagation delays. We first focus on the effect of propagation delays by setting β = 0,
i.e., by ignoring the contribution of feedback. From (4.8) and (4.9) we have the conditions

1

α
=

K̂(k)

ρ

and

1

α
= −E[v−1]K̂1(k)

γ

for stationary and oscillatory bifurcations, respectively. As α is increased from zero, the
horizontal line 1/α can become tangent to the graph of K̂(k)/ρ or −K̂1(k)E[v−1]/γ, at some
value k = k∗. Whichever tangency occurs first (i.e., for the smaller value of α) determines the
type of bifurcation as the equilibrium solution loses its stability. In other words, k∗ denotes
the point where the function

φ(k) := max

{
K̂(k)

ρ
,
−E[v−1]K̂1(k)

γ

}
(4.12)

assumes its maximum, which exists if φ is not strictly negative, and is generically unique. If
φ(k∗) = K̂(k∗)/ρ, then the bifurcation is stationary; otherwise it is oscillatory (see Figure 2 for
a schematic picture). Hence, higher values of E[v−1] (slower signal propagation) will facilitate
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oscillatory bifurcations by increasing the magnitude of the second term inside the braces in
(4.12), provided that K̂1 is not a nonnegative function. The oscillation frequency of such
bifurcations is given by (4.10) as

(ω∗)2 =
ρ− αK̂(k∗)

2 − αE[v−2]K̂2(k∗)
.

Furthermore, the bifurcating solution is spatially homogeneous if and only if k∗ = 0. If k∗ 	= 0,
then ω∗/k∗ is the phase speed of the traveling waves that bifurcate. Thus, the main effect
of propagation delays is on oscillatory bifurcations. However, this effect is intimately related
to the connectivity kernel through K̂1. Note that even if K is sign definite, such as a purely
excitatory or purely inhibitory connection, K̂1 can in general take both positive and negative
values.

As noted in [2], if a sufficiently general class of kernels is considered, the maximum of
φ in (4.12) is likely to occur at some nonzero k rather than at the precise value k = 0.
Consequently, one expects to see traveling waves (respectively, Turing patterns) when signal
propagation is slow (respectively, fast), as the dominant mode of bifurcation in the absence
of the feedback term.1

Feedback delays. We now include the effect of feedback delays by allowing β to be
nonzero. Similar to above, the wave number k∗ of the bifurcating solution is the point where
the function

Φ(k) = max

{
αK̂(k) + βF̂ (k)

ρ
,
−αE[v−1]K̂1(k) − βE[τ ]F̂ (k)

γ

}
(4.13)

assumes its maximum value. The type of bifurcation is again determined by the relative
magnitudes of the two terms inside the braces, which can be studied by plotting them on
the same graph. Thus, when F̂ is a positive function (which is typical for most common
forms of excitatory feedback), the first term increases while the second one decreases for
increasing β. We conclude that the presence of excitatory feedback connections generally
facilitates stationary bifurcations and suppresses oscillatory ones if E[τ ] is nonzero. The
reverse conclusion holds for inhibitory feedback connections. The feedback connections thus
show a definite preference on the type of bifurcations, given by the sign of F̂ . Furthermore,
their effect on oscillatory bifurcations increases with the mean feedback delay E[τ ].

A particular observation which may have significance in applications concerns the case
when the feedback connections are highly nonlocal, that is, the kernel F has a large variance.
It is a well-known fact from Fourier theory that the corresponding transform F̂ then has a
small variance and thus is highly concentrated near the origin. It follows that increasing
β from zero will cause Φ to have its maximum near k∗ = 0; in fact, if k is restricted to
discrete values (e.g., when the spatial domain is a circle), then the maximum will occur at
k∗ = 0. Consequently, nonlocal feedback which has a sufficiently large spatial range tends to
enhance spatially homogeneous bifurcations, which are stationary if F̂ is a positive function or

1Of course, in applications which dictate a specific form for the connectivities, this expectation may not
always be realized.
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oscillatory if F̂ is negative and E[τ ] is sufficiently large. This is in contrast with the case β = 0
noted above, where spatially inhomogeneous bifurcations might be the more likely scenario.

Distributed delays and speeds. Finally, we consider the effects of distributed transmission
speeds and feedback delays on the bifurcations. To this end, we keep the mean values E[τ ]
and E[v−1] fixed and increase the variances Var[τ ] and Var[v−1], assuming (4.5) throughout as
before. It then follows from the conditions (4.6) and (4.7) that the stability of the equilibrium
solution is unaffected by the variances, and the bifurcations occur at the same parameter
values. This is also apparent from the above analysis, which shows that the wave number k∗,
in particular, does not depend on Var[τ ] or Var[v−1]. The main effect of the variances is on
the frequency ω∗ of oscillatory bifurcations. By (4.10),

(ω∗)2 =
ρ− αK̂(k∗) + βF̂ (k∗)

2 − αK̂2(k∗)(Var[v−1] + E2[v−1]) − βF̂ (k∗)(Var[τ ] + E2[τ ])
.(4.14)

Suppose that the variance Var[τ ] is changed while the mean value E[τ ] is kept fixed. If
F̂ (k∗) is positive (resp., negative), then ω∗ will increase (resp., decrease) with increasing
variance of the feedback delays τ . In case of bifurcating traveling waves, an increase in ω∗

corresponds to an increase in the speed ω∗/k∗ of the waves, since k∗ is unaffected by the
variance of delays and speeds. Thus, increasing the variance of delays will typically increase
the frequency of bifurcating oscillatory solutions or the speed of traveling waves for excitatory
feedback connections and decrease it for inhibitory feedback connections. Similarly, if K̂2(k

∗)
is positive (resp., negative), then ω∗ will increase (resp., decrease) with increasing variance
Var[v−1] of propagation speeds. Figure 7 in section 5 illustrates the dependence of the wave
speed on the variance of the propagation speed for a particular choice of connectivity and
transmission speed distribution.

5. Numerical results. In this section we present simulation results confirming the anal-
ysis of previous sections with specific choices for the connectivities and transmission speed
distributions. For numerical calculations we take the spatial domain Ω to be the circle with
circumference C (or equivalently the interval [0, C] with periodic boundary conditions) and
assume that the feedback connections are uniformly distributed over this domain (global feed-
back). Thus,

F (z) ≡ 1

C
,

∫ C

0
F (z) dz = 1,

with the Fourier transform

F̂ (k) =

{
1 if k = 0,
0 if k = 2πn

C , n ∈ Z;

thus, we denote F̂ (k) = δ(k). We further assume that L is the second order operator (4.4)
and take ρ = L(0) = 1.

In this setting, the condition (3.9) for temporally stationary and spatially homogeneous
bifurcation takes the form

1 − β = α

∫ ∞

−∞
K(z) dz.
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The condition (3.10) for Turing patterns also simplifies to

1 = αK̂(k), k 	= 0,

which depends only on the distribution K of intra-areal connections. We choose K to be

K(z) =
ae
2
e−|z| − ai

2
re−r|z|,(5.1)

where r denotes the relation of excitatory and inhibitory spatial ranges and ae and ai represent
excitatory and inhibitory synaptic weights [30]. For instance, in case of a single propagation
speed and r > ae/ai, the neural field exhibits local inhibition and lateral excitation and thus
facilitates traveling waves [30].

5.1. Feedback delays. We now present simulation results displaying the role of global
feedback delay. We apply an explicit Euler-forward algorithm for the time integration, which
stores past activity according to the distance-dependent propagation delays and the feedback
delays. The initial conditions are chosen randomly from a uniform distribution; however, see
figure captions for more details. At each temporal iteration step, both spatial integrals in (2.6)
have to be computed. In previous studies, we applied modified Riemannian sums [2, 30], which
need a large number of spatial grid points to obtain small numerical errors. More advanced
integration rules take into account the kernel properties. Here we use the VEGAS algo-
rithm [22, 39], which is a Monte-Carlo integration algorithm in combination with importance
sampling. In principle, the algorithm samples points from the probability function to be inte-
grated, so that the points are concentrated in the regions that make the largest contribution
to the integral. This approach can be applied to (2.6), as the function S is bounded and the
kernels define the contribution to the integral. In the simulations, 2000 calls are applied for a
single Monte-Carlo integration. The integration is repeated five times, and the average result
is considered. Other variants of Monte-Carlo integration algorithms, such as plain Monte-
Carlo or the MISER algorithm [22], showed worse performance. We remark that our criteria
for the best algorithm have been the speed and the error at computing the norm of both con-
nectivity kernels. The final parameters allow the computation of the kernel norms to an error
of 10−5. Since (2.6) necessitates integral computations for each value of x, we discretize the
spatial domain into N intervals, i.e., xn = Cn/N with n = 0, . . . , N . The sigmoidal transfer
function has been chosen to be the logistic function S(V ) = 10/(1 + exp(−1.8(V − 3.0))).

According to section 4.2, global inhibitory feedback with delays can destabilize the equilib-
rium solution and induce periodic oscillations. In the simulation, we applied a single feedback
delay with f(τ) = δ(τ − τ0), i.e., E[τ ] = τ0 and Var[τ ] = 0, and chose a single transmission
speed, i.e., g(v) = δ(v − v0). The function Φ given in (4.12) now has the form

Φ(k) = max

{
αK̂(k) + βδ(k)

ρ
,
−αK̂1(k)/v0 − βτ0δ(k)

γ

}
,

and will have a maximum at k∗ = 0 if β and τ0 are sufficiently large. Therefore, as the
equilibrium loses its stability, spatially constant oscillations emerge. Decreasing either β or τ0
will decrease the effect of global feedback, and the maximum of Φ might jump to some k∗ 	= 0,
yielding a spatially nonhomogeneous bifurcation. Figure 3 illustrates a jump from constant
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Figure 3. Two space-time plots of the field activity with inhibitory feedback near a Hopf bifurcation. Left
panel: constant oscillations with strong nonlocal inhibition μ̄i = 3.5 (β = −4.93) (E∗ = 4.6, α = 8.1). Right
panel: traveling waves with k∗ = 3.4 and weaker nonlocal inhibition μ̄i = 1.0 (β = −3.82) (E∗ = 5.4, α = 22.31).
In both cases the other parameters are C = 30, N = 100, v0 = 2.5, τ0 = 2.5, r = 6.0, ae = 5.0, ai = 4.9,
μ̄e = 0, dt = 0.08, and the numerical wave number shows good agreement with the analytical critical wave
number k∗. The greyscale encodes the activity deviation from the stationary state and is fixed if the activity
magnitude exceeds a fixed threshold. This clipping procedure has been introduced for illustration reasons and
results in artificial sharp edges in the plots.
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Figure 4. Space-time plots of the field activity with inhibitory feedback at bifurcation thresholds. Left panel:
Turing instability with wave number k∗ = 0.73 and vanishing delay time τ0 = 0 (parameters are E∗ = 1.93,
α = 1.77, β = −1.16, dt = 0.06). Right panel: oscillatory global instability with k∗ = 0 and delay time τ0 = 2.5
(E∗ = 1.6, α = 1.335, β = −0.873, dt = 0.02). In both cases the other parameters are C = 60, N = 200,
v = 2.0, μ̄i = 1.5, μ̄e = 0, r = 0.5, ae = 5.0, ai = 4.9, and the numerical wave number shows good agreement
with the analytical critical wave number k∗. The greyscale encoding follows the same rules as in Figure 3.

oscillations to traveling waves induced by changing the inhibitory feedback.
Figure 4 reveals further feedback effects on the stability of neural fields. For inhibitory

feedback and vanishing feedback delay time τ0, there is a stationary Turing bifurcation for
certain parameters (Figure 4, left panel). That is, the first term in (4.13) is larger than the
second one. Now increasing the delay time τ0 makes the second term exceed the first term
(since β < 0), which destabilizes the field towards an oscillatory bifurcation. Hence, by the
special choice of the feedback kernel, global oscillations occur (Figure 4, right panel).

5.2. Distributed propagation speeds. Motivated by experimental findings [7, 16, 44] (see
Figure 1), we model the distribution of propagation speeds by the (truncated) gamma family
of densities

g(v) =

{
Np,q

qpΓ(p)v
p−1 exp(−v/q) if v ∈ (vl, vh),

0 otherwise,
(5.2)
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Figure 5. Gamma-distributed transmission speeds.

with parameters p > 2 and q > 0. The constant Np,q arises from the normalization condition
(2.3) if one stipulates that g should be zero outside some interval v ∈ (vl, vh), where vl and
vh are physiologically dictated lower and upper bounds for the possible propagation speeds.
In the limit as vl → 0 and vh → ∞ one obtains the usual gamma density with Np,q = 1.
The maximum of g(v) (i.e., the mode of the distribution) occurs at vm = q(p − 1). Figure 5
shows the shape of the (untruncated) distribution for various p and some fixed value of vm.
Furthermore,

E[v−1] =
Np,q

Np−1,q

1

q(p− 1)
=

Np,q

Np−1,q

1

vm
, E[v−2] =

Np,q

Np−2,q

p− 1

p− 2

1

v2
m

,

Var[v−1] =
Np,q

v2
mNp−2,qN2

p−1,q(p− 2)

(
N2

p−1,q(p− 1) −Np,qNp−2,q(p− 2)
)
.

Figure 6 shows the dependence of E[1/v2] and Var[v−1] on vm and p. For a fixed value of vm,
a fast decay to a constant value is observed by increasing p.

With this choice of g, we determine the phase speed ω/k of bifurcating waves from (4.14),
where for simplicity we neglect feedback effects by setting β = 0. In Figure 7 the resulting
phase speed is plotted with respect to the parameters vm and p of the gamma-distribution. The
phase speed is seen to be lower than vm for all p, which affirms causality, and shows accordance
to previous results obtained for single transmission speeds [2, 10, 30]. Furthermore, for lower
values of p (broader speed distribution) the phase speed is smaller, an effect which is more
significant at lower values of p. For the chosen parameter set, we calculate K̂2(k

∗) < 0; so,
as mentioned in section 4.2, a broader transmission speed distribution yields a lower phase
speed for traveling waves.
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Figure 6. The dependence of E[1/v2] and Var[1/v] on vm and p for (A) untruncated gamma-distribution
and (B) truncated gamma-distribution with vl = 5, vh = 50. The value of q is given by q = vm/(p− 1).
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Figure 7. Propagation speed of bifurcating traveling waves with respect to the parameters of the speed
distribution for (A) the untruncated gamma-distribution and (B) the truncated gamma-distribution with vl = 4,
vh = 100. Other parameters are ae = 100, ai = 99, r = 3, μ = 0.

6. Traveling fronts. We now give an analysis of the effects of distributed propagation
speeds and feedback delays on traveling fronts. Here, we take the function S in (2.6) to be the
Heaviside function Θ with a fixed firing threshold u0. In addition, we take the external input
E to be zero, which introduces no loss of generality since a constant external input amounts to
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shifting the firing threshold.2 For definiteness, we consider a first order temporal differential
operator

L

(
∂

∂t

)
=

∂

∂t
+ 1.(6.1)

Then the evolution equation (2.6) reads

∂V (x, t)

∂t
= −V (x, t) +

∫ ∞

0
g(v)

∫ ∞

−∞
K(x− y)Θ(V (y, t− |x− y|/v) − u0)dy dv

+

∫ ∞

0
f(τ)

∫ ∞

−∞
F (x− y)Θ(V (y, t− τ) − u0)dy dτ,(6.2)

where for simplicity of notation we have subsumed the scaling factors ᾱ and β̄ into the defi-
nitions of K and F , respectively.

6.1. The stationary front solution. We switch to a frame moving with speed c by the
change of variables V (x, t) = ū(x− ct) = ū(z), which transforms (6.2) into

dū(z)

dz
=

1

c
ū(x, t) − 1

c

∫ ∞

0
g(v)

∫ ∞

−∞
K(y)Θ

(
u

(
z − y +

c|y|
v

)
− u0

)
dy dv

− 1

c

∫ ∞

0
f(τ)

∫ ∞

−∞
F (y)Θ(u(z − y + cτ) − u0)dy dτ.(6.3)

The boundary conditions are set to limz→−∞ ū(z) = u∞ > 0, limz→∞ ū(z) = 0, and ū(0) = u0,
with 0 < u0 < u∞. A simple calculation yields u∞ = η1 + η2, where η1 =

∫∞
−∞K(x) dx and

η2 =
∫∞
−∞ F (x) dx. Then we obtain

z ≥ 0 :
dū(z)

dz
=

1

c
ū(z)

− 1

c

∫ vh

vl

g(v)

∫ ∞

γ−z
K(y) dy dv − 1

c

∫ ∞

0
f(τ)

∫ ∞

z+cτ
F (y) dy dτ ,(6.4)

z < 0 :
dū(z)

dz
=

1

c
ū(z) − 1

c

∫ vh

vl

g(v)

∫ ∞

γ+z
K(y) dy dv − 1

c

∫ ∞

0
f(τ)

∫ ∞

z+cτ
F (y) dy dτ ,

with γ± = v/(v±c). It is not hard to check that (6.4) has finite solutions for z → ∞, provided
that

u0 =
η1

2
+ η2 −R(cτ)

−
∫ ∞

0
e−z′/cEg

[
γ−K(γ−z

′)
]
dz′ −

∫ ∞

0
e−z′/cEf

[
F (z′ + cτ)

]
dz′(6.5)

holds with the antiderivative R(x) of F (x), i.e., dR(x)/dx = F (x). Here we have used the
expectation operators Eg and Ef with respect to the densities g and f , namely,

Eg[r] =

∫ ∞

0
g(v)r(v) dv, Ef [r] =

∫ ∞

0
f(τ)r(τ) dτ.

2A nonconstant input may yield additional effects, whose study would exceed the aim of the present work.
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Figure 8. The traveling front speed c for excitatory fields and vanishing feedback, plotted with respect to the
parameters vm and p of the transmission speed distribution. Further parameters are ae = 4, ai = 0, u0 = 0.01,
vl = 2, vh = 50, and q = vm/(p− 1).

The traveling front solution can now be explicitly calculated as

z ≥ 0 : ū(z) = η1 + η2 − Eg[W (γ−z)] − Ef [R(z + cτ)]

−
∫ ∞

z
e(z−z′)/cEg[γ−K(γ−z

′)] dz′ −
∫ ∞

z
e(z−z′)/cEf [F (z′ + cτ)] dz′,(6.6)

z < 0 : ū(z) = η1 + η2 − Eg[W (γ+z)] − Ef [R(z + cτ)]

−
∫ 0

z
e(z−z′)/cEg[γ+K(γ+z

′)] dz′ −
∫ ∞

0
e(z−z′)/cEg[γ−K(γ−z

′)] dz′

−
∫ ∞

z
e(z−z′)/cEf [F (z′ + cτ)] dz′,(6.7)

where W (x) is the antiderivative of K(x), i.e., dW (x)/dx = K(x).
Equation (6.5) implicitly defines the front speed c in terms of the kernels K and F , the

threshold u0, the transmission speed distribution g(v), and the feedback delay distribution
f(τ). To illustrate the dependence of the front speed on distributed delays, Figure 8 presents
the solutions of (6.5) for the synaptic excitatory kernel taken from (5.1) and various speed
distributions (5.2) for vanishing feedback delay. The relation of c and vm shows accordance
to previous results for single propagation speeds [27, 46]. In addition, for low values of vm an
increase in the speed distribution width, i.e., a decrease of p, yields an increase in the front
speed. In contrast, large values of vm yield a decreasing front speed for an increase of the
speed distribution width, similar to the observations of sections 4.2 and 5 obtained under the
assumption of large propagation speeds. Hence, the shape of the transmission speed distri-
butions affects the front speed. A subtler effect is discovered when the front speed is plotted
against the variance instead of the parameter p (Figure 9). It is seen that the front speed can
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Figure 9. The traveling front speed c plotted against the mode vm and the variance Var[1/v] of the speed
distribution for excitatory fields and vanishing feedback. Parameter values are ae = 4, ai = 0, u0 = 0.01,
vl = 2, vh = 50, and q = vm/(p− 1).

be maximized by a positive variance of speed distributions. This might indicate an interesting
biological principle for maximizing signal propagation in fields of nonlocal interaction.

6.2. Stability of fronts. Considering small deviations s(x − ct, t) = u(x, t) − ū(x − ct)
from the stationary solution, (6.2) yields, in linear order in s,

−c
∂s(z, t)

∂z
+

∂s(z, t)

∂t
= −s(z, t)

+

∫ ∞

−∞
K(y)Eg

[
δ

(
ū

(
z − y +

c|y|
v

)
− u0

)
s

(
z − y +

c|y|
v

, t− |y|
v

)]
dy

+

∫ ∞

−∞
F (y)Ef [δ(ū (z − y + cτ) − u0) s(z − y + cτ, t− τ)] dy,(6.8)

where δ(x) denotes the Dirac delta distribution. Subsequently, we obtain

z > 0 : −c
∂s(z, t)

∂z
+

∂s(z, t)

∂t
= −s(z, t)

+ Eg

[
γ−K(γ−z)

|ū′(0)| s

(
0, t− z

v − c

)]
+ Ef

[
F (z + cτ)

|ū′(0)| s(0, t− τ)

]
,(6.9)

z < 0 : −c
∂s(z, t)

∂z
+

∂s(z, t)

∂t
= −s(z, t)

+ Eg

[
γ+K(γ+z)

|ū′(0)| s

(
0, t +

z

v + c

)]
+ Ef

[
F (z + cτ)

|ū′(0)| s(0, t− τ)

]
,(6.10)

with ū′(0) = ∂ū/∂z computed at z = 0. We observe that s(z, t) is continuous but not
continuously differentiable at z = 0, which results from the applied Heaviside function Θ.
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Now inserting the ansatz s(z, t) = φ(z)eλt, we find

z > 0 :
∂φ(z)

∂z
=

1 + λ

c
φ(z)

− Eg

[
γ−K(γ−z)

|ū′(0)|c e−zλ/(v−c)

]
φ(0) − Ef

[
F (z + cτ)

|ū′(0)|c e−λτ

]
φ(0),

z < 0 :
∂φ(z)

∂z
=

1 + λ

c
φ(z)

− Eg

[
γ+K(γ+z)

|ū′(0)|c ezλ/(v+c)

]
φ(0) − Ef

[
F (z + cτ)

|ū′(0)|c e−λτ

]
φ(0),

whose solutions are

z > 0 : φ(z) = φ(0)e(1+λ)z/c

(
1 − 1

|ū′(0)|c

∫ z

0
Eg

[
γ−e

−z′(γ−λ/v+(1+λ)/c)K(γ−z
′)
]
dz′

− 1

|ū′(0)|c

∫ z

0
Ef

[
e−λτe−z′(1+λ)/cF (z′ + cτ)

]
dz′

)
,(6.11)

z < 0 : φ(z) = φ(0)e(1+λ)z/c

(
1 +

1

|ū′(0)|c

∫ 0

z
Eg

[
γ+e

−z′(−γ+λ/v+(1+λ)/c)K(γ+z
′)
]
dz′

+
1

|ū′(0)|c

∫ 0

z
Ef

[
e−λτe−z′(1+λ)/cF (z′ + cτ)

]
dz′

)
.(6.12)

Here, we used the continuity of φ(z) at z = 0, i.e., limz→+0 φ(z) = limz→−0 φ(z) = φ(0).
Equations (6.11) and (6.12) are equivalent to the solutions found in [12] for traveling fronts
involving a single transmission speed and without the constant feedback delay.

It can be seen that finite solutions φ(z) exist for z → ∞, provided that the equation

0 = 1 − 1

|ū′(0)|cEg

[
L0

(
1 + λ

c
− 1

v

)]

− 1

|ū′(0)|cEf

[
e−λτ

∫ ∞

0
e−z′(1+λ)/cF (z′ + cτ)dz′

]
(6.13)

holds for Re(λ) > −1, while the solutions φ(z) are finite for z → −∞ if

|ū′(0)|c = −Eg

[
L0

(
−1 + λ

c
− 1

v

)]
− Ef

[
e−λτ

∫ ∞

0
e−z′|1+λ|/cF (z′ − cτ)dz′

]
(6.14)

holds for Re(λ) ≤ −1. Here, the symmetry of both kernels has been used implicitly. The
equations (6.13) and (6.14) determine λ implicitly. We observe that λ = 0 represents a solution
of (6.13), which reflects the translation symmetry of the moving fronts. Since (6.13) may yield
Re(λ) > 0, it represents a stability condition of the stationary front. The foregoing analysis is
equivalent to the method of Evans functions for nonlocal interactions [12, 33, 62], which has
been used to obtain a single implicit condition, namely the Evans function, for determining
the stability of the field in the absence of speed distributions and feedback delays.

A numerical simulation of the evolution equation (6.2) is presented in Figure 10. The
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Figure 10. The simulated traveling front for excitatory fields, distributed transmission speeds, and vanishing
feedback delay. Parameter values are ae = 1, ai = 0, r = 0.5, u0 = 0.1, vm = 4, vl = 2.5, vh = 6, p = 3.15,
and c = 1.97.

initial conditions are chosen as V (x) = ū(x) + Γ(x), where Γ(x) ∈ [−0.05, 0.05] is a uniformly
distributed random variable and ū(x) is given by (6.6)–(6.7). It turns out that the random
activity is damped out, and the solution converges to the stationary front. In other words,
the stationary front ū(x) is stable for the chosen parameter values.

7. Conclusion. We have introduced transmission speed distributions and a nonlocal feed-
back loop with distributed delays into the standard neural field model, and studied the stability
and bifurcations of spatially homogeneous equilibrium solutions, as well as traveling fronts.
As expected, the relation between the connectivities and delays plays an important role in
the analysis of bifurcations. We have investigated this relation for general field connectivi-
ties and feedback kernels as well as speed and feedback delay distributions. The results have
significance in the context of understanding the basic mechanisms of neural activity, since dis-
tributed delays and speeds arise naturally in real neural systems. To the best of our knowledge,
these effects have been neglected in the literature until now. For the numerical solution of the
field equation, we have introduced a Monte-Carlo approach. In contrast to conventional inte-
gration procedures such as the trapezoidal rule [46], this approach allows the computation of
the interaction integral with a divergent kernel. The numerical results illustrate the effects of
nonlocal feedback and the corresponding delays, and confirm the analytical findings. Finally,
we have examined stationary traveling fronts involving distributed speeds and feedback delays.

One of the highlights of the presented analysis is the different nature of the two delay
sources, namely, the delays caused by the finite speed of signal transmission in the field, and the
delays in the long-range feedback loop. The former delays vary continuously, depending on the
distance between locations, and so are always distributed, even for a single transmission speed.
This continuous dependence on distance interacts in a nontrivial way with the connectivity
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kernel. On the other hand, the delays in the feedback loop have a simpler dependence on
the feedback connectivity. The difference is made clear by the particular way the terms
enter the dispersion relation (3.3). To overcome the analytical difficulties, we have considered
in section 4 the case when the delays are not too large, and studied approximate models
based on series expansion. The difference of the two delay types is still apparent in reduced
models at all orders. For instance, the statement of Theorem 4.1 involves higher moments K̂m

of the field connectivity kernel, showing their intimate relation with the speed distribution,
whereas the feedback terms contribute only by a simple Fourier transform F̂ . One can see
the physical effects in a second-order approximate model studied in section 4.2. Because the
feedback connectivity enters (4.13) only through F̂ in both terms, its role essentially depends
simply on the relative magnitudes of α and β, i.e., the relative strengths of field and feedback
connectivities. In contrast, the field connectivity K appears through K̂ in the first term
and K̂1 in the second. Since K̂1 emphasizes the role of distant interaction more, the role of
the involved propagation delays is accentuated, which can facilitate oscillatory bifurcations.
Based on similar arguments involving Fourier transforms, we have concluded that feedback
connections with large variance tend to induce spatially homogeneous bifurcations, whereas
general field connectivity kernels might favor spatially inhomogeneous bifurcations.

The presented study shows that distributed propagation speeds and feedback delays af-
fect the speed of bifurcating waves and traveling fronts. The quantitative changes can be
significant for sufficiently broad distributions; otherwise, they may be relatively small. The
precise effects depend on the parameters of a particular biological application, which we do
not further pursue here. More interestingly, one can observe qualitative changes by the in-
troduction of distributions, such as obtaining a maximum front speed at a positive variance
of the transmission speed distribution. (Whether this represents a biological optimization
principle is a tempting conjecture beyond the purpose of the present paper.) Moreover, the
stability analysis of stationary fronts involving distributed propagation speeds and feedback
delays yields a stability condition, which represents the Evans function of the system.

The present work studies only a limited range of dynamical behavior. Nevertheless, the
effects of delays are much richer in this setting of spatially extended systems with nonlocal
interaction than in simple feedback systems with distributed delays considered in, e.g., [4].
Further research can be expected to discover other interesting features in more global dynamics
away from equilibria, for instance, in the evoked response of the field as studied in [29], when
distributed speeds and feedback loops are introduced into the model. Moreover, the existence
and stability study of bumps [9, 38], spirals [36], or breathers [11, 19] in case of distributed
propagation speeds and nonlocal feedback delays promises a wide range of novel phenomena
and will yield new insight into neural information processing.

Acknowledgments. The authors are grateful to Peter Mathe for valuable discussions on
Monte-Carlo methods, and to Jens Rademacher and Matthias Wolfrum for valuable discus-
sions on traveling fronts.
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Abstract. We consider a model for two lasers that are mutually coupled optoelectronically by modulating
the pump of one laser with the intensity deviations of the other. Signal propagation time in the
optoelectronic loop causes a significant delay leading to the onset of oscillatory output. Multiscale
perturbation methods are used to describe the amplitude and period of oscillations as a function
of the coupling strength and delay time. For weak coupling the oscillations have the laser’s relax-
ation period, and the amplitude varies as the one-fourth power of the parameter deviations from
the bifurcation point. For order-one coupling strength the period is determined as multiples of
the delay time, and the amplitude varies with a square-root power law. Because we allow for in-
dependent control of the individual coupling constants, for certain parameter values there is an
atypical amplitude-resonance phenomena. Finally, our theoretical results are consistent with recent
experimental observations when the inclusion of a low-pass filter in the coupling loop is taken into
account.
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1. Introduction. In recent work, we presented experimental and simulation results for two
mutually coupled lasers [1] with time-delayed asymmetric coupling. The light emitted from
one laser propagates through fiber-optic cables to a photodetector that generates an electronic
signal proportional to the light-intensity deviations from steady state. The electronic signal
may be attenuated or amplified before it modulates the pump current of the other laser. The
propagation time of the signal in the optoelectronic path introduces a significant time delay,
and the coupling strength in each direction can be controlled separately. Our work in [1]
investigated how the time delay and asymmetric coupling led to oscillatory and pulsating
laser output. In this paper, we present a more theoretical exploration of the dynamics that
result from this coupling configuration.

In [2] we investigated this same configuration (asymmetric pump coupling) but without
including the effect of delay. In addition, the coupling constant from laser-2 to laser-1 was
negative, while the coupling constant from laser-1 to laser-2 was positive. That is, we assumed
that the electronic coupling signal from laser-2 was inverted before applying it to the pump
of laser-1. For purely harmonic signals, having opposite-sign coupling constants is equivalent
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to time-delayed coupling when the delay is half of the period. We found that as the coupling
constant from laser-2 to laser-1 is increased in magnitude, (i) there is a Hopf bifurcation to
oscillatory output, (ii) for certain parameter values there exists a small-coupling resonance
such that the amplitudes of both lasers are pulsating, and (iii) for large coupling, laser-2 acts
as a small-amplitude, nearly harmonic modulation to laser-1. Laser-1 exhibits period-doubling
bifurcations to chaos and complex subharmonic resonances.

In this paper we include the effect of the delayed coupling, which results in a coupled
set of delay-differential equations (DDEs). With delay there is again a Hopf bifurcation to
oscillatory output. However, the delay allows for periodic oscillations not just at the laser’s
relaxation period as in [2], but at periods that are integer multiples of the delay; we refer to
the former oscillatory solutions as “internal modes” and to the latter as “external modes.”
We show that as the coupling strength is increased, the first instability is a Hopf bifurcation
to the internal mode. Our nonlinear analysis then shows that the amplitude of the internal
mode varies as the one-fourth root of the bifurcation parameter’s deviation from the Hopf
bifurcation point.

However, in the experiments of [1] the output was not the internal mode but an external
mode. The period of the oscillatory output was a multiple of the delay, and the amplitude of
the oscillations varied as the square root of the bifurcation parameter. The discrepancy is due
to the fact that the optoelectronic coupling contains an intrinsic low-pass filter that attenuates
the internal mode. We show that the filter selects the external mode with the greatest possible
frequency passed by the low-pass filter. A nonlinear analysis then shows that the amplitude
of the external modes does indeed vary with a square-root power law.

For the coupled lasers without delay in [1], we found that the parameters could be tuned to
cause a resonance-type effect with respect to the coupling; more specifically, the coupling could
be tuned to maximize the amplitude of the oscillatory output. We find that this resonance
effect also occurs with the inclusion of the delay. However, there are some dramatic qualitative
differences as the coupling parameters are varied. In the system with delay, the branch
of periodic solutions in the bifurcation diagram can be smoothly folded to form parameter
intervals of bistability. Then there is a critical value of the same coupling parameter beyond
which the bistability disappears suddenly and nonsmoothly.

Our coupling scheme is an example of “incoherent coupling” [3] because it depends only
on the laser’s intensity and not on the complex electric field. This is because the intensity of
one laser affects the other only indirectly; in our case, the intensity of one laser modulates the
pump current of the other. In contrast, “coherent coupling” refers to when the optical field of
one laser is directly injected into the cavity of the other laser. Analogously, a single laser with
delayed and reinjected self-feedback would be called “coherent” feedback. Semiconductor
lasers with delayed coherent feedback have been extensively studied because of the their
widespread application in electronics and communication systems; there the laser’s output
signal may be reflected off external surfaces back into the laser. The Lang–Kobayashi DDEs [4]
are the canonical model for semiconductor lasers with delayed self-feedback and have been
used to investigate phenomena ranging from the onset of instabilities to the development of
chaotic output referred to as “coherence collapse” (see [5] for a review). Coupled sets of Lang–
Kobayashi or related DDEs are most often used to described coherently coupled semiconductor
lasers with delay. Two recent studies [6, 7] are in the same spirit as this paper as they track
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the number of and properties of oscillatory solutions that appear as the coupling strength is
increased.

The main simplification that results from considering incoherent coupling between the
lasers is that neither the laser-frequency detuning nor the electric-field phase differences af-
fect the dynamics of the coupled system [8]. Pieroux, Erneux, and Otsuka [9] have shown
that the electro-optical coupling we consider in this paper leads to an equivalent dynamical
model as incoherent coupling. There have recently been a number of other investigations of
lasers with incoherent coupling. The main focus of many of these works was on chaotic syn-
chronization (see [10] and included references). Two recent papers by Vicente et al. [11, 12]
consider an implementation of optoelectronic coupling similar to that we consider here; i.e.,
the intensity of one laser modulates the pump current of the other. Their investigation of
the oscillatory solutions is mainly numerical and they discuss interesting phenomena such as
amplitude quenching, frequency locking, and routes to chaos.

Delay-coupled relaxation and limit-cycle oscillators have been the subject of many in-
vestigations (see [13, 14, 15, 16, 17, 18] and their included references). These systems are
self-oscillatory and the amplitude is often fixed by the intrinsic properties of the oscillator. In
many cases the system may be reduced to a phase equation, or a system of phase equations
if the oscillators are coupled [19].

In contrast, for laser systems the amplitude is an important dynamical variable. This
is because the lasers we consider are weakly damped, nearly conservative systems such that
the steady state is the only asymptotically stable solution. Oscillations must be induced by
external mechanisms such as modulation, injection, or coupling [20]. Thus, the amplitude of
the oscillations is highly dependent upon the external mechanism, in our case the coupling,
rather than the individual laser. We should mention that for coupled limit-cycle oscillators
there is the amplitude instability referred to as “amplitude death,” where for specific values
of the coupling (and oscillator parameter values) the amplitude becomes zero.

After presenting our model, we show that the linear-stability analysis predicts a critical
value of the coupling constant (that depends upon the delay time) such that there is Hopf
bifurcation to the internal mode, i.e., oscillations with the intrinsic relaxation period. We
then use multiple-scale perturbation methods, modified to account for time delays [21], to
analyze the long-time evolution of the internal mode. The results are a pair of complex
Stuart–Landau DDEs for the oscillation amplitudes that include a slow-time delay term. We
analyze the amplitude equations to determine the bifurcation properties of the internal mode.
Of particular note is that we allow for independent control of the coupling constants; most
other studies of coupled lasers and oscillators consider symmetric coupling, where the coupling
is the same across all of the elements. The independent control is important because, as we
will show, it allows for a singularity in the bifurcation equations that marks the “resonance”
of large amplitude solutions.

The Hopf bifurcation to the internal mode occurs for small coupling. However, as the
coupling is increased, the external modes appear via Hopf bifurcations. We have extended
our multiple-scale analysis to be able to describe the bifurcation of the external modes that
occur for O(1) coupling. The analytical challenge is that the delay terms remain a part of
the leading-order problem. Describing the bifurcation of the external modes is important for
comparing our results to those in experiments [22], because the experimental system contains
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low-pass filters that attenuate the internal mode originating from the first Hopf bifurcation.
An alternative to our multiple-scale method for deriving slow-time amplitude equations is

to apply center-manifold theory with averaging [23, 14, 15]. However, the averaging method
does not retain the delay in the slow time; that is, the amplitude equations are ordinary dif-
ferential equations—not DDEs. The distinction is not important for their or our investigation
because we look for steady-state solutions of the amplitude equations. However, time-varying
amplitudes may require consideration of the slow-time delay.

Reddy, Sen, and Johnston [16, 24] considered delay-coupled Stuart–Landau DDEs similar
to the amplitude equations we derive here. However, the complex coefficients they use are
appropriate for limit-cycle oscillators and not the lasers that we consider. They focus their
work on the properties of synchronization and amplitude death.

In the next section, we nondimensionalize the model for two-coupled lasers, with the
result being the focus of the rest of the paper. We perform the linear-stability analysis in
section 3. Slow-time evolution equations for small and O(1) coupling are derived in section 4
and section 5, respectively. We close with a discussion of the results.

2. Class-B model. We consider two class-B lasers [20, 25] modeled by rate equations as

dIj
dt

= (Dj − 1)Ij , j = 1, 2,

dDj

dt
= ε2j [Aj(t) − (1 + Ij)Dj ],(2.1)

where Ij and Dj are the scaled intensity and population inversion, respectively, of each laser.
Scaled time t is measured with respect to the cavity-decay constant κ, t = (2κ) tr, where tr
measures real time. ε2 = γ‖/(2κ) is a ratio of the inversion-decay rate, γ‖, to the cavity-
decay rate, κ, and measures the relative lifetime of photons to excited electrons. A(t) is the
dimensionless pump rate and corresponds to the energy input to the laser by an external
source, e.g., another laser, an incoherent light source, or an electronic current. The mass-
action coupling term ID models “stimulated emission”; a photon passing through the laser
cavity stimulates an excited electron to drop to the lower energy level, resulting in one less
excited electron and one more photon. Equations (2.1) may be derived as a reduced model
from semiclassical Maxwell–Bloch equations [20, 25, 26]; the latter use Maxwell’s equations
to describe the laser’s electromagnetic fields coupled with the Bloch equations from quantum
mechanics for the amplifying media.

If the pump rate is a constant, Aj(t) = Aj0, then the laser relaxes to the steady state
Dj0 = 1, Ij0 = Aj0−1. To facilitate further analysis, we define new variables for the deviations
from the nonzero steady state [27] as

Ij = Ij0(1 + yj), Dj = 1 + εj
√

Ij0xj , s = ε1
√

I10t.(2.2)

Our goal is to investigate the effects of coupling through the pump. In addition, we account for
the effect of a delay when the signal from one laser takes a nonnegligible time before affecting
the other. Thus, the pump coupling is taken to be

Aj(t) = Aj0 − Ij0δkyk(t− τk).(2.3)
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Thus, we feed the intensity deviations yk = (Ik−Ik0)/Ik0 from the steady-state output of laser
k to the pump of laser j; the strength of the coupling is controlled by δk. The pump-coupling
scheme allows for easy electronic control of the coupling signal. The negative coupling results
from the configuration of the electronic coupling circuits in [1]. Finally, we assume that the

decay constants of the two lasers are related by ε2 = ε1
√
I10√
I20

β. The new rescaled equations are

dy1

dt
= x1(1 + y1),

dx1

dt
= −y1 − εx1(a1 + by1) − δ2y2(t− τ2),

dy2

dt
= βx2(1 + y2),

dx2

dt
= β[−y2 − εβx2(a2 + by2) − δ1y1(t− τ1)],(2.4)

where

a1 =
1 + I10√

I10
, a2 =

√
I10(1 + I20)

I20
, and b =

√
I10.(2.5)

For notational convenience we have let s → t and dropped the subscript on ε1 (ε1 → ε).
Rogister et al. [28] have considered a model very similar to ours; however, in their case the
cross-coupling term is instantaneous, while the delay appears through self-feedback of each
laser’s own intensity.

3. Linear stability of the steady state.

3.1. Characteristic equation. In the new variables, the steady state is given by xj = yj =
0. The linear stability of the steady state is determined by studying the evolution of small
perturbations, for which we obtain the characteristic equation

[λ(λ + εa1) + 1][λ(λ + εa2β
2) + β2] − β2δ1δ2e

−λ(τ1+τ2) = 0.(3.1)

The delay results in the exponential term exp(−λ(τ1 + τ2)). The transcendental form of the
characteristic equation and, hence, the possibility of an infinite number of roots is typical for
DDEs.

If either δj = 0, then there are only decaying oscillations, which indicates that a single
uncoupled laser is a weakly damped oscillator; this is the general characteristic of “class-B”
lasers [25]. For δj �= 0 numerical simulations indicate there is a Hopf bifurcation as the δj are
increased. To identify the Hopf bifurcation point, we let λ = iω and separate the characteristic
equation into real and imaginary parts. After some algebra we obtain a single equation for
the frequency and another equation for the value of Δ = δ1δ2 at the bifurcation point. The
equations are

0 = tan(ωτs)[(1 − ω2)(β2 − ω2) − ε2a1a2β
2ω2](3.2)

+ εω(1 − ω2)(a1 + a2β
2),

β2Δ2
H = [(1 − ω2)(β2 − ω2)(3.3)

− ε2a1a2β
2ω2]2 + [εω(1 − ω2)(a1 + a2β

2)]2,
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where τs = τ1 + τ2 is the “round-trip” delay time. The transcendental equation for ω can be
solved numerically and its solution is then substituted into (3.3) to determine the value of the
coupling at the bifurcation point Δ = ΔH .

To simplify further discussion we consider β = 1. This implies ε2 = ε1
√

I10/I20, which is
a specific relationship between the lasers’ decay constants, γ‖,j and κj , and the pump rate,
Aj0; if β = 1 and A10 = A20 then the lasers are identical. The results are qualitatively the
same for nearly identical lasers with β ≈ 1. To simplify notation, we define c1 = a1 + a2 and
c2 = a1a2 and have

0 = tan(ωτs)[(1 − ω2)2 − ε2c2ω
2] + εω(1 − ω2)c1,(3.4)

Δ2
H = [(1 − ω2)2 − ε2c2ω

2]2 + [εω(1 − ω2)c1]
2.(3.5)

For ε � 1 the leading approximation to the frequency is given by ω = ±1 or ω = mπ/τs,
m an integer. We will refer to the former as the internal mode because this is the scaled
laser-relaxation frequency; more specifically, an oscillatory solution of (2.4) with period ω = 1
is called the internal mode. Similarly, oscillatory solutions with period ω = mπ/τs, m an
integer, are called external modes because their periods are determined by the delay. For any
fixed value of the delay τs there is the internal mode and an infinite number of external modes.

From (3.5) we see that for almost all values of the delay, as the coupling is increased
from zero, the bifurcation to the internal mode occurs at a lower value of the ΔH than the
external mode (this is true except when τs = nπ, n even, which we will discuss in later
paragraphs). More specifically, for the internal mode with ω ≈ 1 the Hopf bifurcation occurs
when ΔH = O(ε2) � 1. For the external mode with ω = O(1) the value of the coupling at the
Hopf bifurcation is ΔH = O(1). This is illustrated in Figure 1, where we have plotted (3.5).
We will determine more precise approximations for these bifurcation points below; however,
we will first make additional qualitative observations.

Let us fix the delay to be a multiple of π, i.e., τs = nπ, n an integer. Then ω = ±1,
corresponding to the internal mode, is an exact solution to the frequency equation (3.4) and
ΔH = ±ε2c2. The + is taken if n is odd and the − is taken if n is even (the sign association
comes from the real and imaginary parts of the characteristic equation before ω and Δ were
separated). In the present paper, we will consider δj > 0 and Δ > 0; results for Δ < 0 are
qualitatively the same. Thus, we have the exact solution ω = ±1, ΔH = +ε2c2 when τs = nπ,
n odd. An analysis of (3.5) shows this occurs at a minimum in the curve ΔH(ω) as illustrated
in Figure 1.

If τs is not a multiple of π, say, nπ < τs < (n + 1)π, the Hopf bifurcation to the internal
mode still occurs before the bifurcation to any of the external modes. The frequency of the
internal mode is ω ≈ 1 (instead of ω = 1), and ΔH > ε2c2 but still O(ε2). Thus, if we plot
ΔH as a function of the delay τs, the minimum of the curves ΔH(τs) occurs when τs = nπ, n
odd. This is illustrated in Figure 3 and will be discussed further below.

Now consider the external modes with ω ≈ mπ/τs. For negative couplings when δj > 0
(see (2.3)) and Δ > 0 an analysis of the characteristic equation shows that m must be even.
Thus, the external modes have frequencies ω ≈ 2π/τs, 4π/τs, etc. In Figure 1 we illustrate
three cases when τs = nπ, n = 1, 5, and 53. The external modes then have ω = m/n, m even.

Finally, we consider the case when τs = nπ for n even. As discussed in the previous
paragraph, for negative couplings the external modes with frequency ω = mπ/τs require that



DELAYED-MUTUAL COUPLING DYNAMICS OF LASERS 705

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5000

10000

15000

(a) : τ
s
 = π

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5000

10000

15000
(b) : τ

s
 = 5π

Δ H
/ε

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5000

10000

15000
(c) : τ

s
 = 53π

ω

Figure 1. Neutral stability curve ΔH(ω) (solid curve) for Hopf bifurcations described by (3.5). The solid
circle at ω ≈ 1 indicates the internal mode. The crosses (+) at ω ≈ mπ/τs indicate the external modes. Because
τs = nπ, then ω ≈ m/n for the external modes (ε = 0.01, a1 = a2 = 2, b = 1, β = 1).

m = 2, 4, 6 . . . . Thus, for each external mode there is a value of τs = nπ, n even, such that
ω ≈ 1 similar to the internal mode. This is illustrated in the numerical data of Figure 3a for
τs = 2π, while in Figure 3b we see that the bifurcations to these two modes occur at nearly
the same value of the coupling. Referencing Figure 1, the two modes would have frequencies
on opposite sides of ω = 1 such that ΔH is the same for each. This is referred to as a “double
Hopf” [21, 29] and may lead to more complicated bifurcation scenarios that we will not pursue
in the present paper. We also note that at the double Hopf bifurcation, the designation of
“internal mode” versus “external mode” is ambiguous because both have ω ≈ 1. Indeed,
following the numerical data in Figure 3a, as τs is varied through 2π, we see that the n = 1
internal mode becomes the m = 2 external mode, while the m = 2 external mode becomes
the n = 3 internal mode.

3.2. Approximations to internal and external modes. As discussed above, for any delay
τs when the coupling is increased, the first periodic solutions to appear correspond to the
internal mode and will have frequency ω ≈ 1. For arbitrary delay we can find an approximation
for the frequency by letting ω = 1 + εω1 + O(ε2) in (3.4) to find that ω1 satisfies

tan(τs)[4ω
2
1 − c2] − 2c1ω1 = 0,(3.6)

which is a simple quadratic for ω1. The bifurcation point is then approximated as

Δ2
H = ε4[16ω4

1 + 4(c21 − 2c2)ω
2
1 + c22]

= ε4(4ω2
1 + a2

1)(4ω
2
1 + a2

2).(3.7)

We can obtain simpler results than (3.6) and (3.7) if we require that τs ≈ nπ, n odd; that
is, in Figure 2 we examine locally to the critical values ω(τs) = 1 and the minimum of the
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Figure 2. Frequency ω and coupling Δ = δ1δ2 at the Hopf bifurcation point as a function of the delay
τs = τ1 + τ2. The solid curve is the asymptotic results of (3.6) and (3.7), while the + are the result of
numerically evaluating (3.4) and (3.5) (ε = 0.01, a1 = a2 = 2, β = 1).

curves ΔH(τs). If τs = nπ + ετs1, then

ω = 1 − ε2
c2
2c1

τs + O(ε2), Δ2
H = ε4c22 + O(ε5).(3.8)

For the external modes we let ω = ω0 + εω1 + O(ε2) with ω0 = mπ/τs, m even, and find
that

ω = ω0 − ε
ω0c1

(1 − ω2
0)τs

+ . . .(3.9)

and the Hopf bifurcation point is approximated as

Δ2
H = (1 − ω2

0)
4 + ε

8c1
τs

(1 − ω2
0)

2ω2
0 + . . . .(3.10)

The external mode results are valid for τs such that ω0 �= 1; thus, τs must be away from the
double Hopf point when τs = mπ.

In Figures 2 and 3 we plot the linear stability given by (i) numerically evaluating (3.4)
and (3.5) (marked with +) and (ii) the asymptotic approximations from (3.6)–(3.7) and (3.9)–
(3.10) (solid curves). Figure 2 focuses on the bifurcation of the internal mode. For any fixed
value of the delay time τs, we increase Δ until the curve is crossed at Δ = ΔH ; the frequency is
ω ≈ 1. In Figure 3 we pan out so that both the internal and external modes are visible. From
here we see that as Δ is increased, the bifurcation to the internal mode always occurs first. As
Δ is increased further, we cross secondary curves indicating the bifurcations to the external
modes. More specifically, suppose that τ = π (n = 1). After the internal mode, the external
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Figure 3. Same as Figure 2 but with a wider range in ω and Δ. The + indicate the numerical results.
The thick curves are the analytical approximations of the internal modes (same as Figure 2). The thin curves
are the approximations of the external modes.

modes with frequencies ω = m/n = m/1, m = 2, 4, . . . , appear in sequence. For longer delay
times, the order in which the external modes appear will be different; this can be seen in
Figure 3 for τs ≈ 11, where the bifurcation to the external mode with m = 4 occurs before the
mode with m = 2. Alternatively, in Figure 1b when τs = 5π, as Δ is increased the bifurcation
to the periodic solutions occurs in the order ω ≈ 1, ≈ 0.8, ≈ 1.2, ≈ 0.4, which corresponds to
the internal mode, followed by the external modes ω = m/n, n = 5, m = 4, 6, 2, . . . .

4. Hopf bifurcation of the internal mode.

4.1. Two-time scales. We use the method of multiple scales to analyze the oscillatory
solutions that appear at the Hopf bifurcation points. For the uncoupled lasers, oscillations
decay on an O(ε)-time scale, which suggests that we introduce the slow time T = εt; time
derivatives become d

dt = ∂
∂t + ε ∂

∂T . We analyze the nonlinear problem using perturbation

expansions in powers of ε1/2, e.g., xj(t) = ε1/2xj1(t, T )+εxj2(t, T )+. . . ; the relevant nonlinear
terms and the slow-time derivative then balance at O(ε3/2). Finally, for simplicity we set
β = 1 indicating identical lasers; however, relaxing this assumption to nearly identical lasers
(β = 1 + O(ε)) does not qualitatively change the results.

We now consider the effect of the two-time scale assumption on the delay term. With the
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additional slow time, the delay term becomes

yj(t− τ) → y(t− τ, T − ετ).(4.1)

If δj � 1, then consideration of the delay term is postponed until higher order and appears
as part of the solvability condition for the slowly varying amplitude. However, if δj = O(1),
then the leading-order problem will contain the delay term and analytical progress is much
more difficult.

If τ � O(1/ε) (large delay), then ετ = O(1) and the delay term must be retained in the
slow argument. However, if τ = O(1), then the slow argument can be expanded as [21]

yj(t− τ) = yj(t− τ, T ) − ετ
∂

∂T
yj(t− τ, T ) + . . . .(4.2)

Now the delay of the slow argument is postponed to higher order. We shall see that this
leads to simpler slow-evolution equations for δ � 1 (see (4.5)) and is necessary to make any
progress at all for δ = O(1) (see section 5).

It should be noted that care must be taken when using a series expansion of a delay term
in a differential equation. The Taylor series may itself be justified but using it can change
the stability of the differential equation. A simple example is given in [30], while [31, 32]
provide more theoretical discussions concerning restrictions on the size of the delay. In our
presentation we will check the validity of our approximations by comparing our analytical and
numerical results.

4.2. Bifurcation equation. From the linear-stability analysis, we know that the first bi-
furcation will be to the internal mode with ω ≈ 1 when Δ = δ1δ2 = O(ε2) (we assume that
τs �= nπ, n even, and thus do not consider the case of the double-Hopf bifurcation). We
present the case that both coupling constants are of the same order δj = εdj . However, as
long as Δ = O(ε2) the bifurcation results are qualitatively the same.

Proceeding with the multiple-scale analysis, we find that at the leading order, O(ε1/2), we
obtain the solutions

yj1(t, T ) = Bj(T )eit + c.c., xj1(t, T ) = iBj(T )eit + c.c.,(4.3)

which exhibit oscillations with radial frequency 1 on the t time scale. To find the slow evolution
of Bj(T ), we must continue the analysis to O(ε3/2). Then, to prevent the appearance of
unbounded secular terms, we determine “solvability conditions” for the Bj(T ). Due to the
scalings of δj and yj , the delay terms δjyj(t− τj , T − τε,j) are O(ε3/2) and contribute to the
solvability condition. The final result is

∂Bj

∂T
= −aj

2
Bj(T ) − i

6
|Bj(T )|2Bj(T ) +

i

2
dkBk(T − τε,k)e

−iτk ,(4.4)

j, k = 1, 2, j �= k, and where τε,k = ετk. The effect of the delay in the slow time appears
explicitly in the delay terms Bk(T − τεk). The delay in the fast time has resulted in the
exponential terms e−iτk . Equation (4.4) is valid for arbitrary values of the delay (we have
not simplified the delay term Bk(T − τε,k)). However, according to (4.2), if τ = O(1), then
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τε,k = O(ε) and delay in the slow time is postponed until higher order. This results in a
simpler solvability condition where the delay in the slow time does not appear.

∂Bj

∂T
= −aj

2
Bj −

i

6
|Bj |2Bj +

i

2
dkBke

−iτk , j, k = 1, 2, j �= k.(4.5)

Periodic solutions to the original laser equations, (2.4), correspond to T -independent so-
lutions to the solvability conditions. The conditions are the same for both (4.4) and (4.5)
because the delay terms in (4.4) become constants. The full T -dependent solvability condi-
tions, including delay, are required only to analyze the stability of the periodic solutions.

To determine the amplitude and phase of the periodic solutions, we let Bj(T ) = Rj(T )eiθj(T ),
define the phase difference ψ = θ2 − θ1, and set the time derivatives to zero. We obtain

0 = −a1R1 − d2R2 sin(ψ − τ2),

0 = −a2R2 + d1R1 sin(ψ + τ1),

0 = −1

3
(R2

2 −R2
1) + d1

R1

R2
cos(ψ + τ1) − d2

R2

R1
cos(ψ − τ2).(4.6)

We find that

tan(ψ) =
a2d2S2 sin(τ2) − a1d1S1 sin(τ1)

a2d2S2 cos(τ2) + a1d1S1 cos(τ1)
,(4.7)

where S1 = R2
1 and S2 = R2

2 and the amplitudes are found from the implicit equations

a2
2d

2
2S

2
2 + a2

1d
2
1S

2
1 + 2a1a2d1d2 cos(τs)S1S2 − d2

1d
2
2 sin2(τs)S1S2 = 0,

d1d2 sin(τs)S2(S1 − S2) + 3d1d2 cos(τs)(a2 − a1)S1S2

+ 3(a1d
2
1S

2
1 − a2d

2
2S

2
2) = 0.(4.8)

Of particular note is that just as in the linear-stability analysis, the amplitudes of the periodic
solutions depend on the sum of the delays τs = τ1+τ2. This corresponds to the effective round-
trip time of information from laser-j returning to laser-j.

In Appendix A we present explicit solutions of (4.8) that specify Sj = R2
j as a function

of the parameters and the delay τs. The expressions are rather complicated but are easily
evaluated numerically. To obtain simpler expressions, we consider τs = (n+ ξ)π, where ξ � 1
and n an odd integer. That is, we tune the delay time τs to be near one of the minimums of
the neutral stability curves in Figure 2. The bifurcation equation is

R2
2 = 3(a1 + a2)

√
D1

D2
+ ξZ21 + O(ξ2),(4.9)

where

D1 =
d1d2

a1a2
− 1, D2 =

a2d2

a1d1
− 1,(4.10)

and Z21 is specified in Appendix A.
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Figure 4. Internal mode, n = 5 with τ1 = τ2 = nπ/2, and ε = 0.01. Numerical data points indicated by
∗. The solid curve is the bifurcation equation determined by (A.6)–(A.8) for ξ = 0, or (A.1)–(A.5). Because
τs = τ1 + τ2 = nπ, ξ = 0 so the bifurcation equations are equivalent (d1 = 1, a1 = a2 = 2, b = 1, β = 1).
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Figure 5. Same as Figure 4 (n = 5) except that τ1 = τ2 = (n + 0.1)π/2. Thus, τs = (n + 0.1)π, ξ = 0.1π,
and the delay is tuned to the right of the minimum of the neutral-stability curve. The solid curves are the
approximate bifurcation equations based on ξ � 1 given by (A.6)–(A.8). The dashed curves are the more
general bifurcation equations given by (A.1)–(A.5). All other parameters are the same as in Figure 4.

We compare the results of numerically computed bifurcation diagrams [33] and our ana-
lytical results in Figures 4–6. In Figures 4 and 6, τs = 5π and 53π, respectively, and hence
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Figure 6. Same as Figure 4 except that n = 53.

ξ = 0 in (4.9). The analytical bifurcation equation describes the numerical results quite well
even for d2 far away from the bifurcation point. An expansion of (4.9) near the bifurcation
point shows that

R2 ∼ (Δ − ΔH)1/4, Δ = δ1δ2.(4.11)

We also note that (4.9) is identical to the bifurcation equation we derived in [2] for two
coupled lasers with opposite sign coupling. The coupled laser equations in [2] are identical to
(2.4) except that in [2] (i) there is no delay such that the coupling is instantaneous, and (ii) we
allowed the sign of one of the coupling constants to be positive. Near the bifurcation point,
the small-amplitude periodic oscillations are nearly harmonic as indicated by (4.3). Thus, a
positive coupling constant corresponds to an effective phase shift of half the period or, more
generally, a phase shift of τs = nπ (see Appendix B). Thus, we expect that when τs is tuned
to the minimum of the neutral stability curves in Figure 2, the bifurcation equations of the
two cases should be equivalent.

In Figure 5 we show the case when ξ �= 0. Here we have tuned the delay τs to be to the
right of the minimum with τs = (5 + 0.1)π. The dashed curve is the result of numerically
evaluating the full bifurcation equations, (4.8). The solid curve is the approximation (4.9)
and it shows very good agreement with the numerical results. In general, we maintain good
agreement as we tune τs away from the minimum up to τs = (n ± 0.15)π, n odd. The full
bifurcation equation, (4.8), where we have not made any assumption on the delay, maintains
good agreement out to at least τs = (n ± 0.4)π; beyond that, however, it loses fidelity as we
approach the double-Hopf bifurcations at τs = (n± 1)π (τs = nπ, n even).

Finally, we note that the first correction to the bifurcation equation (4.9) is linear in ξ.
Thus, the bifurcation equation is not symmetric about the minimums of the neutral-stability
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curves; that is, the amplitude will be larger on one side of the minimum than the other for a
given perturbation of Δ above the minimum.

4.3. Small-coupling resonance. The bifurcation equation (4.9) is singular when its de-
nominator is zero (D2 = 0), or

Δ = ΔS ≡ a1

a2
δ2
1(4.12)

(Δ = δ1δ2). If the parameters are such that the singular point is before the Hopf point,
ΔS < ΔH , then the singularity can be ignored because the vanishing denominator will not
occur when periodic solutions exist for Δ > ΔH . However, if ΔS > ΔH , the bifurcation equa-
tion will exhibit the pole-type singularity. Near the singular point, the bifurcation equation
predicts that the amplitude of the oscillations will become large corresponding to a resonance.
The condition that ΔS > ΔH corresponds to δ2

1 > ε2a2
2. Thus, in laser-2 the increase in the

population inversion provided by pump coupling is greater than the effective losses. In [2],
when the lasers were coupled without delay, we investigated this resonance in detail and the
bifurcation equation matched the result of simulations very well. For the present case with
delay coupling, however, we find that there are some dramatic differences.

In Figure 7a, we compare the analytical and numerical bifurcation branches. For d1 = 2.3,
the bifurcation equation predicts a strong resonance peak. The numerical data for d1 = 2.3 (∗)
exhibits a small resonance peak and there is good agreement between the analytical and
numerical curves both before and after the singularity. In Figure 7b we increase d1 from 3.0
to 4.5 to follow the deformation of the bifurcation branch from an isolated resonance peak to a
curve that forms a loop before continuing to higher values of d1; this folding of the bifurcation
branch is new to the system with delay and was not observed in [2]. We want to make clear
that the bifurcation branch is not intersecting itself. The apparent intersection results from
projecting the full bifurcation curve of d1 versus (x1, y1, x2, y2), which does not intersect, onto
the (d1, x2) plane.

Because the multiple-scale method is a local analysis and we assumed small-amplitude
solutions, it is not unexpected that the analytical and numerical results match well near
the bifurcation point. Similarly, in the vicinity of the resonance peak, the amplitude of the
solutions becomes O(1) and so it is not surprising that the analytical results fail to match
the numerical results. That said, in our previous work with coupled lasers without delay [2],
the analytically determined bifurcation equation matched the numerically computed resonance
peak throughout the parameter range, i.e., even for O(1) amplitudes; that was a bit surprising.
We can surmise that in the present case it is the folding of the bifurcation branch that causes
the mismatch. It may be that if we continued our analysis to higher order and derived
additional nonlinear corrections to the bifurcation equation, we might better describe the
folded branch. This would be a nontrivial and tedious calculation; but without doing so our
supposition remains speculation. In [2] we used a different asymptotic method better suited to
analyzing periodic solutions with O(1) amplitudes with only partial success. Its application
to the present problem with delay would be quite complicated and we have not made the
attempt.

In Figure 7b we increase d1 to 5.0 and see that there is qualitative change in the bifurcation
branch; there is no longer a loop, and the bifurcation branch continues to negative values of
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Figure 7. Internal mode, n = 1 with τs = nπ. (a) The solid curve is the predicted bifurcation branch from
(A.6) when d1 is tuned such that the singularity in the bifurcation equation occurs after the Hopf bifurcation.
The ∗ are the numerical bifurcation data for d1 = 2.3. (b) Numerical bifurcation branches as they deform
between d1 = 3.0 and d1 = 5.2. (c) There is a critical value of d1, where on either side of the critical value
the bifurcation branch has a loop and proceeds to higher values of d1, or bends back without a loop to negative
values of d1. All other parameters are the same as in Figure 4.

d1. In Figure 7b we see that the change in the nature of the bifurcation curve appears quite
abruptly at a critical value of d1. Typically, one expects smooth folding and unfolding of
bifurcation branches as a parameter is changed [34]. In the present case, we have not been
able to isolate an interval of d1 over which such an unfolding might occur. To our knowledge,
such a discontinuous unfolding of a branch of solutions in a bifurcation diagram has not been
previously described.

Finally, if d1 is increased further the bifurcation branch folds back and continues for posi-
tive d2; there also appear to be secondary bifurcations but we have not explored these in any
detail. We mention that as the delay τs increases, or as ε increases, the effect of the singularity
is diminished. Conversely, with reduced values of ε, the bifurcation branch may exhibit more
complicated turns and folds. It is intuitively understandable that increasing the damping (ε)
will diminish any type of resonance phenomena. The role of the longer delay is unclear.
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5. Hopf bifurcation of the external modes. In this section, we describe the external
modes that emerge via Hopf bifurcations as the coupling is increased. We fix δ1 = O(1)
and use δ2 as the bifurcation parameter with δ2 = δ20 + εδ22 + . . . . We again have the slow
time T = εt and the perturbation expansion of x and y in powers of ε1/2. The multiple-scale
analysis is more complicated because the O(1) couplings result in a leading-order problem
that contains the delay terms. Due to the two time scales, the delay terms are of the form
δjyj(t− τj , T − ετj). To make analytical progress we need to remove the slow delay from the
leading-order problem. This requires that we assume ετj � 1 such that by using (4.2) the slow
delay is postponed to higher order. We then have a restriction on the size of the delay such
that τ = o(1/ε). Thus, we find that our results fit well with the external modes corresponding
to the case τs = 5π, Figure 1b, but are inaccurate in the case τs = 53π, Figure 1c. Finally, to
simplify the presentation, we consider the case of equal delays τ1 = τ2 = τ , such that τs = 2τ ;
analysis of the general case with unequal delays can be carried out in the same way.

5.1. Leading order. The leading order O(ε1/2) problem is

∂

∂t
X1(t, T ) = L ·X1(t, T ) −D ·X1(t− τ, T ),(5.1)

where

L =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ , D =

⎛
⎜⎜⎝

0 0 0 δ20
0 0 0 0
0 δ1 0 0
0 0 0 0

⎞
⎟⎟⎠ ,(5.2)

and X1(t, T ) =

⎛
⎜⎜⎝

x11(t, T )
y11(t, T )
x21(t, T )
y21(t, T )

⎞
⎟⎟⎠ .

We look for oscillatory solutions of the form X1(t, T ) = U1B(T ) exp(iωt), where B(T ) is a
slowly varying scaler amplitude (to be determined from a solvability condition at O(ε3/2)).
U1 is a vector that is determined by substituting our ansatz into (5.1) to obtain

0 = J · U1, where J =

⎛
⎜⎜⎝

−iω −1 0 −δ20e
−iωτ

1 −iω 0 0
0 −δ1e

−iωτ −iω −1
0 0 1 −iω

⎞
⎟⎟⎠ .(5.3)

For a nonzero solution U1, we require detJ = 0. This results in the same condition obtained
from the leading-order linear-stability problem; specifically,

(1 − ω2)2 − δ1δ20e
−i2ωτ = 0.(5.4)

Thus, we have that

ω =
mπ

2τ
, m = even, positive integer.(5.5)
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For later reference it will be useful to note that

e−i2ωτ = 1, and e−iωτ = ±1 = νm,(5.6)

where νm = +1 if m/2 is odd (e.g., m = 2, 6, . . . ) and νm = −1 if m/2 (e.g., m = 4, 8, . . . ) is
even. Finally, we find that

U1 =

⎛
⎜⎜⎝

iω
1

iωu1

u1

⎞
⎟⎟⎠ , where u1 = νm

√
δ1
δ20

.(5.7)

5.2. Second order. At O(ε) the problem is

∂

∂t
X2(t, T ) = L ·X2(t, T ) −D ·X2(t− τ, T ) + F2,(5.8)

where F2 =

⎛
⎜⎜⎝

0
x11y11

0
x21y21

⎞
⎟⎟⎠ .

Because the homogeneous problem is the same as the O(ε1/2) problem we can, without loss
of generality, set the homogeneous solution to 0. The inhomogeneous term F is proportional
to exp(i2ωt) so that the solution is

X2(t, T ) = B(T )2U2e
i2ωt + c.c.,(5.9)

where U2 is specified in Appendix C.

5.3. Third order. At O(ε3/2) we find the solvability condition that determines the slow-
evolution equation for B(T ). The O(ε3/2) problem is

∂

∂t
X3(t, T ) = L ·X3(t, T ) −D ·X3(t− τ, T ) + F3,(5.10)

where

F3 =

⎛
⎜⎜⎝

−a1x11 − δ22y21(t− τ, T ) + δ20τ
∂
∂T y21(t− τ, T ) − ∂

∂T x11

x12y11 + x11y12 − ∂
∂T y11

−a2x21 + δ1τ
∂
∂T y11(t− τ, T ) − ∂

∂T x21

x22y21 + x21y22 − ∂
∂T y21

⎞
⎟⎟⎠ .(5.11)

The vector F3 has terms proportional to exp(iωt) and exp(i2ωt) and the former will lead to
solutions of the form (U3 +V3t) exp(iωt). The secular terms V3t must be eliminated to prevent
unbounded solutions for large t, which implies that a solvability condition must be imposed
on F3. The solvability condition is formulated as follows: We look for a solution to (5.10) of
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the form X3 = U exp(iωt) and at the same time identify the terms F in F3 proportional to
exp(iωt). We then obtain an algebraic system of equations for the vector U as

0 = J · U + F ,(5.12)

where

F =

⎛
⎜⎜⎝

(−iωa1 − δ22u1νm)B − (iω − δ20τu1νm)BT

iω(u22 − 1)|B|2B −BT

−iωa2u1B − (iω − δ1τνm)BT

iωu1(u24 − u2
1)|B|2B − u1BT

⎞
⎟⎟⎠ .(5.13)

For U to have a nonzero solution, the Fredholm alternative requires that V H · F = 0, where
V is the solution to JH · V = 0 (the superscript H refers to Hermitian). We find that
V H = (u1, iωu1, 1, iω), and the resulting condition for the amplitude B(T ) is

∂B

∂T
= (pl + iql)B + (pn + iqn)B|B|2,(5.14)

where pl,n and ql,n are given in Appendix C.

5.4. Bifurcation equation. To analyze the solvability condition given by (5.14), we let
B(T ) = R(T )eiθ(T ) to obtain

∂R

∂T
= (pl + pnR

2)R,(5.15)

∂θ

∂T
= ql + qnR

2.(5.16)

The equation for θ determines the frequency correction as a function of the amplitude. The
bifurcation equation is determined by considering steady-state solutions to the equation for
R, and we find that

R2 = − pl
pn

= −
(

|δ1|
r2ω2|1 − ω2|

)[
δ1δ22 −

2ω2(a1 + a2)

τ

]
.(5.17)

The onset of oscillations occurs when R = 0 and determines δ22 at the Hopf bifurcation point;
this result matches exactly that obtained in the linear-stability analysis.

In Figures 8 and 9, we compare the bifurcation equation (5.17) to the numerically com-
puted result. In each figure we have τs = 5π = O(1) (see Figures 4 and 5 for analysis of
the internal mode). In Figure 8 the external mode corresponds to m = 4 and its direction of
bifurcation is subcritical. In Figure 9 we have m = 6 and the bifurcation is supercritical. In
each case, there is good agreement between the numerical and analytical results local to the
bifurcation point, where the multiple-scale analysis’s validity is strongest.

The direction of bifurcation (super- or subcritical) in (5.17) is controlled by the sign of
the constant r2, which is given in (C.5). Analysis of r2 shows that r2 > 0 in the interval√

2/5 < ω < ωz(d1), where ωz(d1) is shown in Figure 10 (the lower bound is a zero of the
denominator of r2, while the upper bound is the sole real zero of the numerator). Thus, for
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Figure 9. Same as Figure 8 except m = 6. All other parameter values are the same.

external modes with frequencies within this interval, the bifurcation will be subcritical; this
is the case for the external mode in Figure 8. For all other modes r2 < 0 and the direction of
the bifurcation will be supercritical.

For reference, in Figure 11 we show the bifurcation diagrams of the internal mode (ω ≈ 1)
and the external modes (ω = m/n, m = 4 and m = 6) for the case n = 5; that is, we have
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Figure 11. Numerically computed bifurcation diagrams, both internal and external modes, for n = 5 and
τs = nπ. The left-most branch corresponds to the internal mode shown in Figure 4; periodic solutions are
stable until d2 ≈ 59, when there is a period-doubling bifurcation. The middle and right-most branches are the
continuation of the external modes shown in Figure 8 (m = 4) and Figure 9 (m = 6), respectively; periodic
solutions are unstable along these branches (ε = 0.01, d1 = 1, a1 = a2 = 2, b = 1, β = 1).

combined the bifurcation diagrams of Figures 4, 8, and 9. The subcritical bifurcation for the
external mode m = 4 folds to provide an interval of hysteresis. The bifurcation branches
are projections onto planes so that the intersections of the curves are not relevant. The
periodic solutions corresponding to the external modes are unstable as they bifurcate from
the unstable branch of steady-state solutions. The internal mode is stable until d2 ≈ 59, when
a period-doubling sequence to chaos begins.
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Finally, we note that for the external modes

R ∼ [Δ − ΔH ]1/2.(5.18)

The amplitude of the external modes varies as the square root of the distance from the bifur-
cation point. In contrast, the internal mode varies as one-fourth the power of the deviation.

6. Discussion. We have analyzed the output of two mutually coupled lasers, where the
light intensity deviations from steady state modulated the pump of the other laser. The
coupling strength in one direction is held fixed, while we examine the effect of increasing the
coupling strength in the other direction. The signal-propagation time through the optical fiber
and the electronic circuit causes a delay leading to a model that is a system of DDEs. Linear-
stability analysis finds that the steady-state solution becomes unstable at a Hopf bifurcation;
we call the resulting periodic solution the internal mode because it oscillates at the laser’s
relaxation-oscillation frequency. As the coupling is increased, subsequent instabilities occur
with frequencies determined by the round-trip delay time ωe = mπ/τs, m = 2, 4, 6, . . . ; we
call these periodic solutions external modes.

Using a multiple-scale analysis, we derive bifurcation equations for both the internal and
external modes. We find that the amplitude of the internal mode increases with the 1/4-root
of the deviation from the bifurcation point and is supercritical; i.e., R ∼ +(Δ−ΔH)1/4 . The
amplitude of the external modes increase with the 1/2-root of the deviation and may be super-
or subcritical; i.e., R ∼ ±(Δ−ΔH)1/2. Both the initial instability and the bifurcation results
depend on the product of the coupling constants Δ = δ1δ2. For the analysis of the internal
mode, we assumed that both coupling constants were of the same relative size, δj = O(ε).
However, other scalings satisfy the Hopf condition, e.g., δ1 = O(ε1/2) and δ2 = O(ε3/2). We
have found that this does not change the qualitative properties of the bifurcation.

We have focused our analysis on the onset of oscillatory instabilities and just beyond.
We have not considered the stability of the internal and external modes as the coupling is
increased further. However, numerical simulations indicated period-doubling bifurcations of
individual modes as well as multimode behavior.

With independent control of the individual coupling strengths, we have observed an atyp-
ical resonance phenomena. As in our previous work on two mutually coupled lasers without
delay [2], there is an interval of the coupling parameter δ2 over which the amplitude of the
oscillations becomes large; we have referred to this effect as a “resonance.” The bifurcation
equation, (4.9), can describe the amplitude of the oscillations for δ2 above and below reso-
nance. A singularity in the bifurcation equation indicates the existence of the resonance, but
(4.9) does not describe the amplitude within the resonance well. The parametric form of the
singularity indicates that physically, the coupling term provides an effective negative-damping
that cancels with the lasers’ self-damping and hence provides a resonance effect.

What is different from the results in [2] is that the bifurcation branch folds with a change
in the coupling parameter δ1; in Figure 7 we see that the resonance peak forms a loop in the
(d1, x2) plane. We also find that instead of a smooth unfolding of the loop, there appears to be
a critical value of the parameter d1 where the folded portion of the bifurcation branch abruptly
disappears. To our knowledge, such a discontinuous unfolding of a branch of solutions in a
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bifurcation diagram has not been previously described. We do not understand the mechanism
or manner by which the abrupt change occurs, but this will be the focus of future work.

The application of multiple-scale perturbation techniques to DDEs is, to our knowledge,
a relatively recent development [21]. For our analysis of the internal modes, the delay terms
appeared only as part of the solvability condition; thus, the multiple-scale analysis was rela-
tively straightforward. In contrast, for the external modes that bifurcate when the coupling
constants are O(1), the delay terms are included in the leading-order problem. However, by
looking for periodic solutions we are able to continue the analysis and formulate a solvability
condition. Finally, as mentioned in the text, multiple-scale expansion of the delay term in
(4.2) amounts to a Taylor series expansion that, while it may be justified in and of itself, can
lead to erroneous results for the DDE [30]. Thus, it is important to compare our analytical
results to those from numerical simulations as an important check of the work.

As discussed in the introduction, the method of averaging has also been used to analyze
the weakly nonlinear characteristics of delay problems. Averaging and the multiple-scale
technique will lead to a similar slow-time evolution equation for the amplitudes. However,
the multiple-scale technique accounts for the delay in the slow time where averaging does not.
Because we focused on the existence of periodic solutions, the slow-time delay is removed and
both averaging and multiple scales give equivalent results. However, stability of the periodic
solutions, or the investigation of more complicated phenomena such as quasiperiodicity, would
require the slow delay from the multiple-scale analysis.

Finally, we finish with a discussion relating the results of our analysis to experimental
results observed in [1] and [22]. The coupling circuit in the experimental system has two
important characteristics. First, the signal is inverted, which results in the negative signs that
appear in front of the coupling constants in (2.4). Second, the circuit acts as a low-pass filter
that suppresses coupling of the relaxation oscillations. We discuss the effect of each of these
below.

The signal inversion of the coupling circuit results in negative coupling constants in (2.4).
However, both the linear-stability and the leading-order bifurcation results depend on the
product of the coupling constants Δ = δ1δ2. Thus, local to the Hopf bifurcation it does not
matter if both δj are negative or both are positive. More generally, our results depend only
on whether Δ is positive or negative—not on the signs of the individual coupling constants.
This is effectively a symmetry result, because for small amplitudes the oscillations are nearly
harmonic. This means a sign change is merely a phase shift. However, we have observed
in numerical simulations that when the amplitudes become larger such that the intensity is
pulsating, the symmetry is lost such that positive coupling results in different system output
from negative coupling.

As mentioned above, the optoelectronic coupling circuit in [1] and [22] acts as a low-
pass filter on the coupling signal. We do not account for this in our model of the system
(recently, Illing and Gauthier [35] have analyzed a DDE where they explicitly account for
the bandlimited response of their feedback system). However, because our results address
the linear and nonlinear dynamics of both the internal and external modes, we can make a
comparison between theory and experiment.

The low-pass filter characteristic of the experimental coupling circuit attenuates the high-
frequency relaxation oscillations, corresponding to the internal mode. The result is that the
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circuit.

experimental system oscillates at one of the low-frequency external modes. This is illustrated
in Figure 12, where we indicate the experimentally observed external mode with a (◦) for
different values of the delay. The (+) indicate the theoretical value of ΔH(ω) for a bifur-
cation to an external mode. Linear stability predicts that as the frequency increases the
coupling strength, ΔH , required for a Hopf bifurcation decreases (see also Figure 1 for small
ω). However, there is a filter-cutoff frequency ωc such that the relaxation oscillations and
higher-frequency external modes are attenuated and only the external modes with frequencies
ωe < ωc are observed.

For example, in [1] we observed oscillations with period equal to the round-trip delay
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time; specifically, ω = 2π/T = 2π/τs corresponding to the external mode with m = 2. This
indicates that the filter-cutoff frequency, ωc, is such that 2π/τs < ωc < 4π/τs. If ωc were
greater than 4π/τs, then we would have expected to observe the external mode with m = 4
because the value of the coupling at the Hopf bifurcation point decreases as ωe increases; i.e.,
it will bifurcate at a lower value of the coupling.

More recent experiments [22] confirm that with longer delays, external modes with m > 2
are exhibited; this is shown in the lower two plots in Figure 12. That is, as the delay increases,
the external modes with larger m will be below the cutoff frequency, ωe = mπ/τs < ωc. And it
is always the mode with the largest frequency, but still below cutoff, that is exhibited because
ΔH(ω) is least for that frequency. Taking all five plots together, the experimental data suggest
that the low-pass filter cutoff frequency is ωc ≈ 0.05 because all of the observed modes have
frequency less than ωc. Finally, we add that it was observed in [1] that the amplitude of the
oscillations followed a square-root power law as a function of the coupling. This is exactly as
predicted by the bifurcation equation (5.17) for the external modes.

Our comparison between the theory and the experiment does have limitations. We do
not know the detailed filter characteristics of the optoelectronic coupling circuit. It is known
that the filter profile is most certainly not a step function but is instead frequency dependent;
it depends on the properties of the optical cable, the electronic coupling circuit, and the
frequency response of the laser to the modulated pump. In addition, for large values of the
delay the frequency difference between the external modes becomes very small and many
external modes are excited at nearly the same value of the coupling. For these cases the linear
stability theory may be insufficient to identify the mode that is observed in the experiments.

Appendix A. Amplitudes of periodic solutions.

R2
2 =

N

D
,(A.1)

where

N = 3Q
[
a1d

2
1d2 sin2 τs − a2

1d1(a1 + a2) cos τs
]

(A.2)

− 3 a1d
3
1d

2
2 sin3 τs + 3a2

1d
2
1d2(3a2 + a1) sin τs cos τs

+ 6a3
1a2d1(a1 + a2) sin τs,

D = Q sin τs
[
a2

1d1 − d1d
2
2 sin2 τs + 2 a1a2d2 cos τs

]
(A.3)

+ d2
1d

3
2 sin4 τs − 4 a1a2d1d

2
2 cos τs sin2 τs − 4 a2

1a
2
2d2 sin2 τs

+ 2 a3
1a2d1 cos τs − a2

1d
2
1d2 sin2 τs + 2 a2

1a
2
2d2,

Q =
√

d2
1d

2
2 sin2 τs − 4 a1a2d1d2 cos τs − 4 a2

1a
2
2,(A.4)

and

R2
1 =

d2

2a2
1d1

(
d1d2 sin2 τs − 2 a2a1 cos τs −Q sin τs

)
R2

2.(A.5)

When the delay is tuned to be near one of the minimums of the neutral stability curves,
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i.e., τs = mπ + ξ, ξ � 1, we have

R2
2 = Z20 + ξZ21 + O(ξ2),

Z20 = 3(a1 + a2)

√
D1

D2
,

Z21 =
3(D1 + 1)

2d2
1D

2
2

[
D1(a

3
2 + 3a2

2a1) + (a2 − a1)(d
2
1 − a2

2)
]
,

D1 =
d1d2

a1a2
− 1,

D2 =
a2d2

a1d1
− 1,(A.6)

R2
1 =

(
a2

d1

)2

(D1 + 1)
[
Z20 + ξ(Z20

√
D1 + Z21)

]
+ O(ξ2),(A.7)

ω = 1 − ε

(
1

6
Z20 +

1

2
a2

√
D1

)
− ξε

[
1

6
Z21 +

1

4
a2(D1 + 1)

]
+ O(ξ2).(A.8)

Appendix B. Delay and opposite-sign coupling. Consider a negative coupling constant
such that

dx1

dt
∼ +δ2y2(t).(B.1)

If y2 is harmonic with frequency ω = 1 and given by y2 = A cos(t), then

dx1

dt
∼ +δ2A cos(t),

−δ2A cos(t− nπ), n an odd integer,

−δ2A cos(t− τs),(B.2)

where τs = nπ is the total “round-trip” or system delay because the other coupling constant,
δ1, is negative.

Appendix C. External modes: Coefficients.

C.1. Second order: O(ε).

U2 =

⎛
⎜⎜⎝

iω(2u22 − 1)
u22

iω(2u24 − u2
1)

u24

⎞
⎟⎟⎠(C.1)

and

u22 = − 2ω2[1 − 4ω2 − δ1]

(1 − 4ω2)2 − δ1δ20
, u24 = −2ω2[u2

1(1 − 4ω2) − δ1]

(1 − 4ω2)2 − δ1δ20
.(C.2)



724 T. W. CARR, I. B. SCHWARTZ, M.-Y. KIM, AND R. ROY

C.2. Third order: O(ε3/2).

pl = r1[δ1δ22τ − 2ω2(a1 + a2)], ql = r1

{
νmu1ω

[
(a1 + a2)

τ

δ20
+ 2δ22

]}
,(C.3)

pn = r1r2τνm
ω2

u1
δ1, qn = r1r22ω

3,(C.4)

r1 =
1

2(δ1δ20τ2 + 4ω2)
, r2 =

δ1(δ1 + δ20 + 4ω2) − (1 + u2
1)(1 − 2ω2)(1 − 4ω2)

(1 − 4ω2)2 − δ1δ20
.(C.5)
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[7] H. Erzgräber, B. Krauskopf, and D. Lenstra, Compound laser modes of mutually delay-coupled
lasers, SIAM J. Appl. Dyn. Syst., 5 (2006), pp. 30–65.

[8] R. D. Li, P. Mandel, and T. Erneux, Periodic and quasiperiodic regimes in self-coupled lasers, Phys.
Rev. A, 41 (1990), pp. 5117–5126.

[9] D. Pieroux, T. Erneux, and K. Otsuka, Minimal model of a class-b laser with delayed feedback:
Cascading branching of periodic solutions and period-doubling bifurcation, Phys. Rev. E, 50 (1994),
pp. 1822–1829.

[10] D. W. Sukow, A. Gavrielides, T. Erneux, M. J. Baracco, Z. A. Parmenter, and K. L. Black-

burn, Two-field description of chaos synchronization in diode lasers with incoherent optical feedback
and injection, in Proceedings of SPIE, Proc. SPIE 5722, SPIE, Bellingham, WA, 2005, pp. 256–258.

[11] R. Vicente, S. Tang, J. Mulet, C. R. Mirasso, and J. M. Liu, Dynamics of semiconductor lasers
with bidirectional optoelectronic coupling: Stability, route to chaos and entrainment, Phys. Rev. E, 70
(2004), 046216.

[12] R. Vicente, S. Tang, J. Mulet, C. R. Mirasso, and J. M. Liu, Synchronization properties of two
self-oscillating semiconductor lasers subject to delayed optoelectronic mutual coupling, Phys. Rev. E,
73 (2006), 047201.

[13] D. V. R. Reddy, A. Sen, and G. L. Johnston, Driven response of time delay coupled limit cycle
oscillators, Commun. Nonlinear Sci. Numer. Simul., 8 (2003), pp. 493–518.

[14] A. K. Sen and R. H. Rand, A numerical investigation of the dynamics of a system of two time-delay
coupled relaxation oscillators, Comm. Pure Appl. Math., 2 (2003), pp. 567–577.

[15] S. Wirkus and R. Rand, The dynamics of two coupled Van der Pol oscillators with delay coupling,
Nonlinear Dynam., 30 (2002), pp. 205–221.

[16] D. V. R. Reddy, A. Sen, and G. L. Johnston, Time delay induced death in coupled limit cycle
oscillators, Phys. Rev. Lett., 80 (1998), pp. 5109–5112.



DELAYED-MUTUAL COUPLING DYNAMICS OF LASERS 725

[17] S. R. Campbell and D. L. Wang, Relaxation oscillators with time delay coupling, Phys. D, 111 (1998),
pp. 151–178.

[18] S. G. Lee, S. Kim, and H. Kook, Synchrony and clustering in two and three synaptically coupled
Hodgkin-Huxley neurons with delay, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 7 (1997), pp. 889–
895.

[19] M. K. S. Yeung and S. H. Strogatz, Time delay in the Kuromoto model of coupled oscillators, Phys.
Rev. Lett., 82 (1999), pp. 648–651.

[20] N. B. Abraham, P. Mandel, and L. M. Narducci, Dynamical instabilities and pulsations in lasers,
Prog. Opt., 25 (1988), pp. 3–190.

[21] D. Pieroux, T. Erneux, A. Gavrielides, and V. Kovanis, Hopf bifurcation subject to a large delay
in a laser system, SIAM J. Appl. Math., 61 (2000), pp. 966–982.

[22] M.-Y. Kim, Delay Induced Instabilities in Coupled Semiconductor Lasers and Mack-Glass Electronic
Circuits, Ph.D. thesis, University of Maryland, College Park, MD, 2005.

[23] C. Chicone and Z. C. Feng, Synchronization phenomena for coupled delay-line oscillators, Phys. D,
198 (2004), pp. 212–230.

[24] D. V. R. Reddy, A. Sen, and G. L. Johnston, Time delay effects on coupled limit cycle oscillators at
Hopf bifurcation, Phys. D, 129 (1999), pp. 15–34.

[25] F. T. Arecchi, G. L. Lippi, G. P. Poccioni, and J. R. Tredicce, Deterministic chaos in laser with
injected signal, Optics Comm., 51 (1984), pp. 308–314.

[26] P. Mandel, Theoretical Problems in Cavity Nonlinear Optics, Cambridge Studies in Modern Optics,
Cambridge University Press, New York, 1997.

[27] I. B. Schwartz and T. Erneux, Subharmonic hysteresis and period doubling bifurcations for a period-
ically driven laser, SIAM J. Appl. Math., 54 (1994), pp. 1083–1100.

[28] F. Rogister, D. Pieroux, M. Sciamanna, P. Megret, and M. Blondel, Anticipating synchroniza-
tion of two chaotic laser diodes by incoherent optical coupling and its application to secure communi-
cations, Opt. Commun., 207 (2002), pp. 295–306.

[29] W. Govaerts, J. Guckenheimer, and A. Khibnik, Defining functions for multiple Hopf bifurcations,
SIAM J. Numer. Anal., 34 (1997), pp. 1269–1288.

[30] R. D. Driver, Ordinary and Delay Differential Equations, Springer-Verlag, New York, 1977.
[31] R. D. Driver, D. W. Sasser, and M. L. Slater, The equation x′(t) = ax(t) + b(t − τ) with “small”

delay, Amer. Math. Monthly, 80 (1973), pp. 990–995.
[32] L. E. El’sgol’ts and S. B. Norkin, Introduction to the Theory and Application of Differential Equations

with Deviating Arguments, Math. Sci. Engrg. 105, Academic Press, New York, 1973.
[33] K. Engelborghs, T. Luzyanina, and G. Samaey, DDE-BIFTOOL v.2.00 User Manual: A MATLAB

Package for Bifurcation Analysis of Delay Differential Equations, Technical report TW-330, Depart-
ment of Computer Science, K. U. Leuven, Leuven, Belgium, 2001.

[34] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems, Springer-Verlag, New York, 1990.
[35] L. Illing and D. J. Gauthier, Hopf bifurcations in time-delay systems with band-limited feedback, Phys.

D, 210 (2005), pp. 180–202.



SIAM J. APPLIED DYNAMICAL SYSTEMS c© 2006 Society for Industrial and Applied Mathematics
Vol. 5, No. 4, pp. 726–758

The Kelvin–Helmholtz Instability of Momentum Sheets in the Euler Equations
for Planar Diffeomorphisms∗
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Abstract. The Euler equations that describe geodesics on the group of diffeomorphisms of the plane admit
singular solutions in which the momentum is concentrated on curves, the so-called momentum sheets
analogous to vortex sheets in the Euler fluid equations. We study the stability of straight and circular
momentum sheets for a large family of metrics. We prove that straight sheets moving normally to
themselves under an H1 metric, corresponding to peakons for the one-dimensional (1D) Camassa–
Holm equation, are linearly stable in Eulerian coordinates, suffering only a weak instability of
Lagrangian particle paths, while most other cases are unstable but well-posed. Expanding circular
sheets are algebraically unstable for all metrics. The evolution of the instabilities are followed
numerically, illustrating several typical dynamical phenomena of momentum sheets.
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1. Introduction. The Kelvin–Helmholtz instability of shear layers, which occurs when one
fluid layer slides over another of the same or different density, is one of the most famous and
ubiquitous instabilities in fluid mechanics. Although studied intensively since its discovery by
Kelvin in 1868 and Helmholtz in 1871, it is not yet fully understood. One key idealization
is to consider the motion of a vortex sheet, which represents the limit of a thin shear layer
in an incompressible, inviscid, two-dimensional (2D) fluid. Early simulations showing the
instability developing into a chain of spiral vortices were confounded when Derek Moore
showed in 1979 [20] that the sheet in fact develops an infinite curvature singularity at a finite
time, a time even before the first vortices appear. Subsequent studies [10, 13, 14] have focused
on regularized versions of the equations of motion and their relationship to weak solutions of
the Euler fluid equations.

In this paper we study the analogous, Kelvin–Helmholtz-like instability for a related family
of equations, the Euler equations for diffeomorphisms:

ṁ + u · ∇m + ∇uT ·m + m(div u) = 0,(1.1)

where ṁ denotes differentiation with respect to time, u(x, t) (u, x ∈ R
n, t ∈ R) is a velocity
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field, and m(x, t) its associated momentum. The velocity u and momentum m are related by

m = Au,(1.2)

where A is an elliptic operator (e.g., A = (1 −∇2)k) called the inertia operator.

It was Arnold’s celebrated discovery [1] that the Euler fluid equations describe geodesics on
the group of volume-preserving (i.e., incompressible) diffeomorphisms. Similarly, (1.1), (1.2)
describe geodesics on the group of all diffeomorphisms. There has been much recent interest in
the Euler equations (1.1), (1.2) because they arise in several different fields, including computer
vision and fluid dynamics. In computer vision they appear in two and three dimensions in
the field of image registration, such as in the averaged template matching equations [19, 22]
and the geodesic interpolating clamped-plate spline [16], while in fluid dynamics they coincide
with the Camassa–Holm wave equation for particular choices of A [5].

Euler equations such as (1.1) have a natural geometric origin, which we sketch here al-
though these details are not needed in the paper [2, 12, 15]. Let G be a Lie or diffeomorphism
group with Lie algebra g. Let G be equipped with a left- or right-invariant metric that restricts
to a metric 〈〈, 〉〉 on g. Typically, this metric is defined by a linear inertia operator A : g → g∗

via

〈〈u, v〉〉 := 〈u,Av〉.(1.3)

The geodesic equation on TG can be reduced to give a noncanonical Hamiltonian evolution
equation on g called the Euler–Poincaré equation, or transferred (via the Legendre transform,
g �→ g∗, which in this case is u → m := Au) to a Lie–Poisson system on g∗ called the Euler
equations

ṁ = ±ad∗
A−1mm,(1.4)

where the sign is + for left- and − for right-invariant metrics. The variable m ∈ g∗ is called
the momentum and u ∈ g the velocity.

The most famous Euler equation on a Lie group is the equation of motion of a free rigid
body (G = SO(3), m = body angular momentum). An infinite-dimensional example is the
Landau–Lifshitz equation on the loop group G = C∞(R, SO(3)). Examples on diffeomorphism
groups include the Euler fluid equations on the group G = Diffvol(R

n) of volume-preserving
diffeomorphisms with respect to the L2 metric (m = vorticity) [2], the Camassa–Holm equa-
tion (G = Diff(S1), H1 metric) [5], and the second-grade fluid equations (G = Diffvol(R

n),
H1 metric) [24].

For G = Diff(Rn) the Euler equations are given by (1.1), (1.2) (see [2, 5, 22] for further
details). The inverse of the inertia operator A is given by convolution with the Green’s
function G of A, i.e., u = G ∗m, where ∗ denotes convolution and AG(x, x′) = δ(x− x′) for
x, x′ ∈ R

n. We shall only consider Euclidean-invariant and diagonal A (i.e., A = a(−∇2)I for
some function a); in this case G(x, x′) = G(‖x − x′‖) for a scalar function G, which we call
the kernel. Examples in the literature include Gaussian [7] and Bessel function kernels [24]
associated with the H1 metric and a family of Hk metrics [17]. We will study (1.1), (1.2) for
arbitrary Euclidean-invariant operators A.
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A striking feature of Euler equations on diffeomorphism groups is that they admit (for-
mally, at least) exact solutions in which the momentum is concentrated on a submanifold of
dimension l < n [5]. The submanifold M is embedded in R

n, say, q : M × R → R
n, and the

momentum field is given by

m(x, t) =

∫
M

δ(x− q(s, t))p(s, t) ds,(1.5)

where p(s, t) is the “strength” of the momentum (vorticity in the fluid case) on the subman-
ifold. For the Euler fluid equations these solutions are point vortices for l = 0, vortex sheets
for l = n − 1, and vortex filaments for l = 1, n = 3. These are widely studied both in their
own right and as a means of approximating the evolution of smooth or other vorticities [14].

For the 2D and three-dimensional (3D) Euler fluid equations, convergence of the point
vortex solutions to solutions for smooth initial data has been established [14]. The speed of
convergence can be improved by smoothing out the point vortices to vortex blobs, even though
the (e.g., Gaussian) blobs are no longer exact solutions of the Euler equations. Instead, their
evolution can be regarded as that of delta-functions under a slightly different inertia operator.
Altering the shape of the blob (which corresponds to the kernel) is equivalent to altering the
metric. In this way we are led to consider a wide class of metrics.

Very little is known about the Euler equations (1.1), (1.2). Most studies have taken
A = (1−α2∇2), i.e., an H1 metric. In one dimension this gives the Camassa–Holm equation,
which is completely integrable. Here the codimension-1 singular solutions are known to play
a special role: they are solitons (m a sum of delta functions, u a sum of shifted and scaled
“peakons” e−|x|) and are stable in the sense that the long-time solution for initial data that
decays to zero at infinity contains only such solitons [5, 8]. Extensive simulations which have
been performed with the same metric in dimensions 2 and 3 [9] suggest that bump-like initial
data also evolves toward codimension-1 singular solutions, i.e., momentum sheets. These near-
sheets interact with each other and can even undergo reconnection events. The sheets appear
to be stable objects, even asymptotically stable, attracting a substantial part of phase space.
These numerical results suggest that to understand the behavior of (1.1), (1.2) it is crucial to
first understand the behavior of their momentum sheet solutions.

From now on we consider momentum sheets in two dimensions, i.e., n = 2 and dimM = 1.
For such momentum-sheet data the Euler equations form a canonical Hamiltonian system

with configuration space the space of embeddings of M in R
2, i.e., Q = Emb(M,R2) and phase

space T ∗Q [5]. In coordinates, the positions q(s, t) ∈ R
2 and conjugate momenta p(s, t) ∈ R

2,
where the parameter s ∈ M labels points on the sheets. For n = 2, l = 1, M is a union of
open or closed curves. The Hamiltonian is the kinetic energy

H =
1

2

∫∫
M×M

p(s)TG(q(s) − q(t))p(u) dsdu(1.6)

and the equations of motion are

q̇ =

∫
M

G(q(s) − q(u))p(u) du,

ṗ = −
∫
M

p(s)T∇G(q(s) − q(u))p(u) du

(1.7)
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or, for Euclidean-invariant and diagonal G,

H =
1

2

∫∫
M×M

G(r)p(s) · p(u) dsdu,

q̇ =

∫
M

G(r)p(u) du,

ṗ = −
∫
M

p(s) · p(u)G′(r)
r

r
du,

(1.8)

where

r = q(s) − q(u), r = ‖r‖.(1.9)

If the metric is Euclidean-invariant then (1.1), (1.2), and (1.8) are too, and one can, via a
symmetry reduction, study the behavior of translation or rotation-invariant initial data. This
is carried out for sets of parallel straight and concentric circular momentum sheets in [6]. Our
goal here is to investigate the stability of these solutions in the simplest settings of either (i) a
single straight sheet, moving at a certain angle to itself, or (ii) a single expanding circular
sheet.

The motion of straight vortex sheets for the Euler fluid equations, subject to the classical
Kelvin–Helmholtz instability, is known to be ill-posed [14]. The growth rate of Fourier mode ω
is O(ω), so that even for analytic initial data, eventually analyticity is lost and the (classical)
solution terminates in a singularity. The growth rates can be moderated by incorporating ei-
ther a physical regularizing effect, such as surface tension [10] or altering the metric from L2 to
H1 to obtain the Euler-α or second-grade fluid equations [11], or a nonphysical regularization,
such as smoothing the kernel.

We shall see that straight momentum sheets are also unstable for the diffeomorphism case,
and because of the close analogy in the geometric structure of the equations and of the initial
data, we shall call it a Kelvin–Helmholtz instability. However, there are several key differences
between the fluid and diffeomorphism cases. The latter has no volume-preserving constraint
and more degrees of freedom (the sheet strength is constant for fluids, while p(x, t) ∈ R

2

for diffeomorphisms); these make the diffeomorphism case more unstable. But it has more
filtering of the high modes in its inertia operator (A = 1 for the fluid case, while typically
A = (1 −∇2)k for diffeomorphisms), which makes the diffeomorphism case more stable. The
stability and well-posedness of the diffeomorphism case is therefore difficult to predict.

Stretched circular vortex sheets, on the other hand, are stable if the stretching is sufficiently
strong. (A single vortex sheet does not expand by itself but can be made to expand by placing a
line source at the origin.) They are well-posed but unstable under slow expansion, and stable
under fast expansion [21]. We expect to see similar behavior here, especially because the
numerical solutions for smooth initial data tend to show curved sheets expanding radially.

In section 2 we describe the particle-relabeling symmetry of (1.7) and its associated con-
served quantity, the potential vorticity qs ·p. In section 3.1 we linearize the equations of motion
(1.8), giving a system of four linear integro-differential equations. Remarkably, for straight
sheets they can be solved, giving a complete and explicit determination of linear stability for
all metrics (section 3.2). One case, of a straight sheet moving normally to itself under an H1
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metric (section 3.3), is only algebraically unstable, and we prove in Proposition 3.9 that even
this instability is confined to the Lagrangian particle motion; the Eulerian motion of the sheet
is linearly stable. In section 3.4 we follow the evolution of the unstable cases numerically.
For circular sheets (section 4) the linearized equations are even worse, having nonconstant
coefficients in space and time. The time variation can only be dealt with by taking the limit
of large radius; in this case the dependence on the metric drops out and the resulting PDE can
be solved explicitly. We find that radially expanding circular sheets are algebraically unstable
for all metrics.

2. Symmetries and conserved quantities. The equations of motion for momentum sheets,
(1.7), have a family of conserved quantities arising from a particle-relabeling symmetry. More
precisely, the symmetry group G = Diff(M) acts on sheet positions in Q = Emb(M,R2) on
the right by composition,

G ×Q → Q : (ϕ, q(s)) �→ q(ϕ(s)),(2.1)

and on T ∗Q by cotangent lifts,

G × T ∗Q → T ∗Q : (ϕ, (q(s), p(s))) �→ (q(ϕ(s)), p(ϕ(s))ϕ′(s)).(2.2)

Equation (2.2) is a symplectic map, as can be seen by the fact that it is generated by the
generating function S(q, P ) as (q(s), p(s)) �→ (Q(s), P (s)) with

S(q, P ) =

∫
M

q(ϕ(s))P (s) ds =

∫
M

q(s)P (ϕ−1(s))
ds

ϕ′(ϕ−1(s))
(2.3)

according to

Q(s) =
δS

δP
= q(ϕ(s)),

p(s) =
δS

δq
= P (ϕ−1(s))

1

ϕ′(ϕ−1(s))
⇒ P (s) = p(ϕ(s))ϕ′(s).

(2.4)

The generators of the group action are the vector fields

q̇ = f(s)qs,

ṗ = (f(s)p)s,
(2.5)

where f(s) = ϕ̇(s). These are Hamiltonian vector fields with Hamiltonian Jf =
∫
M f(s)qs(s) ·

p(s) ds, which is therefore the momentum map for the group action. The Hamiltonian (1.6)
is invariant under the group action

g ·H =
1

2

∫∫
M×M

ϕ′(s)p(ϕ(s))TG(q(ϕ(s)) − q(ϕ(u)))p(ϕ(u))ϕ′(u) dsdu

=
1

2

∫∫
M×M

p(s̃)TG(q(s̃) − q(ũ))p(ũ) ds̃dũ

= H,

(2.6)
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where we have made the change of variables s̃ = ϕ(s), ũ = ϕ(u). Therefore, the momentum
map Jf is a conserved quantity of Hamilton’s equations for H for any function f(s). Choosing
f(s) to be a delta-function, we get the pointwise conserved quantities J(s) = qs(s) · p(s) for
each s, whose conservation can be directly checked from the equations of motion. By analogy
with the shallow water equations we call J(s) the potential vorticity of the momentum sheet.

It can be seen from (2.2) that the momentum sheet strength p(s) is not a fundamental
physical property of the sheet, because it changes when different coordinates are used on
the sheet. The fundamental variables of the sheets are the invariants of the group action,
namely, the unit tangent vector qs(s)/‖qs(s)‖ and the true momentum p(s)/‖qs(s)‖. The true
momentum contains only one independent component because of the conservation of potential
vorticity qs(s) · p(s).

If the metric is Euclidean-invariant the equations have four other conserved quantities:
the energy H, the total momentum

∫
p(s) ds (from translation symmetry), and the angular

momentum
∫
q(s) × p(s) ds (from rotational symmetry).

3. Stability of straight sheets.

3.1. Analysis of the general case. We first determine the linearized equations of motion
for straight sheets, which, because of translation symmetry, can be diagonalized by a Fourier
transform. Finding the growth rates requires finding the eigenvalues of 4 × 4 matrices. How-
ever, this is not required in the determination of stability, for which an explicit condition can
be found. We give the condition in terms of the critical angle of propagation of the sheet for
a disturbance of a given wavenumber to be unstable as a function of the Fourier transform of
the Green’s function of the metric.

Proposition 3.1. Consider a straight sheet located at q(s, t) = tU + (0, s)T with constant
momentum p(s, t) = ρ = (ρ1, ρ2) and velocity U = (U1, U2), where s is the Lagrangian pa-
rameter along the sheet. Under a small perturbation to (q, p) + εz(s, t), the growth of the
perturbation is controlled to leading order by the 4 × 4 linear systems

˙̃z =

⎛
⎜⎜⎜⎝

0 aG̃ G̃ 0

0 bG̃ 0 G̃
c 0 0 0

0 (a2 + b2)G̃ aG̃ bG̃

⎞
⎟⎟⎟⎠ z̃,(3.1)

where

z̃(ω, t) =

∫ ∞

−∞
z(s, t)e−2πiωs ds,

G̃(ω) =

∫ ∞

−∞
G(ω)e−2πiωs ds,

c = ρ2F̃ |ω0 ,
a = −2πiωρ1,

b = −2πiωρ2,

ρ2 = ρ2
1 + ρ2

2, and



732 ROBERT I. McLACHLAN AND STEPHEN R. MARSLAND

F̃ |ω0 = 4π2

∫ ω

0
ω′G̃(ω′) dω′.

The system (3.1) has an eigenvalue with positive real part, indicating an exponential instability
in wavenumber ω, if and only if

Δ := −1 + (11 cos2 φ− 8)μ + (cos4 φ + 12 cos2 φ− 16)μ2 + (cos4 φ)μ3 < 0,(3.2)

where

μ = μ(ω) =
4π2ω2G̃(ω)

F̃ |ω0
(3.3)

and

ρ1 = ρ cosφ, ρ2 = ρ sinφ,

or equivalently, if and only if

cos2 φ <
(5 + 4μ)3/2 − 11 − 12μ

2μ(1 + μ)
.(3.4)

Proof. First note that, for compatibility, U = G0ρ, where G0 =
∫∞
−∞G(r) dr. We make a

small perturbation and let

q(s, t) = tU +

(
0
s

)
+ εu,

p(s, t) = ρ + εv.

(3.5)

The distance d between two points with parameters s and σ on the curve is given by

‖q(s) − q(σ)‖2 =
[
((U1t + εu1(s)) − (U1t + εu1(σ)))2(3.6)

+((U2t + s + εu2(s)) − (U2t + σ + εu2(σ)))2
]1/2

= s− σ + ε(u2(s) − u2(σ)) + O(ε2),

where s− σ is held fixed. The first equation of motion

q̇ =

∫ ∞

−∞
G(‖q(s) − q(t)‖2)p(σ) dσ(3.7)

linearizes to

u̇ =
d

dε

∣∣∣∣
ε=0

∫ ∞

−∞
G(s− σ + ε(u2(s) − u2(σ)))(ρ + εv(σ)) dσ

=

∫ ∞

−∞

(
G(s− σ)v(σ) + ρG′(s− σ)(u2(s) − u2(σ))

)
dσ

=

∫ ∞

−∞

(
G(s− σ)v(σ) − ρG′(s− σ)u2(σ)

)
dσ,

(3.8)
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where in the last line we have used that
∫∞
−∞G′(σ) dσ = 0 because G(σ) is an even function.

As the right-hand side is a convolution, it is diagonalized by the Fourier transform, giving

˙̃u = G̃(ṽ − 2πiωũ2ρ).(3.9)

(We are using the Fourier transform pair ũ(ω) =
∫∞
−∞ u(x)e−2πiωx dx, u(x) =

∫∞
−∞ ũ(ω)e2πiωx dω.)

Introducing F (r) = G′(r)/r, the momentum equation is

ṗ = −
∫ ∞

−∞
(p(s) · p(σ))∇G(‖q(s) − q(σ)‖2) dσ

= −
∫ ∞

−∞
(p(s) · p(σ))F (‖q(s) − q(σ)‖2)(q(s) − q(σ)) dσ,

(3.10)

which linearizes to

v̇ = − d

dε

∣∣∣∣
ε=0

∫ ∞

−∞
[(ρ1 + εv1(s))(ρ1 + εv1(σ)) + (ρ2 + εv2(s))(ρ2 + εv2(σ))]

F (s− σ + ε(u2(s) − u2(σ)))

(
ε(u1(s) − u1(σ))

s− σ + ε(u2(s) − u2(σ))

)
dσ

= −
∫ ∞

−∞

(
ρ2F (s− σ)(u1(s) − u1(σ))

(ρ · v(σ))G′(s− σ) + ρ2G′′(s− σ)(u2(s) − u2(σ))

)
dσ,

(3.11)

which is diagonalized by the Fourier transform to become

˙̃v1 = ρ2F̃ |ω0 ũ1,

˙̃v2 = −(2πiω(ρ · ṽ) + (2πω)2ρ2ũ2)G̃.
(3.12)

Here we have used, for example,
∫∞
−∞ F (σ) dσ = F̃ (0). The diagonalized, linearized equations

of motion (3.9), (3.12) are given collectively by the 4×4 linear systems in (3.1). The expression
for F̃ |ω0 in terms of G̃(ω) is easily established by manipulating the Fourier transforms.

The characteristic polynomial of the coefficient matrix of (3.1) is

P (λ) = λ
(
(cG̃− λ2)(2bG− λ) − a2G̃2λ

)
= λ

(
(ρ2F̃ |ω0 G̃− λ2)(−4πiωρ2G̃− λ) + 4π2ω2ρ2

1G̃
2λ

)
.

(3.13)

Although P (λ) has complex coefficients, iP (iλ) has real coefficients. If the cubic iP (iλ)/λ has
one real and two complex conjugate roots, then P (λ) has precisely one root with a positive real
part, indicating instability. This is true if and only if the discriminant of the cubic is negative.
This discriminant, after removing the positive factor (see Proposition 3.5 and Corollary 3.6
below) 4(G̃F̃ |ω0 )3 and expressing it in terms of the new variable μ(ω), is Δ in (3.2).

The stability criterion (3.4) is then determined simply by solving a quadratic equa-
tion.

Note that (3.1) is a complex Hamiltonian system, with conjugate variables ũ(ω) and ¯̃v(ω),
so its eigenvalues do not obey the usual (λ,−λ, λ̄,−λ̄) symmetry. When written as an 8×8 real
Hamiltonian system, all the eigenvalues given below are paired with their complex conjugates.
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Figure 1. The stability region for straight sheets in terms of φ, the angle of propagation of the sheet to its
normal (i.e., ρ1 = ρ cosφ, ρ2 = ρ sinφ), and μ(ω) = ω2G̃(ω)/

∫ ω

0
w′G̃(ω′) dω′. Here ω is the wavenumber of

the disturbance and G̃ is the Fourier transform of the Green’s function of the metric. Since typically μ ≤ 2,
only sheets moving nearly normal to themselves can be stable at any wavenumber.

Note from (3.13) that λ = 0 is always an eigenvalue. This corresponds to the particle-
relabeling symmetry and its associated conserved quantity, the potential vorticity J(s).

The instability region in terms of φ and μ is shown in Figure 1. For the metrics we will
consider, it is always the case that 0 < μ(ω) ≤ 2 for all ω.

Corollary 3.2. Δ = −1 at μ = 0 for all φ, indicating instability when μ is sufficiently small.
(We shall see below that for all Hk metrics with k > 3

2 , μ(∞) = 0; i.e., all such straight
sheets are unstable at high wavenumbers.)

Corollary 3.3. Stability can be lost, but never gained, with increasing angle of propagation φ.
Proof. The coefficients of μ in Δ (3.2) are all nonincreasing functions of φ ∈ [0, π/2].
Corollary 3.4. The eigenvalues can be reduced to the solution of a quadratic in two cases,

when ρ1 = 0 and when ρ2 = 0.
When ρ2 = 0 the sheet is moving perpendicularly to itself and the eigenvalues are (0, 0, λ,−λ),

where

λ2 = G̃(c + a2G̃) = G̃(F̃ |ω0 − (2πω)2G̃) = G̃F̃ |ω0 (1 − μ).(3.14)

The double zero eigenvalue has a single eigenvector and hence generates an algebraic O(t)
instability for all G. Exponential stability, on the other hand, is determined by μ and depends
on a subtle balance between the Fourier transforms of G(r) and G′(r)/r.

When ρ1 = 0 the sheet is moving tangentially to itself and the eigenvalues are

(0,−4πiρ2ωG̃,±ρ2

√
F̃ |ω0 G̃).

We will consider Euclidean-invariant metrics of the form A = a(−∇2), where a(η2) is the
Fourier symbol of the operator. For example, for the H1 metric 1−∇2, we have a(η) = 1+ η.
For such metrics we can easily calculate both the Green’s function and its Fourier transform.
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Proposition 3.5. The Green’s function G(‖x‖) of the operator A = a(−∇2) and its Fourier
transform G̃(ω) are given by

G(r) =
1

2π

∫ ∞

0

1

a(η2)
J0(ηr)η dη(3.15)

(where J0 is the zero order Bessel function of the first kind) and

G̃(ω) =
1

π

∫ ∞

0

dν

a(ν2 + (2πω)2)
,(3.16)

respectively.

Proof. A Hankel transform of the radially symmetric PDE AG = δ(‖x‖) gives (3.15) (see,
e.g., [25]). We then have

G̃(ω) =

∫ ∞

−∞
G(r)e−2πiωr dr

= 2

∫ ∞

0
G(r) cos(2πωr) dr

=
1

π

∫ ∞

0
dr

∫ ∞

0
dηJ0(ηr)η cos(2πωr)

1

a(η2)

=
1

π

∫ ∞

2πω

η dη

a(η2)
√

η2 − (2πω)2

=
1

π

∫ ∞

0

dν

a(ν2 + (2πω)2)

(3.17)

because

∫ ∞

0
J0(ηr) cos(2πωr) dr =

{
1√

η2−(2πω)2
, 0 < 2πω < η,

0, η < 2πω.
(3.18)

Here ν2 = η2 − (2πω)2.

Apart from being an easy way to calculate G̃, (3.16) has the following immediate conse-
quences.

Corollary 3.6. For any Euclidean-invariant, diagonal metric, straight sheets moving tan-
gentially to themselves are linearly unstable at all positive wavenumbers.

Proof. From positive-definiteness of the metric, a(ν) > 0 for all ν and hence G̃(ω) > 0.

Therefore F̃ |ω0 > 0 for all ω > 0 and the mode with eigenvalue |ρ2|
√

F̃ |ω0 G̃ is unstable.

Corollary 3.7. For any Hk metric, a(ν) = O(νk) as n → ∞ and hence G̃ exists and is
O(ω1−2k) as ω → ∞ if k > 1

2 . Similarly, F̃ |ω0 exists and is O(ω3−2k) for 1
2 < k < 3

2 and O(1)
for k > 3

2 . Consequently, the unstable eigenvalue for tangentially moving sheets is O(ω2−2k)

for 1
2 < k < 3

2 and O(ω(1−2k)/2) for k > 3
2 . Therefore (i) for 1

2 < k < 1 the equation is
linearly ill-posed for initial data in any fixed Sobolev space; (ii) for k ≥ 1 the growth rates are
bounded for large ω and hence do not lead to linear ill-posedness.
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Figure 2. Left: Each kernel G(r) determines a function μ(ω) which determines the stability of a disturbance
with wavenumber ω (see (3.3), (3.4), and Figure 1). Right: The resulting stability regions for each metric.
Here φ(ω) is the critical angle of propagation of a straight sheet to its normal above which a disturbance with
wavenumber ω is unstable.

Note that the critical case k = 1 is interesting, however, because then the eigenvalue tends
to a constant as ω → ∞. For k > 1 the instability will manifest itself at the frequency with
the maximum eigenvalue and then follow an essentially unique nonlinear evolution, forgetting
the initial perturbation, while for k = 1 all high frequencies grow at the same rate and the
nonlinear evolution depends on the initial perturbation.

Corollary 3.8. For any Hk metric, as ω → ∞ we have μ = O(1) for 1
2 < k < 3

2 and
μ = O(ω3−2k) for k > 3

2 . Therefore, for sheets moving normally to themselves, all sufficiently
large wavenumbers are unstable for all Hk metrics with k > 3

2 .

3.2. Stability under various metrics.
Case 1. Gaussian metric. We consider the H∞ metric A = exp(−∇2/4), with Fourier

symbol a(ν2) = exp(ν2/4), for which an application of (3.15) and (3.16) gives the Gaussian
kernel

G(r) =
1

π
e−r2(3.19)

and

G̃ =
1√
π
e−π2ω2

,

F̃ |ω0 =
2√
π

(1 − e−π2ω2
)

(3.20)

(see Figure 2). The growth rates for a range of propagation angles φ are shown in Figure 3.
When φ = 0, wavenumbers with 0 < ω < 0.3568 (i.e., wavelength more than 1/0.3568 =
2.8027) have zero real part and are neutrally stable, while wavenumbers with ω > 0.3568 are
unstable. The exponential smoothing of the high frequencies by the Green’s function is not
enough to stabilize these perturbations. Although arbitrarily high frequencies are unstable,
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Figure 3. The growth rate of disturbances with wavenumber ω to a straight sheet with angle of propagation
φ to its normal. Top left: H∞ (Gaussian) metric. Top right: H1 metric. Bottom: H2 metric.

the exponential smoothing of the high frequencies is reflected in the stability analysis by their
exponentially small growth rate. The growth rate is strongly peaked with a maximum of
λ = 0.1684 at ω = 0.4671.

When φ = π/2, all wavenumbers are unstable, with the growth rate strongly peaked with
a maximum of λ = 0.3989 at ω = 0.2650.

Case 2. H1 metric. For the H1 metric A = 1 − ∇2, a(ν) = 1 + ν and an application
of (3.15) and (3.16) give (where K0 is the zero order modified Bessel function of the second
kind)

G(r) = K0(r)/(2π),

G̃ =
1

2
√

1 + (2πω)2
,

F̃ |ω0 =
1

2

(√
1 + (2πω)2 − 1

)
.

(3.21)
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In the eigenvalue calculations, the dominant terms in G̃ and F̃ |ω0 cancel out with the following
results. When φ = 0, the real part of all eigenvalues is zero for all ω. There is no exponential
instability—only an algebraic instability due to the double zero eigenvalue. We examine this
case in detail in section 3.3, proving a theorem on linear stability. Curiously, although the
H1 metric applies less smoothing to the momentum than the H∞ metric does, it is in a sense
more stable. For φ > 0 there is a band of instability in (ω∗,∞), where ω∗ decreases from ∞
to 0 as φ increases from 0 to 0.1034. The growth rates tend to a positive constant as ω → ∞,
indicating that the nonlinear evolution of the instability depends on the high-frequency part
of the initial perturbation. For φ > 0.1034 all wavenumbers are unstable. The maximum
growth rate of λ → 1

2 occurs for φ = π/2, ω → ∞.
Case 3. H2 metric. For A = (1 − ∇2)2 an application of (3.15) and (3.16) gives (where

K1 is the first order modified Bessel function of the second kind)

G(r) =
1

4π
rK1(r),

G̃ =
1

4 (4π2ω2 + 1)3/2
, and

F̃ |ω0 =
1

4

(
1 − 1√

4π2ω2 + 1

)
.

(3.22)

The extra smoothing of high wavenumbers in the H2 compared to the H1 metric is already
enough to make the behavior of straight sheets qualitatively the same as the H∞ (Gaussian)
case, as the general theory of Corollaries 3.7 and 3.8 indicates. They are exponentially unstable
for all φ. For φ = 0 all wavenumbers ω > 0.2024 are unstable, with the growth rate decaying
slowly, O(ω−3/2), as ω → ∞. The maximum growth rate of only Re(λ) = 0.03305 comes at
ω = 0.3266. For φ = π/2, the maximum growth rate is λ = 0.08119 at ω = 0.1404.

3.3. Stability of straight sheets in an H1 metric. The case φ = 0 of a straight sheet
moving normally to itself corresponds to the motion of a single peakon in the 1D Camassa–
Holm equation. This case was shown in section 3.2, Case 2, to have no eigenvalues with positive
real parts. The perturbation grows as O(t) due to the double zero eigenvalue. However, we
now show that the algebraic instability applies only to the Lagrangian motion; the Eulerian
motion, in which one identifies two sheets related by the particle-relabeling symmetry (2.2), is
in fact linearly stable. The only effect of the instability is to push particles along the sheet. To
study this, in the following proposition we introduce a norm that measures the perturbation
to the true momentum and to the x-component of the tangent to the sheet. (Only the x-
component is relevant to the reduced motion, because d

dε

∣∣
ε=0

qs/‖qs‖ = (u1s, 0)T .)
Some care is required because although the Fourier modes are bounded in time, they are

not uniformly bounded with respect to ω. It would be possible for the solution itself to grow
in time. These considerations dictate the choice of norm in the following proposition. We use
the Sobolev norms defined by ‖u‖2

Hn =
∫

(1 + |ω|2n)|ũ|2 dω.
Proposition 3.9. Let A = (1 − ∇2) and consider the motion of a straight sheet moving

normally to itself: let q(s, 0) = (0, s)T + εu(s, 0), p(s, 0) = (1, 0)T + εv(s, 0), z = (u, v)T . Let
j(s) = d

dε

∣∣
ε=0

J(s) be the perturbation to the potential vorticity J(s) = qs · p and k(s, t) =
d
dε

∣∣
ε=0

p(s, t)/‖qs(s, t)‖ be the perturbation to the true momentum. Then for any n ≥ 1 the
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motion is linearly stable in the norm

‖z‖n = ‖u1s‖Hn + ‖k‖Hn+1/2 + ‖j‖Hn+1 ;(3.23)

i.e., for all ε > 0 there exists a δ > 0 such that ‖z(·, t)‖n < ε for all t > 0 and for all z(·, 0)
such that ‖z(·, 0)‖n < δ.

Proof. We know that the perturbation z(s, t) = O(t). First we will show that there are
no O(t) terms in u1(s, t) and k(s, t) and that ũ1(ω, t) and k̃(ω, t) are bounded in time for all
ω. However, the bounds are not uniform in ω so more precise estimates will be required to
establish the final result.

First, we calculate the perturbations to the potential vorticity and true momentum:

j =
d

dε

∣∣∣∣
ε=0

qs · p

=
d

dε

∣∣∣∣
ε=0

(
εu1s

1 + εu2s

)
·
(

1 + εv1

εv2

)
= u1s + v2,

k =
d

dε

∣∣∣∣
ε=0

p(s, t)

‖qs(s, t)‖

=
d

dε

∣∣∣∣
ε=0

(
1 + εv1

εv2

)
√

(εu1s)2 + (1 + εu2s)2)

=

(
v1 − u2s

v2

)
.

(3.24)

Of course, since J is conserved by the nonlinear motion, j is conserved by the linearized
equations of motion. We express the linear system (3.1) in Jordan canonical form for ω �= 0
as

ẏ1 = y2,

ẏ2 = 0,

ẏ3 = iλy3,

ẏ4 = −iλy4,

(3.25)

where λ =
√

G̃F̃ |ω0 (μ− 1) and z̃ = Xy with

X =

⎛
⎜⎜⎜⎜⎝

0 −a/c −1 −1

1 0 a

√
G̃/β −a

√
G̃/β

−a 0 c/

√
G̃β −c/

√
G̃β

0 1/G̃ −a −a

⎞
⎟⎟⎟⎟⎠ ,(3.26)

where β = c − (2πω)2G̃. As a check, we calculate that y2 = (−aG̃c/β)(−az̃1 + z̃4) which is
proportional to the Fourier transform of u1s + v2, the perturbed potential vorticity, which is
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why ẏ2 = 0 (recall that a = −2πiω). Therefore, the solution of (3.1) for ω �= 0 is

z̃ = Xy

= X

⎛
⎜⎜⎝

y2(0)t
0
0
0

⎞
⎟⎟⎠ + O(1)

= y2(0)t

⎛
⎜⎜⎝

0
1

2πiω
0

⎞
⎟⎟⎠ + O(1),

(3.27)

from which we conclude that ũ1, ṽ2, and k̃ = ṽ1 − 2πiωũ2 are bounded in time for each ω.

To study the motion in more detail we let w = (u1s, u2, k, j)
T = Lz, w̃ = L̃z̃, and compute

the solution

w̃(t) = L̃X diag(1, 1, eiλt, e−iλt)X−1L̃−1w̃(0),(3.28)

of which the relevant components are

ũ1s(ω, t) = cos(λt)ũ1s(ω, 0) + sin(λt)γ(ω)k̃(ω, 0) − (1 − cos(λt))γ(ω)2j̃(ω, 0),

k̃(ω, t) = cos(λt)k̃(ω, 0) − sin(λt)
(
γ(ω)−1ũ1s(ω, 0) + γ(ω)j̃(ω, 0)

)
,

(3.29)

where

γ(ω) = 2πiω

√
G̃/β

= 2πω
((

1 + 4π2ω2
)1/2 − 1

)−1/2

=

{ √
2, ω → 0,

O(ω1/2), ω → ∞.

(3.30)

Using λ(0) = 0 we can check that (3.29) holds for ω = 0 as well as for ω �= 0. Elementary
calculus now establishes the bounds

|γ(ω)| ≤
√

2π(1 + |ω|)1/2 ∀ω,

|γ(ω)−1| ≤ 1√
2
(1 + |ω|)−1/2 ∀ω.

(3.31)

We will also use

(1 + |ω|)l(1 + |ω|2n) ≤
√

2(1 + |ω|2n+l),

(1 + |ω|)−l(1 + |ω|2n) ≤ (1 + |ω|2n−l)
(3.32)
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for all ω and for all n, l > 0. We then have

‖u1s(·, t)‖Hn ≤ ‖u1s(·, 0)‖Hn + ‖F−1γ(ω)k̃(ω, 0)‖Hn + 2‖F−1γ(ω)2)j̃(ω, 0)‖Hn

= ‖u1s(·, 0)‖Hn +

(∫
(1 + |ω|)2n|γ(ω)k̃(ω, 0)|2 dω

)1/2

+

(∫
(1 + |ω|)2n|γ(ω)2j̃(ω, 0)|2 dω

)1/2

≤ ‖u1s(·, 0)‖Hn +

(
2
√

2π

∫
(1 + |ω|2n+1)|k̃(ω, 0)|2 dω

)1/2

+ 2

(
4
√

2π2

∫
(1 + |ω|2n+2)|j̃(ω, 0)|2 dω

)1/2

= ‖u1s(·, 0)‖Hn +

√
2
√

2π‖k(·, 0)‖Hn+1/2 + 21/44π‖j(·, 0)‖Hn+1

(3.33)

and similarly

‖k(·, t)‖Hn+1/2 ≤ ‖k(·, 0)‖Hn+1/2 + ‖F−1γ(ω)−1ũ1s(t)‖Hn+1/2 + ‖F−1γ(ω)j̃(0)‖Hn+1/2

= ‖k(·, 0)‖Hn+1/2 +

(∫
(1 + |ω|)2n+1|γ(ω)−1k̃(ω, 0)|2 dω

)1/2

+

(∫
(1 + |ω|)2n+1|γ(ω)j̃(ω, 0)|2 dω

)1/2

≤ ‖k(·, 0)‖Hn+1/2 +

(
1

2

∫
(1 + |ω|2n)|k̃(ω, 0)|2 dω

)1/2

+

(
2
√

2π

∫
(1 + |ω|2n+2)|j̃(ω, 0)|2 dω

)1/2

= ‖k(·, 0)‖Hn+1/2 +
1√
2
‖u1s(·, 0)‖Hn +

√
2
√

2π‖j(·, 0)‖)Hn+1 .

(3.34)

Because j is a conserved quantity, we also have that ‖j(·, t)‖Hn+1 = ‖j(·, 0)‖Hn+1 . Therefore

‖z(·, t)‖n = ‖u1s(·, t)‖Hn + ‖k(·, t)‖Hn+1/2 + ‖j(·, t)‖Hn+1

≤
(

1 +
1√
2

)
‖u1s(·, 0)‖Hn + (1 +

√
2
√

2π)‖k(·, 0)‖Hn+1/2 + C‖j(·, 0)‖Hn+1

≤ C‖z(·, 0)‖n,

(3.35)

where C = 1 +
√

2
√

2π + 21/44π. That is, we have the required stability with δ = ε/C.

Note that stability of the y-component v2 of the true momentum follows from v2 = j−u1s,
which implies that ‖v2(·, t)‖Hn ≤ ‖j(·, t)‖Hn+‖u1s(·, t)‖Hn ≤ C‖z(·, 0)‖n for some constant C.

It is necessary in Proposition 3.9 for the norm to include u1s and not u1 itself, the horizontal
perturbation, for u1 is not in fact bounded. To see why, we examine the ω = 0 Fourier
mode of the solution. From (3.1), this obeys ˙̃u(0, t) = G̃(0)ṽ(0, t), ˙̃v(0, t) = 0, with solution
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ũ(0, t) = ũ(0, 0)+G̃(0)ṽ(0, 0)t, ṽ(0, t) = ṽ(0, 0). In other words, the average speed of the sheet
is increased by G̃(0)

∫
v(s, 0) ds, leading to a linear drift away from the unperturbed position.

However, it can be proved, analogously to the proof of Proposition 3.9, that the motion is
orbitally stable in a norm including u1(·, 0).

By the Sobolev embedding theorem, these results also imply that the derivatives of the
solution up to a suitable order are also bounded by Cε for some constant C.

3.4. Numerical study of the instability. To follow the nonlinear development of the in-
stability we will solve the Euler equations for momentum sheets, (1.8), numerically. The basic
method is to discretize the sheet by a set of Lagrangian particles, or, equivalently, to approxi-
mate the integrals in (1.8) by constant-weight quadrature. Let the particles have positions qi
and momenta pi, i = 1, . . . , N , and let the particle spacing be h. The Hamiltonian becomes

H =
1

2
h2

N∑
i,j=1

G(‖qi − qj‖)pi · pj ,(3.36)

and the equations of motion are

q̇i = h

N∑
j=1

G(‖qi − qj‖)pj ,

ṗi = −h

N∑
j=1

pi · pjG′(‖qi − qj‖)
qi − qj
‖qi − qj‖

.

(3.37)

We integrate these with the symplectic midpoint rule [4, 18] xk+1 = xk + Δtf(x̄k), where the
midpoint value x̄k = (xk + xk+1)/2. Previous midpoint values are stored and extrapolated to
provide a high-order initial guess for x̄k, so that one can solve for xk+1 by simple iteration
to within the desired tolerance (typically 10−12) in just two or three iterations. Higher-order
variants were tested but not needed.

To simulate periodic sheets (say, with period 1 in the y-direction), it is necessary to
augment the Hamiltonian to include the effect of the periodic images:

Hext =
1

2
h2

N∑
i,j=1

M∑
k=−M

G(‖qi − qj + k(0, 1)T ‖)pi · pj .(3.38)

The parameter M (the number of periodic images) is adjusted so that the contribution of the
omitted images is less than 10−12. Since G(r) = o(e−y/α) in all the cases we consider, and we
use a length-scale α = 0.2, M ≤ 3 is sufficient. (In the motion of vortex sheets, governed by
the Biot–Savart law, the contribution of all the periodic images can be summed analytically;
but we could not achieve this for our choice of kernel.)

For analytic circular (resp., periodic) sheets and analytic G, the discretization (3.36) (resp.,
(3.38)) corresponds to discretizing an analytic periodic integral by the trapezoidal rule and
hence is spectrally accurate. For Hk metrics, however, G is not analytic. In this case we
apply the theory of quadrature of weakly singular periodic integrands developed by Sidi and
Israeli [26]. (A similar issue arises for axisymmetric vortex sheets [23].)



INSTABILITY OF MOMENTUM SHEETS 743

Theorem 3.10 (from [26]). If φ(u) = |u− s|σ log |u− s|f(u) + f̃(u), σ > −1, with f(u) and
f̃(u) 2m times differentiable on [a, b], and φ(u) periodic with period T = b− a and 2m times
differentiable on (−∞,∞)\{t + kT}∞k=−∞, grid points uj = a + jh, h = (b− a)/n, s = ui for
some i, ζ the Riemann zeta function, and

Qn[φ] = h

n∑
j=1
uj �=s

φ(uj) + f̃(s)h + 2[ζ ′(−σ) − ζ(−σ) log h]f(s)hσ+1,(3.39)

then the error

∫ b

a
φ(u) du−Qn[φ] = 2

m−1∑
μ=1

[ζ ′(−σ − 2μ) − ζ(−σ − 2μ) log h]
f (2μ)(s)

(2μ)!
h2μ+σ+1 + O(h2m)

(3.40)

as h → 0.

Corollary 3.11. The Hamiltonians (3.36) for circular sheets and (3.38) for straight sheets,
for Euclidean-invariant Hk metrics with k ≥ 2, have quadrature errors of O(h2k−1).

Proof. The form of the singularity in G(r) at r = 0 is controlled by the highest derivatives
∇2k in the inertia operator A of the metric. G(r) has the form used in Theorem 3.10 with
σ = 2k − 2. For k ≥ 2, the term g̃(t) = G(0) is included in the quadrature in (3.36); the
term ζ(−σ) drops out because ζ(2 − 2k) = 0 for k ≥ 2; but the term ζ ′(−σ) is missing from
the quadrature (3.36) and hence determines the leading order error of the quadrature. For
circular sheets, the integrands are periodic as in Theorem 3.10, while for straight sheets the
integrands decay rapidly at infinity, so there are no boundary terms.

The interesting case k = 1 requires more attention. In this case G(r) ∼ c log |r| as r → 0,
i.e., σ = 0 in (3.39). Simply omitting the singular term from the integrand, i.e., setting
G(0) = 0, gives a very poor quadrature rule of error O(h log h). Consider the integrand
G(‖q(s) − q(u)‖)p(u), for which an expansion near u = s gives

G(‖q(s) − q(u)‖)p(u) = c log(|s− u|‖q′(s)‖)p(s) + o(s− u),

i.e., f(s) = cp(s) and f̃(s) = c log ‖q′(s)‖p(s). We could therefore apply the quadrature of
(3.39) to get a method of order O(h3). However, this would involve approximating the term
‖q′(s)‖ by, e.g., finite differences, leading to complicated ODEs. Instead, we have started with
the quadrature

Pn[φ] = −2cp(s)ζ(0)h log h + h

n∑
j=1
uj �=s

φ(uj),(3.41)

which is O(h) + O(h3) accurate. It can be interpreted as a regularization of the kernel with
G(0) = −2cζ(0) log h = c log h. One step of Richardson extrapolation, i.e., 2Pn[φ] − Pn/2[φ],
eliminates the O(h) term, establishing the following.
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Proposition 3.12. For kernels obeying G(r) ∼ c log |r| as r → 0, the quadrature error∫
G(‖q(s) − q(u)‖)p(u) du− h

n∑
j=1

Gijpj = O(h3),(3.42)

where

Gij =

⎧⎨
⎩

G(‖qi − qj‖), j − i odd,
−2c log 2, j = i,
0, j �= i, j − i even.

(3.43)

The quadrature here is essentially the “every other point” trapezoidal rule (as studied,
e.g., as the modified point vortex method in [3]) but with the singular point included with a
special weight to account for the singularity.

For the standard H1 metric with A = (1 − α2∇2), we have G(r) = K0(r)/(2πα
2) ∼

− 1
2πα2 log |r| as r → 0, i.e., c = − 1

2πα2 .
There are two further numerical difficulties with the H1 kernel. First, recall from sec-

tion 3.2 that the bounded growth rates of the high frequencies depend delicately on the
asymptotic properties of G̃(ω). These properties are destroyed by the numerical quadrature
of (3.42), and indeed, a direct solution of Hamilton’s equations shows a high frequency insta-
bility. We have suppressed this instability using the Krasny filter [13]; during the simulation,
any Fourier modes with an amplitude less than a chosen cutoff (we used 10−10) are set to 0.
This prevents growth of the instability until the amplitudes of all modes are greater than the
cutoff. After this time the evolution of the sheet tends to proceed very quickly until it reaches
the point at which all accuracy is lost, typically just before a collision of the sheet with itself,
so that the instability does not have time to dominate the solution. Convergence of point
vortex methods for vortex sheets using the Krasny filter is established in [3].

The second difficulty occurs only in the simulation of sheets moving transversely to them-
selves, i.e., in the case φ = 0. Recall that this case has a double zero eigenvalue for each
wavenumber. Under the numerical discretization, this double zero splits into a ± pair of
eigenvalues of the order of the square root of the discretization error. This is not a problem
for the Gaussian kernel, for which we have spectral accuracy, but it is a problem for the H1

case. The eigenvalue pair can be real or imaginary depending on h and on the metric. If real,
it creates a numerical instability affecting all wavenumbers. The only way we have found to
deal with this is to perform careful convergence checks of all our results for this case.

The results for a number of simulations are shown in Figures 4–11 along with some error
estimates. (There are animations of the sheet motion available for each of these cases at
http://www-ist.massey.ac.nz/smarsland/KelvinHelmholtz.html.) In each case we have com-
puted three approximate solutions, x(1) = xh,Δt, x

(2) = x 1
2
h, 1

2
Δt, and x(3) = xh, 1

2
Δt. The global

error in x(2) due to the (second-order) time discretization is estimated by (x(3) −x(1))/3. The
estimation of the global error due to the space discretization depends on the metric. For the
H1 metric, it is estimated for x(2) by (x(2) − x(3))/7 (since the spatial error is O(h3)), and
for the Gaussian metric it is estimated for (the less accurate solution) x(3) by x(2) − x(3); the
error in x(2) is much smaller. We also compute the error in the potential vorticity J(s). We
then take 2-norms with respect to space for all the errors and plot their evolution in time

http://www-ist.massey.ac.nz/smarsland/KelvinHelmholtz.html
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Figure 4. Evolution of an initially nearly straight momentum sheet under a Gaussian metric with unper-
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which oscillates while triggering a nonlinear response in the most unstable mode ω = 2, which entrains a forced
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t = 37.5 t = 38.625 t = 39.75

t = 40.875 t = 42 t = 43.125

t = 44.25 t = 45.375 t = 46.5

t = 47.625 t = 48.75 t = 49.875

Figure 6. The motion of the sheet for the simulation of Figure 4, i.e., Gaussian metric and φ = 0. The
solutions are 1-periodic in the y-direction and three symmetric images are shown. See text for further details.
The x and y axes have the same scaling throughout.

for the Gaussian kernel in Figure 5. In all cases h = 1/512 and Δt = 0.05, so that for the
most accurate solution x(2) there are 1024 grid points and the time step is 0.025. (In fact, the
dominant errors can be removed by Richardson extrapolation applied to the final results; this
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t = 8 t = 8.625 t = 9.25

t = 9.875 t = 10.5 t = 11.125

t = 11.75 t = 12.375 t = 13

t = 13.625 t = 14.25 t = 14.875

Figure 7. The motion of the sheet for the Gaussian metric and φ = π/8.

does not change our observations of the results.)

For the major part of all the simulations the errors are reasonably small. However, when
the sheets become stretched or develop sharp corners, the errors are large and the results
should be interpreted with caution. In addition, it is known [10] that the point particle
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t = 5 t = 5.825 t = 6.65

t = 7.475 t = 8.05 t = 9.125

t = 9.95 t = 10.775 t = 11.6

t = 12.425 t = 14.075 t = 14.9

t = 15.725 t = 16.55 t = 17.375

Figure 8. The motion of the sheet for the Gaussian metric and φ = π/2.
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Figure 9. Close ups of the motion for the Gaussian metric, showing the momentum (at every 10th point).
Left: φ = 0; see Figure 6. Center: φ = π/8; see Figure 7. Right: φ = π/2; see Figure 8.

t=4.925 t=6.175

t=6.8

t=7.425 t=8.025

t=5.55

Figure 10. The motion of the sheet for the H1 metric and φ = π/8.

approximation for sheets becomes inaccurate when two sections of the sheet approach closer
than a few times the particle spacing.

For the Gaussian kernel, the numerical results indicate that the sheet remains analytic for
all time and does not develop spontaneous singularities or self-intersections. For the H1 kernel,
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t = 0.725 t = 1.425 t = 2.125

t = 2.825 t = 3.525 t = 4.225

t = 4.925 t = 5.625 t = 6.325

t = 7.025 t = 7.725 t = 8.425

Figure 11. The motion of the sheet for the H1 metric and φ = π/2.

the motion can terminate in a finite-time self-intersection. Indeed, this is already known to
happen when two 1D Camassa–Holm solitons approach one another, which corresponds here
to the collision of two approaching straight sheets. The numerical results indicate, however,
that the sheet remains analytic prior to a self-intersection and does not develop spontaneous
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self-intersections. In all cases the initial perturbation is confined to wavenumber 1 and has
amplitude 5 × 10−6 in q and 2.5 × 10−5 in p.

Three cases are shown for the Gaussian kernel G(r) = e−(r/α)2 with α = 0.2. (Note
the different space- and time-scales from those considered in section 3.2. Note also that three
symmetric repetitions of the sheet are shown.) For normal motion (φ = 0), from section 3.2, we
have that wavenumbers with αω > 0.3568 are unstable, with the instability strongly peaked at
αω = 0.4671. In the simulations with periodic boundary conditions, only integer wavenumbers
are permitted. Therefore, ω = 1 is stable, and ω ≥ 2 is unstable, with ω = 2 the most unstable.
These results are confirmed in Figure 4, which shows wavenumber ω = 1 undergoing three
periodic oscillations before the nonlinear interactions it generates in ω = 2 grow to dominate
the solution. ω = 3 is slaved to the most rapidly growing mode ω = 2. The nonlinear evolution
of the instability (Figure 6) shows the development of two fingers on length-scale α, the tail
of which stays put. The body of the finger consists of two sheets with opposite momentum,
which approach each other like the capture of 1D particles [17] and essentially cancel one
another out. This is the simplest instance of what we call the “zippering” phenomenon of
sheets. The remaining straight part of the sheet then undergoes a second instability, also with
ω = 2 but displaced by a quarter period. As these secondary fingers grow they cause the
primary fingers to unzip. In the final state shown the motion consists of approximately 1D
motion of the horizontal fingers combined with continued evolution of the tips.

For small nonzero φ the picture is qualitatively the same, but as φ increases, new features
of the motion emerge. The motion for φ = π/8 is shown in Figure 7. Wavenumber 1 is
now unstable, and, in addition, the momentum in the tail of the finger swings around to
form an outwardly expanding bubble. The zippered sections of the sheet are now curved and
undergo dynamics of their own. Eventually the bubbles and zippers will meet their symmetric
images and undergo further zipperings. The secondary instability also occurs but its evolution
appears to be constrained by the primary zippers.

As φ increases further the bubbles grow larger, until the extreme case (Figure 8) φ = π/2
is reached. Now the bubbles are so large that there is no recognizable finger and no zippering
at the bubble’s tail. Instead, each left- and right-moving bubble expands to meet its periodic
image, sections of these pairs zipper up, and the heads of each bubble in a beautiful maneuver
reform to form left- and right-moving straight sheets. These, of course, are unstable and begin
to finger, causing the main zippers to begin to unzip, while the partly zippered internal parts
of the sheet continue to evolve in their own right.

The initial stages of the evolution of the nonlinear stability for the H1 metric are roughly
similar. (See Figure 10 for φ = π/8 and Figure 10 for φ = π/2.) We know, however, from
the 1D case, that sheets can collide in finite time, with the classical solution ending in a
singularity. All the simulations do appear to end in this way, although we have not performed
a detailed study of the collision process. Intriguingly, however, when two sections of the sheet
appear to be on a collision path, they first match their shapes and try to zipper up. Only
after a long zippered section has formed do the sheets collide at some point on the zipper.
In the case φ = π/2 the zippered section even appears to reseparate along its length before
colliding at the ends of the zipper. Although these late-stage phenomena are observed in both
the high- and low-accuracy simulations, they should still be interpreted with caution as the
global errors here are large.
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4. Stability of expanding circular sheets. A single circular sheet is described by its radius
r(t), radial momentum pr(t), and rotational momentum pφ(t). If the momentum points toward
the center of the circle, the circle collapses to a point, ending in a singularity; otherwise the
momentum vector is asymptotically outwardly normal to the sheet. Here we study only this
limiting case; i.e., we take pφ = 0.

The linearized equations of motion form a complicated system of integro-differential equa-
tions which, as far as we can tell, cannot be solved analytically. However, they can be solved
asymptotically for large r (and hence for large t). The following proposition shows that
expanding circular sheets are algebraically, but not exponentially, unstable. Moreover, the
instability does not depend in a significant way on the initial perturbation, which enters the
solution only parametrically. All frequencies grow at the same rate. The growth relative to
the size of the expanding sheet is only O(t1/3).

Proposition 4.1. Consider a circular momentum sheet of radius r(t), radial momentum
pr(t), and rotational momentum pφ(t) = 0 subject to a small perturbation, so that its position
and momentum are described by

q(r, t) = r(t)

(
cos θ
sin θ

)
+ εu(θ, t), p(r, t) = pr(t)

(
cos θ
sin θ

)
+ εv(θ, t),(4.1)

where θ is the Lagrangian parameter of the sheet. If pr(0) > 0 so that the sheet is expanding,
then as t → ∞ we have

r(t) = O(t2/3), pr(t) = O(t1/3), u(t) = O(t), v(t) = O(t2/3)

for all kernels G(r).
Proof. For fixed θ �= α, the distance d = ‖q(θ) − q(α)‖2 between two points on the sheet

is given by

d = 2r sin
1

2
|α− θ|

+ ε

(
2 sin

1

2
|α− θ|

)−1

[(v1(θ) − v1(α))(cos θ − cosα) + (v2(θ) − v2(α))(sin θ − sinα)]

+ O(ε2).

(4.2)

The unperturbed motion is described asymptotically for large r by a Hamiltonian system with
H = (G0p

2
r)/(2r) + O(p2

r/r
3), where G0 =

∫∞
−∞G(r) dr; dropping the higher-order terms, the

equations of motion are

ṙ = G0
pr
r
,

ṗr = −1

2
G0

p2

r2

(4.3)

with solution

r(t) =

(
3

2

√
2G0Et + r

3/2
0

)2/3

= O(t2/3),

pr(t) =
√

2Er(t)/G0 = O(t1/3),

(4.4)
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where E is the value of the energy. Note that the momentum per unit length of the sheet is
O(t−1/3) and tends to zero as t → ∞.

Linearizing the equations of motion, making the substitution r̃ = 2r sin 1
2 |α − θ|, and

expanding the integrands for large r give the linearized system

ut =
G0

r
v +

G0pr
r2

AT (θ)uθ,

vt =
G0pr
r2

(A(θ)v)θ

(4.5)

with coefficient matrix

A(θ) =

(
cos θ sin θ sin2 θ
− cos2 θ − cos θ sin θ

)
.(4.6)

Equation (4.5) forms a canonical Hamiltonian system with Hamiltonian

H =

∫ 2π

0

(
G0pr
r2

uTθ Av +
G0

2r
vT v

)
dθ,(4.7)

which can also be derived by directly expanding the full Hamiltonian. In general, of course,
such nonautonomous, nonconstant-coefficient PDEs cannot be solved explicitly. In this case,
however, the matrix A has constant Jordan form,

A = XJX−1, X =

(
− tan θ − sec2 θ

1 0

)
, J =

(
0 1
0 0

)
,(4.8)

and, even though A(θ) and A(α) do not commute for θ �= α, the equations are nevertheless
dramatically simplified by the canonical change of variables

v = Xv̄, u = X−T ū(4.9)

in terms of which the new Hamiltonian is

H̄ =

∫ 2π

0
ūT (X−1AX)v̄ + ūT (X−1)θAXv̄ +

1

2
v̄TXTXv̄ dθ

=

∫ 2π

0

G0pr
r2

(
ūTθ Jv + ūTKv̄

)
+

G0

2r
v̄TLv dθ,

(4.10)

where

K =

(
0 0
0 −1

)
, L = sec2 θ

(
1 tan θ

tan θ sec2 θ

)
,(4.11)

with equations of motion

˙̄u1 =
G0

r
sec2 θ(v̄1 + v̄2 tan θ),

˙̄u2 =
G0pr
r2

(ū1θ − ū2) +
G0

r
sec2 θ(v̄1 tan θ + v̄2 sec2 θ),

˙̄v1 =
G0pr
r2

v̄2θ,

˙̄v2 =
G0pr
r2

v̄2.

(4.12)
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Figure 12. The nonlinear development of the algebraic (O(t1/3)) instability of circular momentum sheets.
Here r(0) = pr(0) = 1, G(r) = exp(−(r/0.2)2), and a small perturbation is applied to q and p in the 2nd
Fourier mode.

Notice that the change of variables has reduced the PDEs to (effectively) ODEs. Substituting
the asymptotic behavior of r(t) and pr(t) gives

˙̄u1 = ct−2/3 sec2 θ(v̄1 + v̄2 tan θ),

˙̄u2 =
2

3t
(ūθ1 − ū2) + ct−2/3 sec2 θ(v̄1 tan θ + v̄2 sec2 θ),

˙̄v1 =
2

3t
v̄2θ,

˙̄v2 =
2

3t
v̄2.

(4.13)

The solution for the momentum perturbation (as t → ∞) is

v̄2 = t2/3b(θ), v̄1 = t2/3b′(θ),(4.14)

where b(θ) is determined by the initial conditions. Substituting (4.14) into (4.13) for ū shows
that only the O(t−2/3) terms contribute to the leading order behavior of ū. This leading order
behavior is more easily determined from the original formulation

ut = ct−2/3v = αd(θ) (where d = X(b′, b)T ),(4.15)
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Figure 13. Motion of a momentum sheet with noncircular initial conditions, Gaussian metric.

where α = [(4p2
r0)/(9G0r0)]

−1/3, so

u = γtd(θ).(4.16)

Note that the asymptotic behavior of the unperturbed sheet and of the leading order
behavior of perturbation depends on the metric only through G0. Higher-order terms depend
on higher moments of G, and these can be found through a regular perturbation expansion
proceeding in powers of r−2. Also, note that the O(t2/3) growth of the sheet is critical in
determining its stability; any slower, and the growth of perturbations would be bounded; any
faster, and they would grow exponentially, not algebraically.

The development of the instability is shown in Figure 12 under the Gaussian metric
G(r) = exp(−(r/α)2) with α = 0.2. Here r(0) = pr(0) = 1 and the initial perturbation
is confined to the second Fourier mode. The nonlinear development of the instability shows
itself on the length-scale α, followed by rapid fingering.
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Figure 14. Motion of a momentum sheet with noncircular initial conditions, H1 metric. The initial
conditions are the same as in Figure 13.

Some dynamics of momentum sheets for initial conditions far from circular are shown in
Figure 13 for the Gaussian kernel G(r) = exp(−(r/0.2)2). The momentum in the northwest
corner of the sheet, initially pointing inward, swings around to point outward, forming an
outwardly expanding bubble, a fairly stable object much like the circular sheets examined
above. Another bubble is seen in the southeast corner. However, two other sections of the
sheet do not succeed in turning around, and at t = 40 are approaching each other (later they
will zipper up as in Figure 8). The transition from outward to inward momentum at the
southwest corner seems to be unstable and leads to the development of a growing finger.

The initial conditions in Figure 14 are the same as in Figure 13, but we now switch to
the H1 kernel G(r) = K0(r/0.2). Apart from the time-scale, the motion is broadly similar
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until some fine structure emerges on the length-scale of the kernel. Shortly after the final time
shown, the motion ends in a self-collision of the sheet.
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Transition from Rotating Waves to Modulated Rotating Waves on the Sphere∗

Adela N. Comanici†

Abstract. In this article, we consider parameter-dependent systems of reaction-diffusion equations on the
sphere, which are equivariant under the group SO(3) of all rigid rotations on the sphere. It is known
that the transition from rotating waves to modulated rotating waves on the sphere can be explained
via a supercritical Hopf bifurcation from a rotating wave, SO(3)-symmetry, and finite-dimensional
equivariant center manifold reduction. Using Floquet theory, it is easy to get the decomposition
of these modulated rotating waves into the primary frequency vector part and the periodic part.
Going further, we use the Baker–Campbell–Hausdorff (BCH) formula in the Lie algebra so(3) to
get the closed form of the reduced differential equations on so(3), and then closed formulas for the
primary frequency vectors and for the periodic parts associated to the bifurcating modulated rotating
waves. As a consequence, we get the explicit characterization of these modulated rotating waves
and all possible tip motions on the sphere: quasi-periodically meandering and slowly drifting. This
approach does not treat separately the resonant and nonresonant Hopf bifurcation of a rotating wave
on the sphere; the change that appears in the resonant case in the Taylor expansions for the primary
frequency vectors is implicitly captured by using the BCH formula in so(3), and it is independent
of the normal forms theory developed in [B. Fiedler and D. Turaev, Arch. Ration. Mech. Anal., 145
(1998), pp. 129–159]. When systems with two parameters are involved and the norm of the frequency
vector of the initial rotating wave undergoing Hopf bifurcation is a multiple integer of the critical
eigenvalue leading to Hopf bifurcation, we give a shorter and more intuitive proof for the following
fact stated in [C. Wulff, Doc. Math., 5 (2000), pp. 227–274] for a general Lie group: the primary
frequency vectors of a branch of these modulated rotating waves are generically orthogonal to the
frequency vector of the initial rotating wave undergoing Hopf bifurcation, and their tip motions
are slowly drifting along the equator of the sphere. Due to the computational nature of the BCH
formula in so(3), this approach can be translated in a computer-implemented method which will
allow us to better control the tip motions of the modulated rotating waves on the sphere.

Key words. equivariant center manifold, rotating wave, modulated rotating wave, Hopf bifurcation, Baker–
Campbell–Hausdorff formula in so(3)
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1. Introduction. The main motivation of this article is the presence of spiral waves in
excitable media, especially in cardiac tissue. Spiral waves arise as stable spatio-temporal pat-
terns in various chemical, physical, and biological systems, as well as numerical simulations
of reaction-diffusion systems on excitable media with various geometries [19]. Excitable me-
dia are extended nonequilibrium systems having a uniform rest state that is linearly stable
but susceptible to finite perturbations. Spiral waves have been observed experimentally, for
instance, in catalysis of platinum surfaces [23], Belousov–Zhabotinsky chemical reactions [17],
Rayleigh–Bernard convection [25], slime-mold cells [13], and most importantly, cardiac tis-
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sue [8]. Numerical simulations of the spiral waves have been done in [2, 3] for the planar case,
and in [1, 15, 22, 32, 33, 34] for the spherical case.

It is now believed that spiral and scroll waves that appear in the heart muscle can lead
to cardiac arrhythmias (abnormal rhythms in the heart), giving rise to atrial fluttering or
ventricular fibrillation. In normal hearts cardiac arrhythmias are rare, but in diseased hearts
cardiac arrhythmias can become more common. For example, if chambers of the heart become
abnormally large, they are susceptible to serious arrhythmias in which waves are believed to
circulate in a fashion that is similar to the circulation of the Belousov–Zhabotinsky waves in a
chemical medium. Real human hearts are enormously complex three-dimensional structures.
In this article, we assume that the geometry of the excitable media is a sphere, which in the
case of cardiac tissue is clearly an approximation.

In the planar case, a rigidly rotating spiral wave is an example of wave pattern rotating
around a center and being well approximated by an Archimedean spiral wave far from the
rotation center. Near the rotation center, there is a core region of the spiral wave, where
the front of the wave has a tip, whose structure is considered to be the most important in
understanding the behavior of the whole spiral wave. Barkley [2] was the first who performed a
numerical linear stability analysis for the basic-time periodic spiral wave solution in a reaction-
diffusion system on the unbounded plane and showed evidence of a Hopf bifurcation. Later,
using an ad hoc model, Barkley [3] was the first to realize the key importance of the group
SE(2) of all planar translations and rotations in describing the dynamics and bifurcations
of planar spiral waves. It is well known now that the tip of the planar spiral wave rotates
steadily or meanders or linearly drifts in the plane [14].

From a mathematical point of view, for the planar case, rigidly rotating spiral waves
are examples of rotating waves, meandering spiral waves are examples of modulated rotating
waves, and linearly drifting spiral waves are examples of modulated travelling waves. The
first rigorous mathematical theory of the planar spiral waves was done by Wulff [30]. The
main difficulty comes from the fact that the group SE(2) is noncompact and the action of
SE(2) on the usual spaces of functions is not smooth. The proofs in [30] are based on the
basic assumption that the linearization at the rotating wave in the corotating frame does not
exhibit continuous spectrum near the imaginary axis, and the proofs are done using Liapunov–
Schmidt reduction on scales of Banach spaces.

Later, in [28], Sandstede, Scheel, and Wulff proved a finite-dimensional equivariant center
manifold reduction theorem near a relative equilibrium Gu0 of an infinite-dimensional vector
field on a Banach space X on which acts a finite-dimensional Lie group (not necessarily
compact). In [10], Fiedler et al. showed that the reduced differential equations on this center
manifold have a skew-product form. All these were done by Field in [12] and Krupa in [18]
for finite-dimensional spaces.

Using the results of [28], Hopf bifurcations from one-armed and multiarmed rotating planar
spiral waves to meandering waves were studied in [10, 14].

In [26], Renardy considered bifurcations from rotating waves of semilinear equations that
are equivariant under a general compact Lie group and applied his results to the Laser equa-
tions. His results do not cover the resonance case. The theorems were proved using a gener-
alized implicit function theorem on scales of Banach spaces.

In [31], a G-equivariant semilinear system of parabolic equations (where G is a finite-
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dimensional possibly noncompact Lie group) is studied. In particular, the periodic forcing
of relative equilibria and resonant periodic forcing of relative equilibria to relative periodic
orbits, as well as Hopf bifurcation from relative equilibria to relative periodic orbits, are
treated using Liapunov–Schmidt reduction. Resonant drift phenomena are also studied using
the same method in Proposition 3.4 of [31]. Then, these results are applied to the planar
spiral waves for both Hopf bifurcation and periodic forcing, and to the case G = SO(3) for
the periodic forcing in Example 2.8 and Example 2.14 of [31].

However, the transition from rotating waves to modulated rotating waves on the sphere can
be explained via a supercritical Hopf bifurcation from a rotating wave, SO(3)-symmetry, and
finite-dimensional equivariant center manifold reduction developed in [28]. Using [10] and [18],
the reduced differential equations on the center manifold have a skew-product form. Therefore,
Hopf bifurcation from a rotating wave on a sphere can be described by a Hopf bifurcation of
an equilibrium combined with a motion along the group directions. Moreover, on the group
directions using Floquet theory, it is easy to get the decomposition of the modulated rotating
waves into the primary frequency vector part and the periodic part is proved.

In 2004, Comanici used in her Ph.D. thesis [7] the Baker–Campbell–Hausdorff (BCH)
formula in so(3) and the reduction to a differential equation on so(3) to further study the
Hopf bifurcation from rotating waves on the sphere, i.e., to get a closed formula for the primary
frequency vectors and for the periodic parts associated to the bifurcating modulated rotating
waves and a closed formula for the angle between the axis of rotation of the initial rotating
wave and the primary frequency vector of these modulated rotating waves. As a consequence,
we get the explicit characterization of these bifurcating modulated rotating waves and all
possible motions of their tips on the sphere: meandering or slow drifting.

When systems with two parameters are involved and the norm of the frequency vector
of the initial rotating wave undergoing Hopf bifurcation is a multiple integer of the critical
eigenvalue leading to Hopf bifurcation, we give a shorter and more intuitive proof for the
following fact: the primary frequency vectors of a branch of bifurcating modulated rotating
waves are generically orthogonal to the frequency vector of the initial rotating wave undergoing
Hopf bifurcation. This result is stated in Proposition 3.4 in [31] for a general Lie group and
is illustrated in Example 2.8 of [31] for the rotation group SO(3) for periodic forcing. This
proof is not only more intuitive, but also if it is combined with the angle formula mentioned
before, it shows us how we can control the tip motions of these modulated rotating waves on
the sphere if this approach is translated into a computer-implemented method.

Independently in 2005, Chan used the normal form theory developed for general Lie groups
in [11], combined with an expansion in the bifurcation parameter and the BCH formula, to
treat the same problem in [5] and obtained similar results. He made a mistake in the resonant
case and he corrected it after he was aware of my independent work (see page 2 in [5]). Also,
Chan obtained leading order approximations for the primary frequency vectors and for the
characterization of the modulated rotating waves.

My approach does not treat separately the resonant and nonresonant Hopf bifurcation of
the rotating wave. The change that appears in the resonant case in the Taylor expansions
of the primary frequency vectors is implicitly captured by the BCH formula in so(3), and it
is independent of the normal form theory developed in [11]. Ultimately, we do consider the
nonresonant and resonant cases separately just to emphasize the difference between them.
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This method can be generalized for any compact Lie groups, as it will be briefly discussed at
the end of sections 3 and 4.

The interest in considering spiral waves on nonplanar surfaces is motivated by the applica-
bility to problems in physiology, biology, and chemistry. In the case of the spiral waves on the
sphere, the dynamics are expected to be quite different, because any spiral wave starting from
a rotating center cannot end at a point. The number of tips of a wave front cannot be odd, and
therefore, the dynamics of spiral waves may acquire a new feature qualitatively different from
the planar case. The dynamics of spiral waves in an excitable reaction-diffusion system on a
sphere was numerically investigated by [1, 15, 33, 34], and [32] who employ a spectral method
using spherical harmonics as basis functions. Maselko [20], as well as Maselko and Showal-
ter [21], performed experiments with Belousov–Zhabotinsky chemical waves propagating on
the surface of a sphere.

In [33], two different asymptotic regimes are observed. The first regime is a rigid rotation
of an excitation wave around the symmetry axis of the domain. The second one is a compound
rotation including a drift of the rotation center of the spiral wave along the equator of the
sphere. In this case the shape of the wave and its rotation velocity are periodically changing
in time.

In [15], it is shown that the tips of the double spiral wave can either perform a meandering
motion or rigidly rotate around a fixed center, depending on the system control parameter.
It is observed that the rotation of the spiral wave on a spherical surface is similar to the one
obtained on the planar surface, except that in the absence of the boundary on a spherical
surface some parts of the wave can undergo self-annihilation in contrast to the spiral wave
behavior on bounded planar surfaces. In [1], meandering waves on a static sphere are obtained
and it is shown that these waves are stable.

In this article we make the assumption that the relative equilibrium has trivial isotropy (no
spatial symmetry), because as far as we are aware, there has been no observation of m-armed
double spiral waves (m > 1) on spherical surfaces. Also, in [6] it was numerically checked
that there is a critical size of the sphere below which self-sustained spiral waves cannot exist.
Therefore, we consider the sphere of an arbitrary radius r.

In section 2, we recall that the functional-analytical framework can be found in [31] for
the general Lie groups and we present only the definition of the relative periodic orbit, the
frequency vector of a rotating wave, and the primary frequency vector (or average rotation fre-
quency vector [31]) of a modulated rotating wave. Also, using the equivariant center-manifold
reduction developed in [10, 18, 28], we recall the reduced skew-product differential equations
for a Hopf bifurcation from a rotating wave on the sphere. It is known that generically we get
modulated rotating waves. Decomposition of a modulated rotating wave obtained by Hopf
bifurcation into a primary frequency part and the associated periodic part is easily obtained
using Floquet theory and briefly described in this section.

Our main results are contained in sections 3, 4, and 5. In section 3, we get the closed form
of the reduced differential equations on so(3) in Theorem 3.4 using the BCH formula in the
Lie algebra so(3), the properties of the exponential map of SO(3) and its differential, and the
properties of the adjoint representations of SO(3) and so(3). Our approach follows the one
presented in [14].

In section 4, we get closed formulas for the primary frequency vectors and the associated
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periodic parts, as well for the angle between the axis of rotation for the initial rotating wave
undergoing Hopf bifurcation and the primary frequency vectors of the bifurcating modulated
rotating waves. As a consequence, the explicit characterization of these modulated waves is
obtained in Theorem 4.4, and we show that there are two possible types of tip motions for the
modulated rotating waves: quasi-periodically meandering of order O(1) about the primary
frequency vectors, with the angle between primary frequency vector and the axis of rotation

for the initial rotating wave of order O(λ
1
2 ) for the nonresonant case, or slowly drifting of

order O(λ
|k|
2 ) about the primary frequency vectors for the k : 1 resonant case. Some pictures

illustrating the theoretical results obtained in this section are shown. The details about these
pictures can be found in [7].

In section 5, we discuss Hopf bifurcation with two parameters from a rotating wave on
the sphere, assuming that the amplitude of the frequency vector of the initial rotating wave
is k times the critical eigenvalue leading to Hopf bifurcation. We give a shorter proof for
the following fact stated in [31] for a general Lie group: there exists generically a unique
branch of modulated rotating waves on the sphere with primary frequency vectors orthogonal
to the frequency vector of the initial rotating wave undergoing Hopf bifurcation, and their tip

motions are slowly drifting of order O(λ
|k|
2 ) along the equator of the sphere. This proof makes

use of the implicit function theorem and the BCH formula in so(3).
Section 6 presents the proof of Theorem 3.4. An appendix is included. It contains some

computations relevant for the results in section 4.

2. Hopf bifurcation from rotating waves on the sphere.

2.1. Rotating waves and modulated rotating waves on the sphere. Throughout this
paper we denote by S2 the unit sphere in R

3 and by rS2 the sphere of radius r > 0. We
consider the reaction-diffusion system

ut = DΔSu + F (u) on rS2,(2.1)

where u = (u1, u2, . . . , uN ) : R × rS2 → R
N with N ≥ 1,

D =

⎛
⎜⎝

d1 . . . 0
...

. . .
...

0 . . . dN

⎞
⎟⎠

with di ≥ 0 for i = 1, 2, . . . , N the diffusion coefficients, ΔS is the Laplace–Beltrami operator
on rS2, and F = (F1, F2, . . . , FN ) : R

N → R
N is a Ck+2 function with 0 ≤ k ≤ ∞. The

functional-analytical framework is well developed in [31] for general Lie groups G. Hence, the
reaction-diffusion system (2.1) is considered on the function space

Y =

{
L2(rS2,RN ) if di > 0 for i = 1, 2, . . . , N ;

H2(rS2,RN ) if there exists i ∈ {1, 2 . . . , N} such that di = 0.
(2.2)

If Y = L2(rS2,RN ), then we recall that for any α ∈ (1
2 , 1), Yα = D((I − DΔS)α) are

the fractional spaces of Y relative to the sectorial operator −DΔS . Using [31], the reaction-
diffusion system (2.1) defines a sufficiently smooth local semiflow Φ on the function space Yα if
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Y = L2(rS2,RN ) or on Y if Y = H2(rS2,RN ). Namely, the flow is Ck+2 if Y = L2(rS2,RN )
and Ck if Y = H2(rS2,RN ). Also, in what follows we work with Yα, but everything is valid
for Y = H2(rS2,RN ).

The reaction-diffusion system (2.1) is SO(3)-equivariant, where we recall that the C1

unitary representation T of SO(3) on Yα is defined by

T (A)u(x) = u(A−1x), where A ∈ SO(3), u ∈ Yα, and x ∈ rS2,

as discussed, for example, in [31].
The notions of tip position function of SO(3) on Yα, tip motion of u0 ∈ Yα, relative

equilibrium for (2.1), rotating wave for (2.1), frequency vector of a rotating wave, relative
periodic orbit for (2.1), modulated rotating wave for (2.1), and primary frequency vector of a
modulated rotating wave for (2.1) are well known in the literature and can be found in [31] for
the general Lie groups. We present only a few remarks regarding these notions for G = SO(3).

Throughout this paper we assume that the relative equilibrium and the relative periodic
orbit have trivial isotropy (no spatial symmetry). We recall the definition of a relative periodic
orbit for (2.1), because it is formulated slightly differently from the one given in section 1.7,
page 9 in [31], in the sense that we also make use of the surjectivity of the exponential map
of SO(3), i.e., g∗ = eX0T .

Definition 2.1. Let u0 ∈ Yα be such that the stabilizer of u0 is Σu0 = I3, where I3 is the
3 × 3 identity matrix. The set defined by {AΦ(t, u0) | A ∈ SO(3), t ∈ [0,∞)} is called a
relative periodic orbit for (2.1) if it is not a relative equilibrium and there exist a number
T > 0 and a matrix X0 ∈ so(3) such that

Φ(T, u0) = eX0Tu0 and Φ(t, u0) /∈ SO(3)u0 for any t ∈ (0, T ).(2.3)

Given a relative periodic orbit, we say that T is the relative period of the relative periodic
orbit. If |X0|T /∈ 2πZ, then any solution AΦ(., u0) with A ∈ SO(3) of the reaction-diffusion
system (2.1) is called a modulated rotating wave for (2.1).

If |X0|T ∈ 2πZ, then Φ(t, u0) is a T -periodic solution of the reaction-diffusion (2.1).
From [4, 24, 27, 29], it is known that SO(3) is diffeomorphic as a manifold to the real

projective space RP 3. If

Y =

⎛
⎝ 0 a −b

−a 0 c
b −c 0

⎞
⎠ ∈ so(3), then we define

−→
Y =

⎛
⎝ c

b
a

⎞
⎠ ,(2.4)

and also |Y | =
∥∥−→Y ∥∥.

Let Φ(., Au0) be a rotating wave (respectively, a modulated rotating wave) for (2.1), where
u0 ∈ Yα and A ∈ SO(3). By equivariance we have Φ(t, Au0) = AeX0tA−1Au0 = eAX0A−1tAu0

(respectively, Φ(T,Au0) = AeX0TA−1Au0 = eAX0A−1TAu0). Therefore, the vector
−−−−−→
AX0A

−1

is called the frequency vector of the rotating wave (respectively, a primary frequency vector of
a modulated rotating wave).

Let the north hemisphere of S2 be N = {(x, y, z) ∈ S2 : z > 0 or z = 0, x ∈ [−1, 1),

y ∈ [0, 1]}, and the south hemisphere be the set S = S2 \N . If the vector 1
|X0|

−−−−−→
AX0A

−1 is in
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the north hemisphere, then ω0 = |X0| is called the frequency of the rotating wave (respectively,
a primary frequency of a modulated rotating wave). Otherwise, −ω0 is called the frequency
of the rotating wave (respectively, a primary frequency of a modulated rotating wave).

It is easy to see that a primary frequency vector
−→
X1 of a modulated rotating wave Φ(t, Au0)

is unique up to an integer multiple of 2π
|X1|T

−→
X1 (see [7]).

As a geometrical interpretation, it is easy to see that for a rotating wave (respectively,
a modulated rotating wave) Φ(t, u0), the tip motion xtip(Φ(t, u0)) is a circle (respectively,
xtip(Φ(kT, u0)) for k ∈ Z are points of a circle) on the sphere rS2 with the center on the line
having the direction of the frequency vector (respectively, the primary frequency vector) of
Φ(t, u0); this is independent of the choice of the tip position function (see [7]).

2.2. Skew-product differential equations on the center manifold. When we talk about
a supercritical Hopf bifurcation from an equilibrium, the bifurcating periodic solution has
amplitude of order λ

1
2 . For this reason we introduce the following definition.

Definition 2.2. Let M be a smooth manifold, X be a normed space or the empty set, p ≥ 0
be an integer, and Y : X × [0, λ0) × R

p → M for λ0 > 0 small. The function Y is called CS
on X× [0, λ0)×R

p if the function Z : X× [0, ε0)×R
p → M defined by Z(x, ε, μ) = Y (x, ε2, μ)

is smooth on X × [0, ε0) × R
p, where ε0 =

√
λ0. Moreover, Y is called sufficiently CS if Z is

sufficiently smooth. We mention that CS stands for continuous with respect to λ and smooth
with respect to ε = λ2.

We consider the one-parameter–dependant reaction-diffusion system

ut = DΔSu + F (u, λ) on rS2,(2.5)

where all the notation related to (2.5) is as in section 2, and F = (F1, F2, . . . , FN ) : R
N ×R →

R
N is a Ck+2 function with 3 ≤ k ≤ ∞. We recall that the reaction-diffusion system (2.5) is

considered on the function space Y defined by (2.2) as in section 2.
Let u0 ∈ Yα be a relative equilibrium that is not an equilibrium for (2.5) at λ = 0 and

such that the isotropy subgroup of u0 is Σu0 = I3. Moreover, let Φ(t, u0, 0) = eX0tu0.
Consider the linearization L of the right-hand side of (2.5) with respect to the rotating

wave Φ(t, u0, 0) = eX0tu0 at λ = 0 in the corotating frame; that is,

L = DΔS + DuF (u0, 0) −X0.

We assume that L has five eigenvalues on the imaginary axis: three eigenvalues due to the
rotation symmetry group SO(3) (i.e., 0,±i |X0|) and another two pure eigenvalues, ±iωH ,
and all other eigenvalues are contained in the left-hand side plane.

We apply the equivariant center manifold reduction developed in [10, 28] by Fiedler et al. to
reduce the study of the dynamics of (2.5) near a supercritical Hopf bifurcation, to the study
of the following skew-product differential equations on SO(3) × C:

Ȧ = AXG(q, λ),
q̇ = XN (q, λ),

(2.6)

where XG : C×R → so(3) and XN : C×R → C are sufficiently smooth functions, XG(0, 0) =
X0, and XN (0, 0) = 0. Moreover, XN (0, λ) = 0, DqXN (0, λ) has the eigenvalues α(λ) ±
i(ωH + β(λ)) for |λ| small, and α(0) = β(0) = 0.
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We also assume that α′(0) > 0, such that a supercritical Hopf bifurcation takes place.
Then, there exists a unique sufficiently CS branch of periodic solutions q(t, λ) bifurcating

from q = 0 such that q(t, λ) = O(λ
1
2 ) with frequency ωλ = ωH + O(λ) for λ ≥ 0 small.

We recall that any solution Φ(t, uλ, λ) of the reaction-diffusion system (2.5) on SO(3)×C

is given by Φ(t, uλ, λ) = A1(t, λ)Ψ(q1(t, λ)) for |λ| small and A1(t, λ) and q1(t, λ) are solutions
of the differential equations (2.6), and Ψ is a local diffeomorphism from C into Yα.

As a consequence, there exists a sufficiently CS branch Φ(t, uλ, λ) of solutions for the
reaction-diffusion system (2.5) such that Φ(t, u0, 0) = eX0tu0 and for λ > 0 small, Φ(t, uλ, λ)

is either an orbitally stable modulated rotating wave with a primary frequency vector
−−−→
X(λ)

and with the secondary frequency ωλ or an orbitally stable periodic solution with the period
2π
|ωλ| ;

−−−→
X(λ) is discussed in Lemma 2.3 below.

If we define the sufficiently CS function

XG(t, λ) = XG(q(t, λ), λ) for λ > 0 small and t ∈ [0,∞),(2.7)

where XG(q, λ) appears in the differential equations (2.6), then XG(t, λ) is a 2π
|ωλ| -periodic

function in t for λ > 0 small. Let us consider the initial value problem (IVP)

Ȧ = AXG(t, λ),
A(0) = I3,

(2.8)

where XG(t, λ) is defined in (2.7) and I3 is the 3×3 identity matrix. Since SO(3) is a compact
manifold and XG is a sufficiently CS function, the IVP (2.8) has a unique sufficiently CS
solution A(t, λ) which is globally defined.

Lemma 2.3 (decomposition of A(t, λ)). Suppose that the assumptions made in this section
hold. Then, there exists a sufficiently CS solution to the IVP (2.8) given by

A(t, λ) = eX(λ)tB(t, λ),(2.9)

where X(λ) ∈ so(3) is the primary frequency vector of Φ(t, uλ, λ) and B(t, λ) is a 2π
|ωλ| -periodic

function such that B(0, λ) = I3.

The function B(t, λ) is called the periodic part of Φ(t, uλ, λ) associated to
−−−→
X(λ). The

proof of Lemma 2.3 uses Floquet theory and it is very briefly presented below.
Proof of Lemma 2.3. Since the exponential map exp : so(3) → SO(3) is surjective, there

exists a matrix X(λ) ∈ so(3) such that A(T (λ)) = eX(λ)T (λ), where T (λ) = 2π
|ωλ| .

Since XG(t, λ) is T (λ)-periodic, using Floquet theory we get that

A(t, λ) = eX(λ)tB(t, λ) with B(0, λ) = I3 and B(t, λ)
2π

ωλ
-periodic.(2.10)

We have only to check that
−−−→
X(λ) is a primary frequency vector for Φ(t, uλ, λ) in the sense of

Definition 2.1. We have

Φ(t, uλ, λ) = A(t, λ)Ψ(q(t, λ)) = eX(λ)tB(t, λ)Ψ(q(t, λ)),

where we recall that Ψ is a local diffeomorphism from C into Yα with Ψ(q(0, λ)) = uλ.
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If we denote q1(t, λ) = B(t, λ)Ψ(q(t, λ)), then Φ(t, uλ, λ) = eX(λ)tq1(t, λ). Therefore,

Φ(T (λ), uλ, λ) = eX(λ)T (λ)uλ.(2.11)

Therefore, we have only to check that at least generically Φ(t, uλ, λ) /∈ SO(3)uλ for any
t ∈ (0, T (λ)). Let T1(λ) ∈ (0, T (λ)] be the first positive number such that Φ(T1(λ), uλ, λ) ∈
SO(3)uλ. We have to show that T1(λ) = T (λ).

It is easy to see that T (λ) ∈ T1(λ)Z. Namely, let T (λ) = lT1(λ) + q with q ∈ [0, T1(λ))
and l ∈ Z. Let

Φ(T1(λ), uλ, λ) = eY (λ)T1(λ)uλ(2.12)

with Y (λ) ∈ so(3). Using the SO(3)-equivariance of the semiflow Φ and T (λ) = lT1(λ) + q,
we get

Φ(T (λ), uλ, λ) = Φ(q,Φ(lT1(λ), uλ, λ), λ) = elY (λ)T1(λ)Φ(q, uλ, λ),(2.13)

which implies

Φ(q, uλ, λ) = e−lY (λ)T1(λ)eX(λ)T (λ)uλ ∈ SO(3)uλ.

But q ∈ [0, T1(λ)) and the definition of T1(λ) implies q = 0; i.e., T (λ) = lT1(λ). Further, we
have to show that l = 1.

But q = 0, T (λ) = lT1(λ), and (2.13) implies

Φ(T (λ), uλ, λ) = eY (λ)T (λ)uλ,

which combined with (2.11) gives

eX(λ)T (λ)uλ = eY (λ)T (λ)uλ.

Hence Σuλ
= I3 gives eX(λ)T (λ) = eY (λ)T (λ).

Therefore,

Φ(t, uλ, λ) = eY (λ)tB1(t, λ)Ψ(q(t, λ))

for some T (λ)-periodic function B1(t, λ). Hence,

Φ(T1(λ), uλ, λ) = eY (λ)T1(λ)B1(T1(λ), λ)Ψ(q(T1(λ), λ)).

On the other hand

Φ(T1(λ), uλ, λ) = eY (λ)T1(λ)uλ

implies

Ψ(q(T1(λ), λ)) = (B(T1(λ), λ))−1uλ.(2.14)

Since uλ is close to u0 and SO(3)u0∩Ψ(C) = {u0}, we get generically SO(3)uλ∩Ψ(C) = {uλ}.
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Now q(T1(λ), λ) ∈ C and (B(T1(λ), λ))−1uλ ∈ SO(3)uλ combined with (2.14) and Σuλ
=

I3 give

B1(T1(λ), λ) = I3.

Then, (2.14) implies

Ψ(q(T1(λ), λ)) = uλ = Ψ(q(0, λ)).

Since Ψ is a local diffeomorphism from C into Yα, q(t, λ) is a solution of q̇ = XN (q, λ) such
that

q(T1(λ), λ) = uλ = q(0, λ).

Therefore, q(t, λ) is T1(λ)-periodic. On the other hand, it has the principal period T (λ).
Hence, T (λ) = T1(λ).

For the Euclidean group SE(2), it is well known that the differential equations (2.6) can
be solved explicitly due to the fact that SE(2) 	 C × SO(2) (see [14]). A similar treatment
for the differential equations (2.6) can be done theoretically using the BCH formula in so(3),
the decomposition obtained in Lemma 2.3, and the closed form of the reduced differential
equations on so(3) obtained in Theorem 3.4 (see section 3). Our approach follows the one
presented in [14].

3. Reduced differential equations on so(3)—closed form. Throughout this section we
suppose that the assumptions made in section 2 hold. We recall the BCH formula in so(3)
below. A model for the real projective space RP 3 diffeomorphic to SO(3) is the set

D = {−→y ∈ R
3 | ‖−→y ‖ ≤ π, with the antipodal points of the norm |y| = π identified},

where �y associated to y ∈ so(3) is defined in (2.4). In fact, D is the quotient set E/∼, where
∼ is the equivalence relation �y ∼ �z iff z = −y, |y| = π, and E = {−→y ∈ R

3 | ‖−→y ‖ ≤ π}.
Sometimes, instead of −→y ∈ R

3 with |−→y | ≤ π, we use y ∈ so(3), in which case we denote the
equivalence class [y] = [−→y ].

From [7, 9] it is known that there exists a unique smooth function Log : SO(3) → D such
that eLog(A) = A.

Definition 3.1. We define BCH(X,Y ) = Log(eXeY ) for any X,Y ∈ so(3). Clearly, we
have eBCH(X,Y ) = eXeY and BCH(X,Y ) ∈ D for any X,Y ∈ so(3).

Theorem 3.2 (BCH formula in so(3), [7, 9]). The BCH formula in so(3) has the form

BCH(X,Y ) = [α(X,Y )X + β(X,Y )Y + γ(X,Y )[X,Y ]] for X,Y ∈ so(3),(3.1)

where there are closed formulas for α, β, and γ (see [7, 9]). The functions α2, β2, γ2 are
smooth on so(3) × so(3) and |α|, |β|, |γ| are continuous on so(3) × so(3). Also, the function
BCH is smooth from so(3) × so(3) into D.

The BCH formula in so(3) is computational (i.e., it can be translated into a computer-
implemented program) and acts as a “logarithm.”
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Throughout this paper u0 ∈ Yα is a relative equilibrium for (2.5) at λ = 0 with trivial
isotropy subgroup Σu0 = I3. Also, let Φ(t, u0, 0) = eX0tu0.

The main result of this section is the closed form for the reduced differential equations on
so(3) in Theorem 3.4. Its proof is based on Lemma 3.3. We recall that the function XG(t, λ)
is a 2π

|ωλ| -periodic function defined in (2.7) and we denote by O3 the 3 × 3 zero matrix.
Lemma 3.3. We consider the IVP

−→̇
Z = g(Z)

−−−−−→
XG(t, λ),

Z(0) = O3,
(3.2)

where g : so(3) → so(3) is a sufficiently smooth function such that there exist positive constants
Mg ≥ 0, Kg > 0, and C > 0 for which |g(Z)| ≤ Mg + Kg |Z| for |Z| ≤ C.

Then, there exists a positive integer n independent of λ such that the IVP (3.2) has a
unique sufficiently CS solution Z(t, λ) such that |Z(t, λ)| ≤ C on t ∈ [0, 2π

n|ωλ| ] for λ ≥ 0
small.

The integer n in Lemma 3.3 can be found explicitly and it is not 1 in general. Therefore,
the function Z(t, λ) is not defined in general on the entire interval [0, 2π

|ωλ| ] for λ ≥ 0 small.

The proof shows how we can get the maximal interval [0, 2π
n|ωλ| ].

Proof of Lemma 3.3. The proof is straightforward and is based on the following result
from [16].

Lemma. Let g(t, u) be a continuous function on an open connected set [a1, b1)× [0,∞) ⊂
Ω ⊂ R

2 and such that the IVP for the scalar equation u̇ = g(t, u) has a unique solution
u(t) ≥ 0 on t ∈ [a1, b1). If f : [a1, b1) × R

n → R
n is continuous and ‖f(t, x)‖ ≤ g(t, ‖x‖) for

t ∈ [a1, b1) and x ∈ R
n, then the solutions of ẋ = f(t, x), ‖x(a1)‖ ≤ u(a1) exists on [a1, b1),

and ‖x(t)‖ ≤ u(t) for t ∈ [a1, b1).
Let M > 0 (independent of λ ≥ 0 small) be such that

∣∣XG(t, λ)
∣∣ < M for t ∈ [0,∞) and

λ ≥ 0 small. For any |Z| < C and λ ≥ 0 small, we have∥∥∥∥g(Z)
−−−−−→
XG(t, λ)

∥∥∥∥ ≤ |g(Z)|M ≤ M (Mg + Kg |Z|) .(3.3)

The IVP

ȧ = M(Mg + Kga),
a(0) = 0

(3.4)

has solution a(t) ≤ C on a maximal interval [0, bmax] with bmax independent of λ.
Therefore, using the previous lemma from [16] with a1 = 0, it follows that the sufficiently

CS solution Z(t, λ) of the IVP (3.2) is defined for any t ∈ [0, bmax] and λ ≥ 0 small, and that
|Z(t, λ)| ≤ C for any t ∈ [0, bmax] and λ ≥ 0 small.

We recall that T (λ) = 2π
|ωλ| . If we choose a positive integer n > 0 such that n > T (λ)

bmax
, then

the IVP (3.2) has a solution Z(t, λ) defined and sufficiently CS on t ∈ [0, T (λ)
n ] and λ ≥ 0

small. Since T (λ) = T (0) + O(λ), it is clear that we can choose n independent of λ for λ ≥ 0
small.

The main result of this section is stated in the following theorem.
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Theorem 3.4 (differential equations on so(3)). There exists a sufficiently CS function Z(t, λ)
such that |Z(t, λ)| < 2π and A(t, λ) = eZ(t,λ) for t ∈ [0,∞) and λ ≥ 0 small, where A(t, λ) is
the solution of the IVP (2.8).

Moreover, Z(t, λ) satisfies the following IVP for t ∈ [0,∞) and λ ≥ 0 small:

−→̇
Z =

(
I3 + 1

2Z + f(|Z|) Z2

|Z|2
)−−−−−→
XG(t, λ) (mod 2π),

Z(0) = O3,
(3.5)

where f(a) = 1 − a
2 cot a

2 if a = 0 and f(0) = 0.
The proof of Theorem 3.4 shows how we can construct the solution Z(t, λ) inductively

using the BCH formula in so(3). It will be presented in section 6. As mentioned before,
this construction can be translated into a computer-implemented method. At the end of this
section a simplified version of the method is presented. It refers to both sections 3 and 4.

Because we do not have to decide if we are in the resonant or nonresonant case, the
reduction to differential equations on so(3) can be sometimes more suitable for applications
to real life, where small variations can get things away from the resonant case. As mentioned
before, it does matter if we are in the resonant or nonresonant case, but the change that
appears in the resonant case in the Taylor expansions is implicitly taken care of.

In fact, we can generalize this approach to get the reduced differential equations on the
Lie algebra g associated to any compact Lie group G ⊂ O(N). The way this generalization
works is briefly presented in section 6 after the proof of Theorem 3.4.

Simplified version of the method for sections 3 and 4. The first step is to get from the
IVP (2.8) to the reduced differential equations (3.5) on so(3). We use the surjectivity of the
exponential map exp of SO(3) and we make the change of variable A = eZ in the IVP (2.8).
The expression for the differential of the exponential map combined with some geometrical
properties of the adjoint representation of so(3) [24, 27] are used to get the closed form of the
reduced differential equations (3.5) on so(3).

In the second step we construct the solution |Z(t, λ)| < 2π inductively. We show that
the IVP (2.8) has a solution Z1(t, λ) on a fixed small interval [0, tλ] with tλ = 2π

n|ωλ| for some

n ∈ Z. In general n > 1. The main property used is the boundedness of the right-hand side
of (3.5) with respect to |Z|. Then, we make the change of variable B = e−Z1(t,λ)A and we
end up with the IVP Ḃ = BXG(t, λ) and B(tλ) = I3. We show that it has a solution Z2(t, λ)
on [tλ, 2tλ]. We continue and in the end we use the BCH formula on so(3) to put together
all these solutions defined on “partial” intervals, such that we have constructed a solution
|Z(t, λ)| < 2π on [0, 2π

|ωλ| ]. It is very easy to extend the solution Z(t, λ) to [0,∞). The fact

that |Z(t, λ)| < 2π is the same as taking mod 2π in the first differential equation in the IVP
(2.8).

The third step is to get a closed formula for the primary frequency vectors
−−−→
X(λ) using

the solution Z(t, λ) constructed above. The scaling of the primary frequency vectors is differ-
ent depending on the resonant or nonresonant case. That is why we introduce the primary

frequency vectors branch
−−−→
Xf (λ) in the nonresonant case. We use the BCH formula in so(3)

to get the closed formula for the periodic parts and the characterization of the bifurcating
modulated rotating waves.
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4. Characterization of the bifurcating modulated rotating waves on the sphere. Through-
out this section we suppose that the assumptions made in section 2 hold. From Lemma 2.3

we know that a primary frequency vector
−−−→
X(λ) of Φ(t, uλ, λ) is given by A( 2π

|ωλ| , λ) = e
X(λ) 2π

|ωλ|

for λ > 0 small.
Let X1

0 = 1
|X0|X0. Then, there exist unit vectors X1, X2 ∈ so(3) such that the set

{−→X 1
0,
−→
X 1,

−→
X 2} is an orthonormal basis in R

3 satisfying
−→
X 1

0 ×
−→
X 1 =

−→
X 2,

−→
X 1 ×

−→
X 2 =

−→
X 1

0,

and
−→
X 2 ×

−→
X 1

0 =
−→
X 1. We recall that [X,Y ] = ad(X)Y = XY − Y X for any X,Y ∈ so(3).

Since so(3) is isomorphic to R
3 and

−−−→
[X,Y ] =

−→
X × −→

Y , {X1
0 , X1, X2} is a basis of the Lie

algebra so(3) such that [X1
0 , X1] = X2, [X1, X2] = X1

0 , and [X2, X
1
0 ] = X1.

Proposition 4.1 (primary frequency vectors). There exists a unique sufficiently CS branch

X(λ) such that |X(λ)| < |ωλ| and
−−−→
X(λ) is a primary frequency vector of Φ(t, uλ, λ) for λ > 0

small, and e
X(0) 2π

|ωλ| = e
X0

2π

|ωλ| . Moreover,

X(λ) =
|ωλ|
2π

Z

(
2π

|ωλ|
, λ

)
(4.1)

for λ ≥ 0 small, where Z(t, λ) is given in Theorem 3.4 in section 3. Moreover, if |X0| = k |ωH |
for some k ∈ Z, then |X(λ)| = O(λ

|k|
2 ).

Proof of Proposition 4.1. It is clear that
−−−→
X(λ) defined by

X(λ) =
1

T (λ)
Z(T (λ), λ)(4.2)

for λ ≥ 0 small is a primary frequency vector of the modulated rotating wave Φ(t, uλ, λ) (i.e.,
A(T (λ), λ) = eX(λ)T (λ)), and the branch X(λ) is sufficiently CS for λ ≥ 0 small. From the
proof of Theorem 3.4 it is clear that the branch X(λ) defined by (4.2) is the unique one such

that |X(λ)| < 2π for λ ≥ 0 small. Moreover, A(t, 0) = eX0t implies e
X(0) 2π

|ωλ| = e
X0

2π

|ωλ| .
The scaling results for X(λ) can be found from the reduced differential equations on so(3)

either using the approach of Wulff in [31, pp. 29–32] or using the normal forms theory of
Fiedler and Turaev in [11], as they are described in [5, pp. 9–13].

We have a closed formula for the angle θ(λ) between the primary frequency vector
−−−→
X(λ)

and the rotation frequency vector
−→
X0. Namely,

cos(θ(λ)) =

−−−→
X(λ) · −→X0

|X(λ)| |X0|
,(4.3)

which combined with Proposition 4.1 can be used to control the tip motions of the bifurcating
modulated rotating waves on the sphere.

The branch X(λ) from Proposition 4.1 does not have the property that X(0) = X0. The

next corollary shows that we can construct a branch
−−−→
Xf (λ) of primary frequency vectors of

Φ(t, uλ, λ) such that Xf (0) = X0.
Corollary 4.2. There is a branch Xf (λ) of primary frequency vectors of Φ(t, uλ, λ) for

λ ≥ 0 such that Xf (0) = X0. Moreover,
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1. if |X0| /∈ ωHZ, then the branch Xf (λ) is sufficiently CS for λ ≥ 0 small and

Xf (λ) = [|X0| + O(λ)]X1
0 + O(λ

1
2 )X1 + O(λ

1
2 )X2;(4.4)

2. if |X0| ∈ ωHZ, then
∣∣Xf (λ)

∣∣ is continuous for λ ≥ 0 small.

Although Corollary 4.2 deals with the Taylor series of Xf (λ), we emphasize that there
is a closed formula for Xf (λ), as can be seen from the proof of this corollary. Also, either
Proposition 4.1 or Corollary 4.2 shows that there is no frequency-locking phenomenon for the
modulated rotating waves Φ(t, uλ, λ).

Proof of Corollary 4.2. Let |X0| = α0 + kωH with α0 ∈ [0, |ωH |), k ∈ Z and T (0) = 2π
|ωH | .

Since A(T (0), 0) = eX0T (0) = eX(0)T (0) = eZ(T (0),0), then by the definition of X(0) in (4.2)
we get X(0) = α0X

1
0 . Hence, |X(0)| = α0.

We define Xf (0) = X0. If |X(λ)| = 0, then we define Xf (λ) = |X(λ)|+kωλ

|X(λ)| X(λ).

If |X(λ)| = 0, then we define Xf (λ) = X(λ) + kωλQ(λ), where Q(λ) ∈ so(3) such that
|Q(λ)| = 1 and λ > 0.

Hence, we get that eX
f (λ)T (λ) = eX(λ)T (λ); i.e.,

−−−→
Xf (λ) is a primary frequency vector for

the bifurcating modulated rotating waves.

It is clear that
∣∣Xf (λ)

∣∣ = |X(λ)| + kωλ for λ ≥ 0 small. Hence,
∣∣Xf (λ)

∣∣ is continuous for
λ ≥ 0 small. If |X0| /∈ ωHZ, then it is clear that Xf (λ) is well defined and sufficiently CS.
In this case the scaling of X(λ) yields either from the approach of Wulff in [31] or from the
normal forms theory of Fiedler and Turaev in [11], and it is

X(λ) = (α0 + O(λ))X1
0 + O(λ

1
2 )X1 + O(λ

1
2 )X2,

which combined with the definition of Xf (λ) gives us the scaling in (4.4).

Using Lemma 2.3 we have A(t, λ) = eX(λ)tB(t, λ) = eX
f (λ)tBf (t, λ) for each bifurcating

modulated rotating wave, where B(t, λ) and Bf (t, λ) are 2π
|ωλ| -periodic in t, and B(0, λ) =

Bf (0, λ) = I3 for λ > 0 small. Also, let B(t, 0) and Bf (t, 0) be such that A(t, 0) =

eX(0)tB(t, 0) = eX
f (0)tBf (t, 0) (i.e., Bf (t, 0) = I3).

Proposition 4.3 (periodic parts).

1. If |X0| /∈ ωHZ, then we have

Bf (t, λ) = eλ
1
2 Y (t,λ)(4.5)

for t ∈ [0,∞) and λ ≥ 0 small, where Y (t, λ) is 2π
|ωλ| -periodic in t and sufficiently CS.

2. If |X0| ∈ ωHZ, then we have

B(t, λ) = eX0t+λ
1
2 H(t,λ)(4.6)

for t ∈ [0,∞) and λ ≥ 0 small, where H(t, λ) is sufficiently CS and e
X0

2π

|ωλ|
+λ

1
2 H( 2π

|ωλ|
,λ)

= I3.
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Although Proposition 4.3 deals with the Taylor series of the periodic parts B(t, λ) and
Bf (t, λ), we emphasize that there are closed formula for them. Namely,

B(t, λ) = eBCH(−X(λ)t,Z(t,λ)) and Bf (t, λ) = eBCH(−Xf (λ)t,Z(t,λ)),(4.7)

where X(λ) is given by (4.1), Xf (λ) is defined in the proof of Corollary 4.2, and Z(t, λ) is
given in Theorem 3.4.

Proof of Proposition 4.3. We recall that in the proof of Theorem 3.4 (see section 6) we
defined the following smooth function:

q([
−→
Y ]) =

{
Y if 1

|Y |
−→
Y , 1

|X0|
−→
X0 are in the same hemisphere or Y = O3,

(− 2π
|Y | + 1)Y if 1

|Y |
−→
Y , 1

|X0|
−→
X0 are in different hemispheres and Y = O3,

(4.8)

where points 0 and 2π are identified, and [
−→
Y ] is an equivalence class of D. It is easy to see

that eq([Y ]) = e[Y ] for any [Y ] ∈ D. We also recall that the function BCH from Definition 3.1
is sufficiently smooth. If |X0| /∈ ωHZ, then we have

Bf (t, λ) = e−Xf (λ)tA(t, λ) = e−Xf (λ)teZ(t,λ) = eq(BCH(−Xf (λ)t,Z(t,λ))).(4.9)

It is clear that Perf (t, λ) = q(BCH(−Xf (λ)t, Z(t, λ))) is sufficiently CS for t ∈ [0,∞) and
λ ≥ 0 small. Since

e−Xf (0)teZ(t,0) = A(t)−1A(t) = I3 = eBCH(−Xf (0)t,Z(t,0)),

it follows that Perf (t, 0) = q(BCH(−Xf (0)t, Z(t, 0))) = O3. Then, Perf (t, λ) = λ
1
2Y (t, λ).

The T (λ)-periodicity of Y (., λ) results from the fact that B(t, λ) is T (λ)-periodic and the
exponential map is a local diffeomorphism about O3.

If |X0| ∈ ωHZ, then we have

B(t, λ) = e−X(λ)tA(t, λ) = e−X(λ)teZ(t,λ) = eq(BCH(−X(λ)t,Z(t,λ))).(4.10)

Since

A(t, 0) = eX0t = eZ(t,0) and Per(t, 0) = q(BCH(O3, Z(t, 0))) = q(BCH(O3, X0t)),

it yields that Per(t, 0) = X0t (mod 2π).

Hence, if we denote r(t) = t (mod 2π
|X0|), we get Per(t, λ) = X0r(t)+λ

1
2H1(t, λ). Therefore,

it is clear that B(t, λ) = eX0t+λ
1
2 H(t,λ). Moreover, B(t, λ) is 2π

|ωλ| -periodic with B(0, λ) = I3,

which implies e
X0

2π

|ωλ|
+λ

1
2 H( 2π

|ωλ|
,λ)

= I3.
Using Proposition 4.1, Corollary 4.2, and Proposition 4.3, we get the characterization of

the modulated rotating waves Φ(t, uλ, λ) = λ
1
2A(t, λ)r(t, λ) in Theorem 4.4.

Theorem 4.4 (characterization of the bifurcating MRW).
1. If |X0| /∈ ωHZ, then we have

A(t, λ) = e

[
(|X0|+O(λ))X1

0+O(λ
1
2 )X1+O(λ

1
2 )X2

]
t
eλ

1
2 Y (t,λ),

where Y (t, λ) is sufficiently CS and 2π
|ωλ| -periodic for λ ≥ 0 small.
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2. If |X0| = kωH for some k ∈ Z, then we have

A(t, λ) = eX(λ)teX0t+λ
1
2 H(t,λ),

where |X(λ)| = O(|λ|
k
2 ), H(t, λ) is sufficiently CS, and e

X0
2π

|ωλ|
+λ

1
2 H( 2π

|ωλ|
,λ)

= I3 for
λ ≥ 0 small.

Although Theorem 4.4 deals with the Taylor series for A(t, λ), we emphasize that there is
an explicit characterization for A(t, λ). Namely,

A(t, λ) = eX(λ)teBCH(−X(λ)t,Z(t,λ)) and

A(t, λ) = eX
f (λ)teBCH(−Xf (λ)t,Z(t,λ)),

(4.11)

where X(λ) is given by (4.1), Xf (λ) is defined in the proof of Corollary 4.2, and Z(t, λ) is
given in Theorem 3.4.

Proof of Theorem 4.4. Using Lemma 2.3 we know that A(t, λ) = eX(λ)B(t, λ) and A(t, λ) =

eX
f (λ)Bf (t, λ). The conclusion of Theorem 4.4 results by applying Proposition 4.1, Corol-

lary 4.2, and Proposition 4.3.
From Theorem 4.4 it is easy to see that we obtain two possible types of tip motions

for the modulated rotating waves Φ(t, uλ, λ) near a supercritical Hopf bifurcation with one
parameter from a rotating wave on the sphere. They are illustrated in Figure 1 (see [7] for
more details). These two types of tip motions for the bifurcating modulated rotating waves
are quasi-periodically meandering of order O(1), with the angle between primary frequency

vector
−−−→
Xf (λ) and the axis of rotation

−→
X0 of the initial rotating wave of order O(λ

1
2 ), or slowly

drifting of order O(λ
|k|
2 ) about the primary frequency vectors.

|X0| /∈ ωHZ |X0| = ωH ,
−−−→
X(λ) ⊥ −→

X0 |X0| = ωH ,
−−−→
X(λ) is not ⊥ −→

X0

Figure 1. Hopf bifurcation with one parameter λ.
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All the results presented in this section can be generalized for any compact Lie group
G ⊂ O(N). The main property used for G = SO(3) is the existence of a sufficiently smooth
function BCH : g × g → {U ∈ g : |U | < 2π} such that eXeY = eBCH(X,Y ), where g is the
Lie algebra of G. Moreover, for any Lie compact group G there is a series expansion for
BCH(X,Y ) for X and Y close enough to O3.

5. Drift phenomena and orthogonality for modulated rotating waves on the sphere.
We consider the following reaction-diffusion system with parameters λ and μ:

ut = DΔSu + F (u, λ, μ) on rS2,(5.1)

where the notation is the same as in section 2. Under the same framework and assumptions as
the ones in section 2, the reduced differential equations on SO(3)×C near a Hopf bifurcation
are

Ȧ = AXG(q, λ, μ),
q̇ = XN (q, λ, μ),

(5.2)

where XG(0, 0, 0) = X0 and XN (0, 0, 0) = 0. We suppose that XN (0, λ, μ) = 0 for |λ| and |μ|
small, and DqXN (0, λ, μ) has the eigenvalues α(λ, μ)±i(ωH +β(λ, μ)) with α(0, 0) = β(0, 0) =
0 and αλ(0, 0) > 0.

We have α(λH(μ), μ) = 0 for some sufficiently smooth curve λ = λH(μ) with λH(0) = 0.
This curve represents the Hopf points and we suppose that λH(μ) = 0 for |μ| small.

Then, there exists a unique sufficiently CS branch of periodic solutions q(t, λ, μ) with

period 2π

|ωλ,μ| bifurcating from q = 0 that generically satisfies q(t, λ, μ) = λ
1
2 r(t, λ, μ). The

secondary frequency is given by ωλ,μ = ωH + O(μ) + λs(λ, μ).
Using [10, 28] and Proposition 4.1, there exist sufficiently CS branches Φ(t, uλ,μ, λ, μ) and

X(λ, μ) such that for |μ| small

Φ(t, u0,μ, 0, μ) = eXG(0,0,μ)tu0,μ and e
X(0,μ) 2π

|ω0,μ| = e
XG(0,0,μ) 2π

|ω0,μ| ,(5.3)

and such that for λ > 0 small and |μ| small Φ(t, uλ,μ, λ, μ) has primary frequency vector
−−−−→
X(λ, μ).

Next, we give a more intuitive (from the computational point of view) proof for Proposi-
tion 3.4 in [31] for G = SO(3), using the BCH formula in so(3).

Theorem 5.1 (drift phenomena and orthogonality). Suppose that all the assumptions made
in this section hold and that |X0| = kωH for some k ∈ Z with k = 0. Let

XG(q, λ, μ) = x0(q, λ, μ)X1
0 + x1(q, λ, μ)X1 + x2(q, λ, μ)X2.(5.4)

If (x0)μ(0, 0, 0) = k(ω0,μ)μ|μ=0, then there exists a sufficiently CS curve μ = μ(λ) such
that μ(0) = 0 which gives a sufficiently CS branch of orbitally stable modulated rotating

waves Φ(t, uλ,μ(λ), λ, μ(λ)) for λ > 0 small having the primary frequency vector
−−−−−−−→
X(λ, μ(λ))

orthogonal to
−→
X0.

Moreover, X(λ, μ(λ)) = O(λ
|k|
2 )X1 + O(λ

|k|
2 )X2 for λ ≥ 0 small.
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Proof of Theorem 5.1. We recall that T (λ, μ) = 2π

|ωλ,μ| . From (5.4) we have that

XG(0, 0, μ) = a(μ)X1
0 + b(μ)X1 + c(μ)X2,(5.5)

where we denoted a(μ) = x0(0, 0, μ) = |X0| + O(μ), b(μ) = x1(0, 0, μ) = O(μ) and c(μ) =
x2(0, 0, μ) = O(μ). From Lemma 2.3 we have A(T (λ, μ), λ, μ) = eX(λ,μ)T (λ,μ), where X(λ, μ)
is given in Proposition 4.1.

Since X(λ, μ) is sufficiently CS and X(0, 0) = O3, we get

X(λ, μ) = a1(λ, μ)X1
0 + b1(λ, μ)X1 + c1(λ, μ)X2,(5.6)

with a1, b1, c1 such that a1(0, 0) = 0 and b1(0, μ) = O(μ), c1(0, μ) = O(μ).
We have to find a unique sufficiently CS branch μ = μ(λ) such that μ(0) = 0 and

a1(λ, μ(λ)) = 0 for λ ≥ 0 small. If (a1)μ(0, 0) = 0, then the implicit function theorem gives
the existence of the required sufficiently CS branch. We show that (a1)μ(0, 0) = a′(0) −
k(ω0,μ)′μ|μ=0.

From (5.3) we get A(T (0, μ), 0, μ) = eX(0,μ)T (0,μ) = eXG(0,0,μ)T (0,μ). This implies

X(0, μ)T (μ, 0) = XG(0, 0, μ)T (μ, 0) +
2l(μ)π

|XG(0, 0, μ)|XG(0, 0, μ) for some l(μ) ∈ Z.

Hence, (5.5) and (5.6) yield

[
a1(0, μ)X1

0 + b1(0, μ)X1 + c1(0, μ)X2

]
T (0, μ)

=
[
a(μ)X1

0 + b(μ)X1 + c(μ)X2

]
T (0, μ) +

2l(μ)π√
a(μ)2 + O(μ2)

[
a(μ)X1

0 + b(μ)X1 + c(μ)X2

]
for |μ| small. This implies

a1(0, μ) = a(μ) +
a(μ)√

a(μ)2 + O(μ2)
l(μ)ω0,μ · sgn(ωH),(5.7)

where sgn(x) stands for the sign of x.
For μ = 0 (5.7) gives l(0) = −|k|, since |X0| = kωH > 0 implies sgn(k) = sgn(ωH). Thus

k · sgn(ωH) = |k|. Since l(μ) ∈ Z is continuous, we get l(μ) = −|k| for |μ| small. Taking into
account that sgn(ωH) = sgn(k), (5.7) becomes

a1(0, μ) = a(μ) − k
a(μ)√

a(μ)2 + O(μ2)
ω0,μ.(5.8)

We differentiate (5.8) to get (a1)μ(0, 0) = a′(0) − k(ω0,μ)μ|μ=0.
The scaling results from Proposition 4.1 and [31].
As it follows from the above proof, the branch μ = μ(λ) for λ ≥ 0 small can be found using

the BCH formula in so(3). The results presented in sections 4 and 5 allow us to explicitly
control the direction of the primary frequency vectors and, therefore, the tip motions of the
bifurcating modulated rotating waves Φ(t, uλ, λ).
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6. Proof of Theorem 3.4 from section 3.
Proof of Theorem 3.4. We divide the proof into three parts. In the first two parts we

construct the solution Z(t, λ) on the interval [0, T (λ)]. In the third part, we extend it to
[0,∞). We recall that T (λ) = 2π

|ωλ| .

(1) The reduced differential equations on so(3). Consider the IVP

Ȧ = AXG(t, λ),
A(0) = I3.

(6.1)

We make the change of variable A = eZ near I3 in the IVP (6.1). The main property used to
get the reduced differential equations on so(3) is from [24, 27]. It states that the exponential
map exp of SO(3) is a smooth function on so(3) with differential given by

(d(exp))X(Y ) = eX
∞∑
n=0

(−1)n

(n + 1)!
(ad(X))n(Y )(6.2)

for any X,Y ∈ so(3). Moreover, it is a local diffeomorphism near any X ∈ so(3) iff the
operator ad(X) has no eigenvalues of the form 2iπk with k = 0; i.e., |X| = 2kπ for k ∈ Z and
k = 0. Using (6.2) the IVP (6.1) becomes successively

eZ
∑∞

n=0
(−1)n

(n+1)!(adZ)nŻ = eZXG(t, λ),

Z(0) = O3,

or ∑∞
n=0

(−1)n

(n+1)!(adZ)nŻ = XG(t, λ),

Z(0) = O3,

or

−−−−−−−−−−−−−−−→∑∞
n=0

(−1)n

(n+1)!(adZ)nŻ =
−−−−−→
XG(t, λ),

Z(0) = O3.
(6.3)

The next important property used to get the reduced differential equations on so(3) is from
[27]. It states that for any X,Y ∈ so(3) we have

−−−−−−−→
(ad(X))nY = Xn−→Y for any integer n ≥ 1.(6.4)

If we use (6.4) in (6.3), then we get

∑∞
n=0

(−1)n

(n+1)!Z
n
−→̇
Z =

−−−−−→
XG(t, λ),

Z(0) = O3.
(6.5)

Moreover, in Appendix A we check that

∞∑
n=0

(−1)n

(n + 1)!
Zn = I3 +

cos |Z| − 1

|Z|2
Z +

|Z| − sin |Z|
|Z|3

Z2.(6.6)
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If we substitute (6.6) into (6.5), then we get(
I3 + cos|Z|−1

|Z|2 Z + |Z|−sin|Z|
|Z|3 Z2

)−→̇
Z =

−−−−−→
XG(t, λ),

Z(0) = O3.
(6.7)

In Appendix A we show that for any |Z| < 2π(
cos |Z| − 1

|Z|2
Z +

|Z| − sin |Z|
|Z|3

Z2

)−1

= I3 +
1

2
Z +

(
1 − |Z|

2
cot

|Z|
2

)
Z2

|Z|2
.(6.8)

Since we are looking for |Z| ≤ π < 2π, the IVP (6.7) becomes

−→̇
Z =

[
I3 + 1

2Z +
(
1 − |Z|

2 cot |Z|
2

)
Z2

|Z|2
]−−−−−→
XG(t, λ),

Z(0) = O3,
(6.9)

where we are looking for a solution Z such that |Z| ≤ π. If we denote f(a) = 1 − a
2 cot a

2 if
a = 0 and f(0) = 0, then we get the IVP (3.5) from the statement of Theorem 3.4. It remains
to construct a sufficiently CS solution Z(t, λ) of the IVP (3.5) such that |Z(t, λ)| < 2π; i.e.,
we have to consider the differential equations in IVP (3.5) mod 2π.

(2) The solution Z(t, λ) on [0, T (λ)]. The main property used for now is the boundedness
of the right-hand side of the IVP (6.9) with respect to |Z|.

We recall that the sufficiently smooth function BCH is given in Definition 3.1. We check
that we can apply Lemma 3.3 for the IVP (6.9). Let M > 0 be such that

∣∣XG(t, λ)
∣∣ < M for

t ∈ [0,∞) and λ ≥ 0 small. For λ ≥ 0 small and any |Z| ≤ π, we have successively∥∥∥∥
[
I3 +

1

2
Z +

(
1 − |Z|

2
cot

|Z|
2

)
Z2

|Z|2
]−−−−−→
XG(t, λ)

∥∥∥∥
≤

[
‖I3‖ +

1

2
‖Z‖ +

(
1 +

|Z|
2

cot
|Z|
2

)
‖Z‖2

|Z|2

]
M,

or

∥∥∥∥
[
I3 +

1

2
Z +

(
1 − |Z|

2
cot

|Z|
2

)
Z2

|Z|2
]−−−−−→
XG(t, λ)

∥∥∥∥
≤ M

[
√

3 +
1

2

√
2 |Z| +

(
1 +

|Z|
2

cot
|Z|
2

)
2 |Z|2

|Z|2

]
,

or, because the function x → x cotx is decreasing on [0, π2 ],∥∥∥∥
[
I3 +

1

2
Z +

(
1 − |Z|

2
cot

|Z|
2

)
Z2

|Z|2
]−−−−−→
XG(t, λ)

∥∥∥∥
≤ M

[√
3 +

1

2

√
2 |Z| + 2(1 + 1)

]
≤ M(6 + |Z|).

We apply Lemma 3.3 with Mg = 6, Kg = 1, and C = π and we get A(t, λ) = eZ1(t,λ) for any

t ∈ [0, T (λ)
n ] and λ ≥ 0 small, where Z1(t, λ) is the unique sufficiently CS solution of (6.9).

We denote tλ = T (λ)
n from now on.
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We make the change of variable B = (A(tλ, λ))−1A. We get that the solution of the IVP
(6.1) is given by

A(t, λ) = eZ1(tλ,λ)B(t, λ),

where B(t, λ) is the solution of the IVP

Ḃ = BXG(t, λ),
B(tλ) = I3.

(6.10)

We look for a solution B = eZ . Therefore, (6.10) becomes

−→̇
Z =

[
I3 + 1

2Z +
(
1 − |Z|

2 cot |Z|
2

)
Z2

|Z|2
]−−−−−→
XG(t, λ),

Z(tλ) = O3.
(6.11)

The IVP

ȧ = M(6 + a),
a(tλ) = 0

(6.12)

has the solution satisfying a(t) ≤ π for any t ∈ [tλ, 2tλ]. Using the same argument as the one
in the proof of Lemma 3.3, we get B(t, λ) = eZ2(t,λ) for any t ∈ [tλ, 2tλ] and λ ≥ 0 small,
where Z2(t, λ) is the unique sufficiently CS solution of (6.11).

If we continue this, then we get

A(t, λ) = eZ(t,λ),

where Z(t, λ) is given by

eZ(t,λ) = eZ1(tλ,λ)eZ2(2tλ,λ) . . . eZi(t,λ),(6.13)

where Zi is the solution of the following IVP on the interval [(i−1)tλ, itλ] for any λ ≥ 0 small
and for i = 1, 2, . . . , n:

−→̇
Z =

[
I3 + 1

2Z +
(
1 − |Z|

2 cot |Z|
2

)
Z2

|Z|2
]−−−−−→
XG(t, λ),

Z((i− 1)tλ) = O3.
(6.14)

From (6.13) we get

[Z(t, λ)] = BCH(Z1(tλ, λ), Z2(2tλ, λ), . . . , Zi(itλ, λ))(6.15)

for any t ∈ [(i − 1)tλ, itλ] and λ ≥ 0 small, for i = 1, 2, . . . , n, where Zi is the solution of
the IVP (6.14). From (6.15) it is clear that [Z(t, λ)] is sufficiently CS on [0, T (λ)] and λ ≥ 0
small.

(3) The solution Z(t, λ) on [0,∞). Since

A(t + T (λ), λ) = eX(λ)T (λ)A(t, λ) = A(T (λ), λ)A(t, λ) = eZ(T (λ),λ)eZ(t,λ),
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it is easy to see that we can define

[Z(t, λ)] = BCH(Z(T (λ), λ), Z(t− T (λ), λ)) for t ∈ [T (λ), 2T (λ)].(6.16)

It is clear that [Z(t, λ)] is sufficiently CS for any t ∈ [T (λ), 2T (λ)] and for λ ≥ 0 small. We
repeat this argument to get a sufficiently CS function Z(t, λ) defined on [0,∞) such that
A(t, λ) = eZ(t,λ), where A(t, λ) is the solution to IVP (6.1).

We define the smooth function

q([
−→
Y ]) =

{
Y if 1

|Y |
−→
Y , 1

|X0|
−→
X0 are in the same hemisphere or Y = O3,

(− 2π
|Y | + 1)Y if 1

|Y |
−→
Y , 1

|X0|
−→
X0 are in different hemispheres and Y = O3,

(6.17)

where points 0 and 2π are identified, and [
−→
Y ] is an equivalence class of D. Then, eq([Y ]) = e[Y ]

for any [Y ] ∈ D. If we define Z∗(t, λ) = q([Z(t, λ)]), then Z∗(t, λ) is sufficiently CS and
A(t, λ) = eZ(t,λ) = e[Z(t,λ)] = eZ

∗(t,λ). Thus, Z∗(t, λ) is the solution of the IVP (3.5). We
relabel Z∗(t, λ) to Z(t, λ).

We discuss the change that needs to be done in order to get the generalization to any
compact Lie group G ⊂ O(N). We make the change of variable C = e−XG(0,λ)tA. Then, the
IVP (6.1) becomes Ċ = −XG(0, λ)C + CXG(t, λ) and C(0) = IN , where IN is the identity
matrix. Next, we use the fact that the exponential map exp of G is a smooth function on
g with differential given by (6.2) (see [24, 27]). We make the change of variable C = eZ in

the new IVP and we end by looking for solutions |Z(t, λ)| = O(λ
1
2 ) to Ż = h(Z, t, λ) and

Z(0) = ON , where h(t, Z, λ) is bounded and ON denotes the zero matrix.

Appendix A. We now show that (6.8) from section 6 holds. It is enough to check that(
I3 +

cos |Z| − 1

|Z|2
Z +

|Z| − sin |Z|
|Z|3

Z2

)[
I3 +

1

2
Z +

(
1 − |Z|

2
cot

|Z|
2

)
Z2

|Z|2
]

= I3.

From [27] we know that for any X ∈ so(3),

X2n = (−1)n−1 |X|2(n−1) X2 for any n ≥ 1,

X2n+1 = (−1)n |X|2nX for any n ≥ 0.
(A.1)

Using Z3 = − |Z|2 Z and Z4 = − |Z|2 Z2, it yields

(
I3 +

cos |Z| − 1

|Z|2
Z +

|Z| − sin |Z|
|Z|3

Z2

)[
I3 +

1

2
Z +

(
1 − |Z|

2
cot

|Z|
2

)
Z2

|Z|2
]

=

(
I3 +

cos |Z| − 1

|Z|2
Z +

|Z| − sin |Z|
|Z|3

Z2

)[
I3 +

1

2
Z +

(
1

|Z|2
−

cos |Z|
2

2 sin |Z|
2 |Z|

)
Z2

]

= I3 +
1

2
Z +

(
1

|Z|2
−

cos |Z|
2

2 sin |Z|
2 |Z|

)
Z2 +

cos |Z| − 1

2 |Z|2
Z2

+
cos |Z| − 1

|Z|2
Z +

cos |Z| − 1

|Z|2

(
1

|Z|2
−

cos |Z|
2

2 sin |Z|
2 |Z|

)
Z3 +

|Z| − sin |Z|
|Z|3

Z2 +
|Z| − sin |Z|

2 |Z|3
Z3
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+
|Z| − sin |Z|

|Z|3

(
1

|Z|2
−

cos |Z|
2

2 sin |Z|
2 |Z|

)
Z4

= I3 +

[
1

2
+

cos |Z| − 1

|Z|2
− cos |Z| − 1

|Z|2
+

cos |Z| − 1

|Z|2
|Z| cos |Z|

2

2 sin |Z|
2

− 1

2
+

sin |Z|
2 |Z|

]
Z

+

[
1

|Z|2
−

cos |Z|
2

2 sin |Z|
2 |Z|

+
cos |Z| − 1

2 |Z|2
+

|Z| − sin |Z|
|Z|3

− |Z| − sin |Z|
|Z|

1

|Z|2

+
|Z| − sin |Z|

|Z|
cos |Z|

2

2 sin |Z|
2 |Z|

]
Z2

= I3 +

[
− sin2 |Z|

2

|Z|
cos |Z|

2

sin |Z|
2

+
sin |Z|
2 |Z|

]
Z +

[
cos2 |Z|

2

|Z|2
−

2 sin |Z|
2 cos |Z|

2

2 |Z|2
cos |Z|

2

sin |Z|
2

]
Z2 = I3.

The proof of (6.6) follows using (A.1):

∞∑
n=0

(−1)n

(n + 1)!
Zn = I3 +

∞∑
k=1

(−1)2k

(2k + 1)!
Z2k +

∞∑
k=0

(−1)2k+1

(2k + 2)!
Z2k+1

= I3 +

(
− 1

2!
+

1

4!
|Z|2 − 1

6!
|Z|4 + . . .

)
Z

+

(
1

3!
− 1

5!
|Z|2 +

1

7!
|Z|4 − . . .

)
Z2

= I3 +
cos |Z| − 1

|Z|2
Z +

|Z| − sin |Z|
|Z|3

Z2,

where we used the Taylor expansions for sin and cos.
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Wave Radiation by Balanced Motion in a Simple Model∗

J. Vanneste†

Abstract. We introduce and study a toy model which captures some essential features of wave radiation by
slow (or balanced) motion in the atmosphere and the ocean. Inspired by the widely studied five-
component model due to Lorenz, the model describes the coupling of a nonlinear pendulum with
linear waves. The waves obey a one-dimensional linear Klein–Gordon equation, so their dispersion
relation is identical to that of inertia-gravity waves in a rotating shallow-water fluid. The model
is Hamiltonian. We examine two physically relevant asymptotic regimes in which there is some
time-scale separation between the slow pendulum motion and the fast waves: in regime (i), the
time-scale separation breaks down for waves with asymptotically large wavelengths; in regime (ii),
the time-scale separation holds for all wavelengths. We study the generation of waves in each regime
using distinct asymptotic methods. In regime (i), long waves are excited resonantly in a manner
that is analogous to the Lighthill radiation of sound waves in weakly compressible flows, and to the
radiation of gravitational waves by slow mass motion in general relativity. Matched asymptotics
provides the functional form of the waves radiated, and leads, at higher order, to a closed model
describing the pendulum dynamics while accounting for the dissipative effect of wave radiation.
In regime (ii), an exponentially accurate slow manifold can be defined, and the waves radiated
are exponentially small. They are captured using an exponential-asymptotic technique combining
complex-time matching with Borel summation. The asymptotic results obtained in each regime are
tested against numerical simulations of the model.

Key words. slow manifold, wave radiation, inertia-gravity wave, exponential asymptotics
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1. Introduction. Systems with widely separated time scales abound, and numerous math-
ematical techniques have been devised to take advantage of their time-scale separation. In
many such systems, the fast degrees of freedom are only weakly excited; it is then natural
to attempt to eliminate them [33] by reducing the dynamics to a slow manifold, that is, to a
submanifold of the state space which is nearly invariant and on which the dynamics is slow.
We refer the reader to the recent paper by MacKay [24] for a comprehensive discussion of the
concept of slow manifold and for several examples of applications.

The particular application which motivates the present paper is provided by geophysical
fluid dynamics. The dynamics of the atmosphere and the ocean at midlatitudes is dominated
by the large-scale, slow motion usually referred to as “balanced motion,” but much faster
motion in the form of inertia-gravity waves is also possible. (The even faster sound waves
are generally filtered out at the outset by using incompressible, hydrostatic, or anelastic fluid
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models.) The time-scale separation between the two types of motion is large, with typical
time scales of the order of a few days or weeks for the balanced motion in the atmosphere
or the ocean, respectively, and inertia-gravity wave periods of the order of a few minutes.
This has led to the development of a variety of “balanced models” describing the reduced
dynamics on a slow manifold (see, e.g., [36, 5, 25] and references therein), the simplest of
which is the well-known quasi-geostrophic model. Although balanced models are today mostly
theoreticians’ tools, the concept of slow manifold is used in weather forecasting in the process
of initialization [9]: initial data are prepared by projection onto a slow manifold to reduce the
level of (mostly spurious) inertia-gravity wave activity.

The reliance on balanced models has led many researchers to investigate the fundamental
limitations of the concepts of slow manifold and balance. This has been largely carried out
using low-order models consisting of a few ordinary differential equations (ODEs), typically
derived from the fluid equations by spectral expansion and severe truncation. The most
widely studied among these is the five-component model due to Lorenz [21], also referred
to as the Lorenz–Krishnamurthy (LK) model [22]. It can be reduced to four ODEs which
describe the dynamics of a nonlinear pendulum, representing slow balanced motion, coupled
to a stiff spring, representing the fast waves [8, 6]. Another, essentially equivalent, model is
the swinging spring [23], or spring pendulum [24].

For these ODE models, the status of the slow manifold is now well understood. In the
absence of dissipation, thought to be negligible in the geophysical context, the slow manifolds
are elliptic and in general not invariant [14, 24]. However, a systematic improvement procedure
provides slow manifolds that are invariant up to an O(εN ) error, where ε � 1 is the ratio
between the slow and fast time scales, for any N ≥ 1. An optimal choice of N then leads to
an exponentially small error, under an assumption of analyticity [14, 24, 38]. The physical
implications are clear: regardless of how well prepared the initial data are, the generation
of fast oscillations is unavoidable. For initial data lying on an optimal slow manifold, these
oscillations are very weak and are exponentially small in ε. In the atmospheric context, this
provides a mechanism for the generation of inertia-gravity waves which is often referred to as
“spontaneous” generation, to emphasize the difference from the generation that results from
the adjustment of poorly prepared initial data (see, e.g., [29] for a recent analysis).

In spite of the fact that their amplitude is beyond all orders in ε, the fast oscillations
generated spontaneously can be studied perturbatively, using the techniques of exponential
asymptotics [32]. Such a study reveals the mechanism of generation to be an instance of the
Stokes phenomenon (see, e.g., [3, 28]) and provides explicit estimates for the wave amplitudes.
Results of this type have been obtained in [34] for the LK model and in [35, 27] for particular
solutions of the fluid equations that are also governed by ODEs.

Low-order models such as the LK model have proved very useful for understanding the
rather subtle questions raised by the concepts of slow manifold and balance. However, the
drastic simplification entailed by the reduction from partial differential equations (PDEs) to
ODEs means that a number of issues cannot be addressed using these models. To examine
some of these issues, it is therefore useful to introduce a new simplified model, in the spirit of
the LK and swinging-spring models, but retaining a PDE component. This is the purpose of
this paper.

In fluids, the fast oscillations are propagating waves, with frequencies that depend on
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Figure 1. Dispersion relation εω = (1 + k2/b2)1/2 for shallow-water inertia-gravity waves (solid line). The
nondispersive limit, valid for k � b, is also shown (dashed line).

wavenumber. By fixing the wavenumbers involved, the derivation of LK-type models sup-
presses the possibility of interactions between very different wavenumbers. This possibility,
however, is at the heart of one mechanism of wave generation which appears in several phys-
ical systems: gravitational waves in general relativity [10], [18, section 110], sound waves in
weakly compressible fluids [20], [19, section 75], and, in the geophysical context, inertia-gravity
waves in rotating shallow water [11, 12]. In these systems, the wave frequencies decrease with
wavenumbers in such a manner that there always are some resonant interactions between
the slow motion and waves of sufficiently large scales. The wave generation is then rela-
tively inefficient—because of the mismatch between the spatial scales of the slow motion and
waves—but nevertheless scales like some power of the relevant small parameter rather than
exponentially.

For the rotating shallow-water model and for more realistic models of geophysical flows,
this resonant mechanism of wave generation (which we will refer to as Lighthill radiation
following [11, 12] and the sound-wave analogy) or the nonresonant mechanism captured in
the LK and other ODE models may be relevant, depending on the flow regime. To see why,
consider the dispersion relation

ω2 = ε−2(1 + k2/b2)(1.1)

of shallow-water inertia-gravity waves, displayed in Figure 1. Here, ω is the frequency and k
the wavenumber, and both are nondimensionalized using the characteristic frequency U/L and
scale L of the balanced motion. There are two independent parameters: the Rossby number,
ε = U/(fL), where f is the Coriolis parameter (measuring the earth’s rotation rate), and
the rotational Froude number b = fL/(gh)1/2, where g is the earth’s gravity and h the fluid
depth. Two main asymptotic regimes are thought to be relevant: (i) the small-Froude-number
regime, with b � 1 and ε = O(1), and (ii) the small-Rossby-number (or quasi-geostrophic)
regime, with ε � 1 and b = O(1). In regime (i), there is no time-scale separation between
(slow) balanced motion and long waves (with O(b) wavenumbers), and Lighthill radiation
occurs. In regime (ii), on the other hand, there is a time-scale separation between balanced
motion and waves for all wavenumbers, since the wave frequency is bounded from below by
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ε−1 � 1. Thus Lighthill radiation cannot occur, and one can expect exponentially small wave
radiation of the type studied in the LK model [12, 31, 13].

The main advantage of the model that we introduce in this paper is that it makes it possible
to analyze both regimes (i) and (ii) and, correspondingly, both types of wave generation in
as simple a set-up as possible. The rotating shallow water may seem to be suitable for such
an analysis: indeed, Ford, McIntyre, and Norton [12] succeeded in capturing the Lighthill
radiation and their feedback in regime (i) using matched asymptotics. This, however, requires
a large amount of algebra which might deter many readers. Worse still, the asymptotic
treatment of regime (ii) seems hopeless in the absence of a well-developed theory of exponential
asymptotics for PDEs. By contrast, our model can be analyzed in regimes (i) and (ii) by
relatively simple means.

Another advantage of our model compared to low-order models is that, by keeping a
PDE component, it introduces the possibility of wave radiation to infinity. Thus, the waves
move away from their region of generation, thereby providing a source of dissipation for
the balanced motion. This is probably a good approximation for what is happening in the
atmosphere and ocean where the waves can escape before being ultimately damped by breaking
or viscous dissipation. Our model can thus be used to examine how efficient wave generation
and radiation can be as mechanisms for the dissipation of the energy of the balanced motion.
This is an issue of current interest in oceanography (see, e.g., [26]). It would be best studied
by adding some forcing (perhaps random) to the model so that the properties of the statistical
equilibrium arising from the balance between forcing and wave radiation can be established.
In this paper, however, we limit our considerations to the unforced version of the model.

The new model is introduced in section 2. It is a simple modification of the LK model
in which the linear oscillator described by the fast variables is replaced by a linear, one-
dimensional Klein–Gordon equation [37, Chapter 11] with dispersion relation (1.1). Thus, the
slow component of the model remains governed by ODEs, but the fast component is governed
by PDEs. The coupling between the spatially dependent (fast) variables and the spatially
independent (slow) variables is through an arbitrary localized shape function, which we take
to be the derivative of a Gaussian. This has zero average and is odd so that, by symmetry, the
spatial dynamics can be reduced to the half line R+. The model is Hamiltonian. It is defined
by three parameters: ε and b, which appear in the dispersion relation (1.1), and the amplitude
a of the shape function. The model is not derived in any way from the fluid equations, nor
does it obviously represent any simple mechanical device. This is not a significant drawback,
however. What is important for our purpose is that the parameters ε and b play the same
role as they do for the rotating shallow-water model. Because of this, we refer to them as the
Rossby number and Froude number, respectively.

After introducing the model, we discuss the asymptotic behavior of its solutions. Section 3
is devoted to the small-Froude-number regime b � 1, ε = O(1). As mentioned above, this
is the regime where Lighthill radiation occurs. Using matched asymptotics, we obtain an
approximation for the waves generated spontaneously by the balanced motion. We further
derive a reduced model, which describes the evolution of the slow variables while accounting
for the energy loss due to wave radiation. We term this model “postbalanced” by analogy with
the post-Newtonian models used in general relativity to describe gravitational-wave radiation
and its feedback on compact sources (see, e.g., [4] for a review). Our postbalanced model can
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then be seen as a toy version of the one derived by Ford, McIntyre, and Norton [12] for the
rotating shallow-water equations.

Section 4 is devoted to the small-Rossby-number regime ε � 1 and b = O(1). This
regime is similar to that studied in low-order models in that approximately invariant slow
manifolds can be defined to arbitrary order O(εN ), and wave radiation is exponentially weak.
We estimate the amplitude of the waves radiated using exponential asymptotics. This shows,
in particular, that the waves are near inertial, that is, have frequencies close to ε−1, with
large spatial scales of the order of ε−1/2. The asymptotic results of both sections 3 and 4
are compared with numerical simulations. The numerical formulation, which implements
nonreflecting boundary conditions, is described in Appendix A. The paper concludes with a
discussion in section 5.

2. Model. The LK model [21, 22], obtained by truncation of a spectral expansion of the
rotating shallow-water equations on the plane, can be written as the system of five ODEs

u̇L = −vLwL + bvLyL,(2.1)

v̇L = wLuL − buLyL,(2.2)

ẇL = −uLvL,(2.3)

δẋL = −yL,(2.4)

δẏL = xL + bδuLvL.(2.5)

Here, the small parameter is δ; it is related to the Rossby and Froude numbers by δ =
εb/(1 + b2)1/2 so that both the small-Froude-number and small-Rossby-number regimes lead
to δ � 1. The slow variables (uL, vL, wL) describe the evolution of a rigid body or, after
reduction using the constancy of u2

L + v2
L, of a pendulum with O(1) frequency. The fast

variables (xL, yL) describe a linear oscillator with frequency ε−1 [8, 6].
We propose the following modification of the LK model. The three slow variables, which

we denote by (u, v, w), remain functions of t only, but the fast variables, denoted by (x, y),
are functions of t and of a spatial coordinate s ∈ R. Choosing some localized function f(s)
(e.g., Gaussian or compactly supported), we write the new model as the mixed ODE–PDE
system

u̇ = −vw + v

∫
f(s)y(s, t) ds,(2.6)

v̇ = wu− u

∫
f(s)y(s, t) ds,(2.7)

ẇ = −uv,(2.8)

εxt = −y,(2.9)

εyt = x− xss/b
2 + εf(s)uv,(2.10)

where either ε or b are now the small parameters. Note that we use both overdots and
subscripts t to denote time derivatives in order to distinguish between ODEs and PDEs. In
(2.6)–(2.7) and in what follows, unspecified limits of integrations are (−∞,∞). As announced,
in the linear approximation, the fast variables (x, y) satisfy a Klein–Gordon equation [37,
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Chapter 11]. As boundary conditions for these variables, we impose outward radiation as
s → ±∞.

In what follows, we make the choice

f(s) =
a

(2π)1/2
d

ds
e−s2/2 =

−as e−s2/2

(2π)1/2
,

where a is a fixed amplitude. Three qualitative properties of this function matter: the rapid
decay as |s| → ∞, the vanishing of its zeroth moment, and the nonvanishing of its first
moment. Our results would be qualitatively the same for other choices of f(s) satisfying these
properties. The oddness of f(s) is inessential but convenient since it is inherited by x(s, t)
and y(s, t) and allows computations to be limited to the half line s ∈ R+.

The three properties satisfied by f(s) are motivated by the geophysical context: f(s)
can be thought of as the analogue of the spatial distribution of potential vorticity in the
shallow-water model. This distribution is localized in space and has a zeroth moment that is
time-independent, although not necessarily zero. (The first moment of the potential vorticity
is also time-independent, and the analogy between our model and the shallow-water model
would arguably have been closer had we taken the first moment of f(s) to also vanish; however,
this would only make the analytical treatment of sections 3 and 4 more cumbersome without
changing our conclusions significantly.)

Before examining solutions of (2.6)–(2.10), we reduce this system to four equations and
mention some of its properties. Note first that the model conserves

C =
u2 + v2

2
and H =

1

2

(
−u2 + w2

)
+

1

2

∫ (
x2
s/b

2 + x2 + y2
)
ds.

In fact, it is Hamiltonian and, when reduced to four equations, canonical (cf. [8, 6]). To see
this, we first take C = 1 without loss of generality. We then introduce the new coordinate φ,
with

u =
√

2 cosφ and v =
√

2 sinφ,

and obtain the equations

φ̇ = w −
∫

f(s)y(s, t) ds,(2.11)

ẇ = − sin(2φ),(2.12)

εxt = −y,(2.13)

εyt = x− xss/b
2 + εf(s) sin(2φ).(2.14)

The further change of variable

θ = φ− ε

∫
f(s)x(s, t) ds

transforms the system into
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θ̇ = w,(2.15)

ẇ = − sin

[
2θ + 2ε

∫
f(s)x(s, t) ds

]
,(2.16)

εxt = −y,(2.17)

εyt = x− xss/b
2 + εf(s) sin

[
2θ + 2ε

∫
f(s)x(s, t) ds

]
.(2.18)

This is a Hamiltonian system, with Hamiltonian

H =
w2

2
− 1

2
cos

[
2θ + 2ε

∫
f(s)x(s, t) ds

]
+

1

2

∫ (
x2
s/b

2 + x2 + y2
)
ds(2.19)

and symplectic form

Ω = dθ ∧ dw + εdy ∧ dx.

Below we use the energy flux F to diagnose the wave radiation. The flux emerges in the
derivation of the conservation law for H written in the form

dH

dt
= −

∫
∂sF ds = 0, with F = −xtxs/b

2.(2.20)

In the form (2.15)–(2.18) the model can be recognized as describing the dynamics of a
pendulum coupled nonlinearly with a Klein–Gordon wave equation, with dispersion relation
(1.1). For waves with O(1) wavenumbers, there is a time-scale separation between the slow
pendulum and the wave motion if either b � 1 or ε � 1. At leading order, a slow manifold is
simply given x = y = 0, and the corresponding balanced model corresponds to (2.15)–(2.16)
with x = 0. The problem is then to derive reduced models, governing the slow evolution of
θ and w only, which are more accurate than this first-order balanced model. In the next two
sections, we examine this problem for each of the two regimes b � 1 and ε � 1. We use either
of the two formulations (2.6)–(2.10) or (2.15)–(2.18)—whichever is more convenient.

3. Small-b behavior. We start our asymptotic study of the new model by the small-
Froude-number regime b � 1 and ε = O(1). As mentioned, the time-scale separation is not
complete in this regime: long-wave solutions of the Klein–Gordon equation with k = O(b) have
an O(1) frequency (see (1.1)) which can match the pendulum frequency. This is the origin of
the Lighthill radiation which we now examine. Because this radiation appears at a small power
of the small parameter (O(b2) in the present case), it is easy to derive a postbalanced model,
which reduces the dynamics to the two dependent variables θ and w but nevertheless describes
the effect of wave radiation. This asymptotic model, which we now derive, is analogous to the
post-Newtonian models developed for general relativity [4], and to the Ford, McIntyre, and
Norton model for rotating shallow water [12].

3.1. Lighthill radiation and postbalanced model. Following [36], we expand only x and y
in powers of the small parameter b, leaving (2.15)–(2.16) for θ and w unexpanded. Introducing
the expansion

x = b2x(0) + b3x(1) + · · ·(3.1)



790 J. VANNESTE

into (2.17)–(2.18) leads to

x(0)
ss = εf(s) sin(2θ) and x(1)

ss = 0.

Solving and imposing oddness in s give

x(0) = εG(s) sin(2θ) + A(t)s and x(1) = B(t)s,(3.2)

where

G(s) =
a

(2π)1/2

∫ s

0
e−s′2/2 ds′,

and A(t) and B(t) are functions to be determined.
The expansion (3.1) breaks down for s = O(b−1). This reflects the breakdown of the

time-scale separation for long waves with k = O(b). In the outer region s = O(b−1), we use
the rescaled variable

S = bs > 0

and expand

x = b2X(0)(S, t) + b3X(1)(S, t) + · · · .

Because of the rapid decay of f(s) as |s| → ∞, each X(i), i = 0, 1, . . . , satisfies the free
Klein–Gordon equation

ε2X
(i)
tt −X

(i)
SS + X(i) = 0.(3.3)

The solutions decaying as S → ∞ are written in terms of their Laplace transform in time.
Denoting the Laplace transform by a tilde and the Laplace variable by σ, we find from (3.3)
that

X̃(i)(S, σ) = e−(1+ε2σ2)1/2Sξ(i)(σ),(3.4)

where the ξ(i) remain to be determined. Note that we have assumed vanishing initial conditions
for X. Matching the Laplace transform of (3.2) with (3.4) and noting that G(∞) = a/2 give

A(t) = 0, ξ(0)(σ) =
aε

2
s̃in(2θ), B̃(σ) = −(1 + ε2σ2)1/2ξ(0)(σ), and ξ(1)(σ) = 0.

Thus, to leading order, the waves generated by the balanced motion are given by

x̃(s, σ) ≈ b2X̃(0)(S, σ) =
b2aε

2
e−(1+ε2σ2)1/2S s̃in(2θ) for S = bs = O(1).

This is also the result of a Lighthill-like approximation [20]: this takes advantage of the
spatial scale separation between the waves and f(s) to regard (2.17)–(2.18) as a forced Klein–
Gordon equation with the localized forcing εf(s) sin(2θ) approximated by aεδ′(s) sin(2θ) =
b2aεδ′(S) sin(2θ). The feedback of the waves on θ and w arises at O(b3), through the nonzero

B̃(σ) = −aε(1 + ε2σ2)1/2

2
s̃in(2θ).
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Inverting the Laplace transform using the convolution theorem gives

B(t) = −aε2w cos(2θ) − aεJ1(t/ε)

2t
� sin(2θ),(3.5)

where J1(·) is a Bessel function and � denotes convolution in time defined as

(h1 � h2)(t) =

∫ t

0
h1(t− τ)h2(τ) dτ for any two functions h1(t) and h2(t).

Using (3.2), we compute

∫
f(s)x(s, t) ds = − b2a2ε

2π1/2
sin(2θ) − b3aB(t) + O(b4)(3.6)

and reduce (2.15)–(2.16) to

θ̇ = w,(3.7)

ẇ = − sin
[
2θ − b2a2ε2 sin(2θ)/π1/2 − 2b3aεB(t)

]
.(3.8)

This is the sought postbalanced model. With B(t) given in (3.5), it is a closed system of ordi-
nary integro-differential equations for θ and w which accounts for the effect of wave radiation.
The model is not Hamiltonian because of the O(b3) term in (3.8). This term describes the loss
of pendulum energy caused by the waves; its O(b3) scaling is consistent with the scaling of
the wave-energy flux F . Estimated from the inner solution (3.2) as s → ∞, the flux is found
as

F = −xtxs/b
2 ≈ −b3 x

(0)
t x(1)

s

∣∣∣
s→∞

= −b3aεw cos(2θ)B(t).(3.9)

Note that since the system (3.7)–(3.8) is integrable when b = 0, closed-form solutions for small
b could be derived by averaging. We do not pursue this here, since this possibility is a fragile
particularity of our model.

A number of conclusions can be drawn from the above analysis. First, the wave radiation
scales like a power, here the square, of the small parameter b. Next, the waves radiated are
long, with O(b−1) wavelength, so that they can resonate with the slow pendulum motion.
Because of this large scale, a Lighthill-like theory can be applied; this describes the waves
as generated by a Dirac-type source which can be estimated by the first nontrivial moment
of the balanced part of the flow (here represented by the first moment of f(s)). Finally, the
feedback of the waves on the flow can be captured asymptotically. This leads to a postbalanced
model, which evolves on the slow time scale only and describes to leading order the impact
of wave radiation on balanced motion. This model is dissipative and involves time integrals
as well as derivatives, as a result of dispersion. These conclusions are identical (except for
the specific scalings) to those that can be drawn from the analysis of the much more complex
shallow-water equations in [12].
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Figure 2. Comparison of a numerical solution of the model (2.15)–(2.18) (solid curves) with the solution of
the postbalanced approximation (3.7)–(3.8) derived in the limit b � 1 (dashed curves). The left panel shows the
evolution of the angle θ; the right panel compares the O(b3) quantity Δ defined in (3.11) with its postbalanced
approximation −b3aB(t). The parameters chosen are b = 0.15, ε = a = 1, and the initial conditions have been
taken on the unperturbed heteroclinic trajectory (3.10).

3.2. Numerical results. We confirm the validity of the postbalanced approximation (3.7)–
(3.8) by presenting the results of a numerical experiment. We compare the numerical solution
of the full ODE–PDE model (2.15)–(2.18), implemented as described in Appendix A, with the
numerical solution of (3.7)–(3.8) for particular initial conditions. The fast variables are taken
as (x, y) = (0, 0), and the slow ones are chosen so that, for b = 0, the angle θ(t) follows the
separatrix joining θ = π/2 to θ = −π/2. (We refer to this trajectory as heteroclinic, although
it can also be viewed as homoclinic, if one identifies π/2 with −π/2 as is done in [8].) For our
system, this unperturbed solution satisfies

cos θ = sech [
√

2(t− t0)] and sin θ = − tanh [
√

2(t− t0)](3.10)

for some t0, which we have taken to be t0 = 5. When b �= 0, the dissipation introduced by
the wave radiation means that the heteroclinic trajectory is replaced by damped oscillations;
with b � 1, these have long, slowly decreasing periods.

This is illustrated by Figure 2, which shows the evolution of θ for b = 0.15, with ε = a = 1.
(The results are typical of a wide range of values satisfying b � 1 and ε, a = O(1) with which
we have experimented.) The period of the oscillations introduced by wave radiation is of
the order of 10. This is consistent with the order of magnitude log(b−3) obtained by noting
that the pendulum energy is decreased by an O(b3) amount from the separatrix energy; this
scaling has been confirmed by computations with several values of b. The figure compares the
solution of the full model (solid curve) with that of the postbalanced model (dashed curve)
and confirms the validity of the latter: the postbalanced approximation captures well the
transition to damped oscillations, even though the period differs slightly from that obtained
with the full model. This difference in periods can be attributed to the O(b4) terms neglected
in our asymptotics which lead to an O(b) error in the period of the postbalanced model.

The effectiveness of the postbalanced model is better judged from the right panel of
Figure 2. This figure assesses the accuracy of the crucial approximation (3.6) by comparing



WAVE RADIATION BY BALANCED MOTION 793

0 10 20 30
−2

−1

0

1

2

3

4

5

6
x 10

−3

t

F

Figure 3. Wave generation in the small-b limit. The left panel shows the evolution of x(s, t) for the
same parameters and initial conditions as in Figure 2. The right panel compares the energy flux F = xsxt/b

2

evaluated at s = 2 (solid curve), with the postbalanced approximation (3.9) (dashed curve).

Δ =

∫
f(s)x(s, t) ds +

b2a2ε

2π1/2
sin(2θ)(3.11)

with its approximation −b3aB(t). Because both functions are computed from the full-model
solution, the phase shift present in the postbalanced solution disappears. The figure confirms
the validity of (3.6).

The left panel of Figure 3 shows the structure of the waves that are radiated from the
balanced motion. As expected, these are long waves, with O(b−1) wavelengths. The right panel
compares the flux (2.20) evaluated at s = 2, with the flux (3.9) obtained in the asymptotic
treatment. The chosen value s = 2 is roughly consistent with the idea that (3.9) holds
in an intermediate region between s = O(1) and s = O(b−1). If we factor out the phase
shift mentioned above, there is a good agreement between the asymptotic and full numerical
results. It is interesting to note that the actual flux changes sign while, by construction, the
asymptotic one does not. There is a fair amount of cancellation in the actual flux which makes
its time-integrated effect well described by the asymptotic one.

4. Small-ε behavior. We now turn to the regime ε � 1, with b = O(1), which in the
shallow-water context corresponds to the quasi-geostrophic regime. In this regime, there is a
frequency separation between balanced motion and waves at all scales, and the wave generation
can be expected to be exponentially weak. In this section, we use exponential asymptotics to
estimate the amplitude of the waves generated.
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4.1. Exponential asymptotics. A balanced solution of (2.15)–(2.18) can be sought by
expansion of θ, w, x, and y in powers of ε or, alternatively, by first deriving an expression
for a slow manifold in the form of slaving relations x = xbal(s, θ, w) and y = ybal(s, θ, w), and
then reducing the dynamics onto it. The slaving relations can be derived order-by-order in ε,
through either an iteration or an expansion procedure. Choosing the latter, we write

xbal(s, θ, w) =

∞∑
n=0

ε2n+1x
(n)
bal(s, θ, w) and(4.1)

ybal(s, θ, w) =

∞∑
n=0

ε2n+2y
(n)
bal (s, θ, w)(4.2)

and introduce these expressions into (2.15)–(2.18). This leads to a sequence of ODEs in s for

the x
(n)
bal(s, θ, w) which are best solved in the Fourier domain. Denoting the Fourier transform

in s by a hat, with k as the Fourier variable, we find

x̂
(0)
bal = − f̂(k)

Ω2
sin(2θ), ŷ

(0)
bal =

2f̂(k)

Ω2
w cos(2θ), etc.,

where

f̂(k) =
iak

2π
e−k2/2(4.3)

and Ω is the scaled frequency satisfying

Ω2 = ε2ω2 = 1 + k2/b2.(4.4)

The Fourier transform can be inverted. For instance, we find that

x
(0)
bal = −ab2eb

2/2

4

(
ebs erfc

b + s√
2

− e−bs erfc
b− s√

2

)
sin(2θ).(4.5)

By contrast with the small-b case, there are no obstacles to carrying out this calculation to

obtain, in principle, x
(N)
bal and y

(N)
bal for arbitrary order N . The decay of x

(N)
bal and y

(N)
bal as |s| →

∞, in particular, is satisfied. Indeed a rough estimate indicates that x̂(N) ∝ f̂(k)/Ω2(N+1),
leading to

x(N) ∝ sNe−b|s| as |s| → ∞.(4.6)

Of course, the series (4.1) diverges, and only finite values of N , typically up to O(ε−1),
can be considered. This divergence reflects the existence of a subdominant solution which
is switched on through a Stokes phenomenon [1, 3]. Physically, this subdominant solution
represents waves, and the switching on corresponds to their spontaneous generation by the
balanced motion. Indeed, introducing the decomposition x = xbal + xw, with xbal defined by
an optimally truncated series of the form (4.1) and xw � xbal, we find that xw satisfies the
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free Klein–Gordon equations at leading order in ε. Thus, the time dependence of the Fourier
transform of x̂w is

x̂w(k, t) ∝ exp(iωt),(4.7)

where the branch of ω defined by (1.1) is chosen for radiation at |s| → ∞. If the solution is
properly balanced, then x̂w = 0. However, in the course of the evolution, a Stokes phenomenon
can occur which switches x̂w to an exponentially small, nonzero value which we now estimate.

The Stokes phenomenon is associated with singularities of the balanced motion for complex
values of t. By analyzing the equations near the relevant singularities, and matching with
expressions (4.1) and (4.7) which are valid some distance away from these singularities, one
can estimate xw. This is the essence of the so-called Kruskal–Segur method, which we apply
in Appendix B. There, we obtain the amplitude of the waves switched on when the (real)
time t crosses the Stokes line joining a pair of complex-conjugate singularities t∗ and t̄∗. In
terms of Fourier transform, we find

x̂w(k, t) ∼ −ikλ(k)

ε
e−αΩ/ε−k2/2 cos[Ω(t− β)/ε],(4.8)

where

α = Im t∗ > 0 and β = Re t∗.

In this expression, λ(k) is an O(1) function defined for small k that can be obtained numerically
as described in Appendix B by solving the discretized version of an infinite set of recurrence
relations. The switching on takes place for t = β so that (4.8) needs to be multiplied by the
Heaviside function H(t− β) (which could be smoothed out as an error function of width ε1/2

using Berry’s result [3]), and only the singularities (t∗, t̄∗) nearest to the real axis need to be
taken into account.

The Fourier transform can be inverted to derive an approximation for xw(s, t) from (4.8);
using the steepest-descent method, we find the final estimate

xw(s, t) ∼ (2π)1/2b3λ(0) e−α/εS Re
ei(t−β)/ε−b2S2/[2(α−i(t−β))]

[α− i(t− β)]3/2
,(4.9)

valid for S = ε1/2s = O(1). This provides a useful closed-form approximation which requires
only the computation of the value of λ(0). Figure 4 shows λ(0) as a function of a and b; it also
shows λ(0)/a to demonstrate that λ(0) ∼ a for a → 0 or b → 0. In fact, it can be established
that these limits correspond to the decoupling of θ and w from x and y, and that

λ(k) ∼ a as a → 0 or b → 0.(4.10)

Formula (4.9) shows that the waves emitted are “near-inertial” waves, that is, have a frequency
close to the minimum frequency ε−1 and have large, O(ε−1/2) spatial scales.

It is interesting to examine what a Lighthill-like approach would predict for the wave
amplitude in the regime ε � 1. This approach amounts to solving (2.17)–(2.18), with the last
term of (2.18) approximated by ε sin(θ(0)), where θ(0) is the leading-order approximation to θ.
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Figure 4. Value of λ(0), governing the amplitude of the waves generated spontaneously in the limit of small
ε, as a function of a and b (left panel). The right panel shows λ(0)/a and demonstrates that λ(0) ∼ a for a → 0
or b → 0.

The computation of the wave radiated in this case is straightforward in Fourier space, where
it follows the computation carried out originally for the LK model in [22]. The result has the
form (4.8), with λ(k) replaced by a, consistent with (4.10). For finite a and b, λ(k) differs
significantly from a (see Figure 4). Thus, a Lighthill-like approach does not give the correct
asymptotics for amplitude of the Fourier modes even to leading order (although the controlling
behavior, that is, the asymptotics of the log of the amplitude, is correct). This is because
the wave amplitude at leading order in ε depends on the structure of the balanced motion to
all orders. Thus, in contrast with the small-b situation, an essentially complete description of
the balanced motion is necessary to estimate even the leading-order wave amplitude. We say
“essentially” here because this complete description is in fact needed only in the vicinity of
the singular points t∗ nearest to the real axis rather than for all t. This is the simplification
that is exploited in the asymptotic approach of Appendix B.

4.2. Numerical results. We compare the theoretical predictions of exponential asymp-
totics with numerical results for two sets of parameters. For the first, we choose the same
initial condition as in section 3.2, that is, on the unperturbed (ε = 0) heteroclinic trajectory
(3.10). For this trajectory, there is only one pair of complex-conjugate singularities of the
balanced motion, t∗ and t̄∗ with

t∗ = t0 + i
π

2
√

2
,

so that α = π/(2
√

2) and β = t0. An initial condition on the heteroclinic trajectory makes the
wave generation particularly easy to identify and avoids the difficulties associated with the
initialization of the fast variables (x, y). By taking t0 sufficiently large, all the time derivatives
of w and θ at t = 0 can be made arbitrarily small, leading to arbitrarily small values for the

coefficients x
(i)
bal, i > 0, and y

(i)
bal, i ≥ 0, of the balanced part of x and y. Thus, taking

x(0) = εx
(0)
bal, y(0) = 0,
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Figure 5. Wave generation for ε = 0.125, with a = 2 and b = 1 for initial conditions on the unperturbed
heteroclinic trajectory. The angle θ (dashed curve, left axis) and wave energy flux F at s = 25 (solid curve,
right axis) are shown as a function of time.

where x
(0)
bal is given by (4.5) with θ = θ(0), provides a solution that can be balanced to an

arbitrary accuracy simply by taking t0 large enough. We have taken t0 = 5 which turns out
to be sufficient to make the wave radiation by initial adjustment negligible.

Figure 5 shows the evolution of θ obtained for the parameter choice ε = 0.125, a = 2, and
b = 1. As expected, θ follows closely the heteroclinic trajectory; it does not tend to π/2 for
large t, however, and a longer simulation would reveal that θ undergoes a series of weakly
damped oscillations. The damping is of course associated with the wave radiation. This is
first diagnosed by showing the wave-energy flux F computed at the boundary s = 25 of our
integration domain. The flux is always positive, confirming the proper implementation of the
radiation boundary condition, and it oscillates rapidly, with a frequency 2/ε; its maximum
value, of the order of 10−7, is consistent with the crude estimate exp(−2α/ε) ≈ 2×10−8 which
follows from (4.9).

A more complete picture of the wave radiation emerges from Figure 6. This shows x−x
(0)
bal

as a function of s and t. The variable x− x
(0)
bal includes an O(ε3)-contribution of the balanced

part of x as well as the exponentially small wave part xw. However, the balanced contribution
decreases rapidly for t > t0 and for s > 1, so that the wave contribution is clearly isolated.
This consists of rapidly propagating waves, with frequency approximately equal to ε−1, that
are emitted for t ≈ t0 = 5 from the region s = O(1). The right panel of Figure 6, showing
the estimate (4.9) for xw, confirms the validity of our asymptotic treatment. Note that for
the chosen parameters a = 2 and b = 1, we obtain λ(0) = 1.69 using the method described
in Appendix B; a Lighthill-like approach would therefore overestimate the amplitude of the
wave generation by the factor a/λ(0) ≈ 1.2.

For the second numerical experiment, we have chosen an initial condition on a periodic
trajectory of the undisturbed system. The periodic trajectories can be written explicitly as

θ = − am (
√

2(t− t0)/k, k),(4.11)

where am is the amplitude of the Jacobian elliptic functions [2, Chapter 16], and k ≥ 1 and
t0 are fixed by the initial conditions. The period of (4.11) is 2

√
2kK(k) = 2

√
2K(1/k), where
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Figure 6. Wave generation for the same parameters as in Figure 5. The O(ε3) quantity x − x
(0)
bal (left

panel) is compared with the asymptotic result (4.9) for the wave part xw (right panel). The color code, used for

both panels, does not cover the large values of |x− x
(0)
bal| for 4 < t < 6 which reach 1.8 × 10−3.

K is the elliptic integral of the first kind. The solutions (4.11) have complex-time poles, with
the nearest to the real axis located at

t∗n = t0 + n
√

2K(1/k) + iK ′(1/k)/
√

2 and t̄∗n,

where n ∈ Z and K ′ is the complementary elliptic integral. We have taken the parameters
ε = 0.15, a = 2.5, and b = 0.5. For initial conditions we have chosen θ = π/4 and w = 0,
giving

k =
√

2, t0 = K(1/
√

2)/
√

2 = 1.311 . . . ,

and poles t∗n = (2n + 1 + i)t0. Correspondingly, for real t, Stokes lines are crossed for
t = tn = (2n + 1)t0, when the unperturbed trajectory has vanishing angle θ.

For periodic unperturbed solutions, it is difficult to compute balanced initial conditions
accurately: in principle, there is no alternative to the computation of xbal and ybal by optimally
truncated series expansion. In practice, however, we found that the lack of balance that results

from truncating these series to O(ε), that is, from taking x = εx
(0)
bal given in (4.5) with θ = π/4,

and y = 0 is not problematic. A small-amplitude wavepacket is emitted at the initial time
which quickly leaves the computational domain while adjusting the solution to a well-balanced
state.

Figure 7 shows the evolution of θ and of the wave-energy flux F at the boundary of our
computational domain, taken to be s = 50. The angle θ oscillates according to (4.11), with
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Figure 7. Wave generation for ε = 0.15, with a = 2.5 and b = 0.5 for initial conditions on a periodic
unperturbed trajectory. Angle θ (dashed curve, left axis) and wave energy flux F at s = 50 (solid curve, right
axis) as a function of time.

small corrections. The flux F has a large peak for t ≈ 4 that corresponds to the passage of
the wavepacket emitted by the initial adjustment. Thereafter, the flux is associated with the
exponentially small waves radiated spontaneously when t crosses Stokes lines. The estimate
exp(−2α/ε), with α = Im t∗n = t0 = 1.311 . . . , gives 2.5 × 10−8, in rough agreement with the
observed flux.

The left panel of Figure 8 shows x − x
(0)
bal as a function of s and t. Although this field is

dominated by the balanced component for s = O(1), the exponential decay of this component
with s (see (4.6)) ensures that the wave part emerges for large s, say, for s > 10. After the
wavepacket created by the initial adjustment leaves the domain, the wave field consists of a
superposition of large-scale wavepackets emitted at t = tn, creating an interference pattern.
The right panel of Figure 8 shows the asymptotic prediction for xw. To construct the figure,
we have used (4.9), with α = Im t∗0 = 1.311, β = Re t∗0 = 1.311, and λ(0) = 2.235, to
estimate the wave radiated when the first Stokes line is crossed, at t = t0. The full wave field
is then the superposition of similar contributions generated for each tn. If we denote the first
contribution by xw0(s, t− t0), the full wave field is given by

xw(s, t) =

∞∑
n=0

(−1)nxw0(s, t− tn)H(t− tn),

where H(·) denotes the Heaviside function, and the factors (−1)n appear because the signs
of the balanced variables near the poles t∗n alternate with n. On the whole, this asymptotic
expression gives a good picture of the wave field, even though the amplitudes are somewhat
overestimated, and the interference pattern appears slightly distorted. However, keeping in
mind that (4.9) has an O(ε) error and is only valid for s = O(ε1/2), the agreement between
the asymptotic prediction and the numerical result is satisfactory.

5. Discussion. In this paper, we introduce the simple mixed ODE–PDE system (2.15)–
(2.18) as a toy model for wave radiation by slow (or balanced) motion in the atmosphere and
ocean. Though no more than a caricature of the real atmosphere and oceans, the model has
a number of appealing features: wave dispersion relation identical to that of shallow-water
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Figure 8. Wave generation for the same parameters as in Figure 7. The O(ε3) quantity x − x
(0)
bal (left

panel) is compared with the asymptotic result (4.9) for the wave part xw (right panel). The color code, used for

both panels, does not cover the large values of |x− x
(0)
bal| for 0 ≤ s < 10 which reach 5.8 × 10−4.

inertia-gravity waves, Hamiltonian structure, possibility of wave radiation to infinity, and,
of course, great simplicity. Compared to low-order models such as the LK and swinging-
spring models, the inclusion of a PDE component is a major advance toward realism. It
makes it possible to examine the interaction between waves and balanced motion of vastly
different spatial scales that is at the core of the Lighthill-like radiation (or gravitational-
wave-like) radiation in the small-Froude-number regime. The simplicity of the model also
allows the estimation of wave radiation in the small-Rossby-number regime using exponential
asymptotics. It emerges from the analysis that the wave amplitude in the latter regime cannot
be estimated as it is in the former regime, by simply regarding the wave equation as forced
by terms computed from the leading-order balanced motion. Indeed, estimating the wave
amplitude in the small-Rossby-number regime requires knowledge of the balanced motion to
all algebraic orders in ε, at least near complex-time singularities. This makes the study of
spontaneous wave generation in the more realistic context of, say, the shallow-water model
particularly challenging.

Another phenomenon that the PDE component makes it possible to represent is the loss of
energy through wave radiation. This is of great interest since some form of dissipation is key to
the maintenance of balance in the atmosphere and ocean. This dissipation is poorly modeled
by simply adding a small damping to the fast equations, however, because the fast variables
are in fact dominated by their balanced, slow component, which thus becomes significantly
affected by dissipation. In real fluids, however, dissipation is thought to affect mostly the
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truly fast component of the dynamics, through wave radiation and possibly nonlinear forward
energy cascades. The new model realistically reproduces at least the first of these processes,
and it could be used to investigate how close to slow manifolds the evolution of the system
remains owing to wave radiation. Discussing these aspects will of course involve typical PDE
issues, such as the choice of a norm suitable to measure wave activity in the vicinity of the
origin. It is worth noting that the energy dissipation caused by wave radiation does not
necessarily imply that the balanced system relaxes to a state of rest. In fact, it is not even the
case for our model, when formulated in terms of the original slow variables (u, v, w), since the
ultimate state w = 0 and θ = 0 corresponds to u =

√
2, v = 0, w = 0. One can interpret this

by recognizing that the conservation of u2 + v2, left unaffected by wave radiation, prevents
the system from relaxing to a resting state. This observation is trivial for our model, but less
so for the fluid systems: for these the relaxation will be toward a state of minimum energy for
a fixed distribution of potential vorticity. Since this state is typically not smooth, this means
that wave radiation leads to the formation of complicated, rough structures.

There are several generalizations of the model introduced in this paper which may be
worthwhile to consider. A first, mentioned in the introduction, is the addition of a slow
forcing. The aim of this addition is to study the statistical equilibrium that can emerge from
the balance between forcing and radiation. A second modification is to alter the system so as
to make the balanced dynamics chaotic. This is useful to remove some of the peculiarities that
arise because of the integrability of the one-degree-of-freedom balanced system. Wirosoetisno
and Shepherd [39] introduced a modification of the LK model which amounts to replacing
the constant value of u2

L + v2
L by an arbitrarily chosen function of time. Our model could be

modified in exactly the same way.
We conclude by noting that the study of wave radiation by balanced motion need not

be limited to the regimes of small Froude number b or small Rossby number ε as is the
case here. Although balance is difficult to define in the absence of a small parameter, it
is often remarked that the qualitative features observed for small b or ε, in particular, the
clear separation between wave- and flow-type motion, persist when these parameters are of
order unity. The model introduced in this paper could very well be used as a starting point
to examine this issue and to give a precise meaning to, as well as an explanation for, this
observation.

Appendix A. Numerical implementation. We need to solve numerically the model equa-
tions (2.15)–(2.16) in a finite domain [−L,L] in manner that allows outward radiation of wave
energy. To this end, we implement exact nonreflecting boundary conditions. This takes ad-
vantage of the fact that f(s) is localized, so that, for |s| � 1, (2.17)–(2.18) reduce to the
linear Klein–Gordon equation and can be solved in closed form.

Consider the solution of the Klein–Gordon equation in [L,∞) with radiation boundary
condition as s → ∞. In terms of the Laplace transform x̃(s, σ) of x(s, t), where σ is the
Laplace variable, this solution reads

x̃(s, σ) = exp
[
−b(1 + ε2σ2)1/2s

]
ξ(σ)

for some function ξ(σ). This gives the simple Dirichlet-to-Neumann map [15]

x̃s(s, σ) = −b(1 + ε2σ2)1/2x̃(s, σ).



802 J. VANNESTE

Upon transforming back to the time domain and evaluating at s = L, this reads

xs(L, t) = −bεxt(L, t) − b
J1(t/ε)

t
� x(L, t),(A.1)

where J1(·) is a Bessel function, and � denotes convolution in time. This provides an exact
nonreflecting condition at s = L for the Klein–Gordon equation; we employ it for our system
with L large enough that f(L) is negligible.

We solve the model equations (2.15)–(2.18) by finite differences, using a uniform grid for
s ∈ [0, L] and a Störmer–Verlet scheme both in t and s. This discretization is symplectic
for the ODE part of the model, and multisymplectic for the PDE part [7]. The boundary
condition (A.1) is discretized in a straightforward manner, using a backward difference for
the s- and t-derivatives, and the trapezoid rule for the convolution. This discretization of the
exact boundary condition can lead to spurious wave reflection at s = L [30], but we have
found this to be negligible.

Appendix B. Exponential asymptotics for ε � 1. In this appendix, we use exponential
asymptotics to obtain the estimates (4.8)–(4.9) for the amplitude of the waves generated by
the balanced motion in the regime ε � 1, b = O(1). The method is similar to that used in [34]
for the LK model, and we refer the reader to that paper for further details.

The balanced solutions of (2.15)–(2.16) may be obtained by expansion in powers of ε of
all the variables. Because it is convenient to use the formulation (2.6)–(2.10), we expand

u(t) =
∞∑
n=0

εnu(n)(t) and similarly for v and w,(B.1)

and

x(s, t) =

∞∑
n=0

εn+1x(n)(s, t) and y(s, t) =

∞∑
n=0

εn+2y(n)(s, t).(B.2)

These series, whose coefficients can be computed recursively, describe the balanced part of
the solution. The leading-order coefficients u(0)(t), v(0)(t), and w(0)(t), in particular, solve

u̇(0) = −v(0)w(0), v̇(0) = w(0)u(0), ẇ(0) = −u(0)v(0)

and are given in terms of Jacobi elliptic functions. The wave part of the solution is exponen-
tially smaller, and to leading order given by the solution xw(s, t) of a Klein–Gordon equation.
In terms of Fourier transform, this reads

x̂w(k, t) = C(k)eiωt + c.c.,(B.3)

where C(k) is a Stokes multiplier switching from zero to an exponentially small value as a
Stokes line is crossed by t.

The coefficients in (B.1)–(B.2) have singularities in the complex plane near which the
expansions (B.1)–(B.2) cease to be valid. In the vicinity of these singularities, the balanced
and wave parts of the solution are not well separated, and (B.1)–(B.2), which we can regard
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as an outer solution, must be replaced by a different, inner, solution. We now consider this
inner solution near a singularity t∗ with Im t∗ > 0.

The behavior of the outer solution near t∗ is readily obtained as

u ∼ −i

t− t∗
, v ∼ −1

t− t∗
, w ∼ i

t− t∗

(up to pairwise changes of signs). Similarly, x and y behave like ε(t− t∗)−2 and ε2(t− t∗)−3,
respectively. This behavior is valid for ε � |t− t∗| � 1 and should match the inner solution.
This suggests the inner scaling

u = ε−1U(τ), v = ε−1V (τ), w = ε−1W (τ), x = ε−1X(s, τ), and y = ε−1Y (s, τ),

where τ is a rescaled time defined by

t = t∗ + ετ.

Introducing this into (2.6)–(2.10) leads to essentially identical equations with lowercase vari-
ables replaced by their uppercase counterparts, time derivatives replaced by τ -derivatives,
and, crucially, ε set to 1. This is best solved using the Fourier transform of X and Y or, more
conveniently, a small modification thereof. Noting the form (4.3) of f̂(k), we define

X̄ = k−1ek
2/2X̂ and Ȳ = k−1ek

2/2Ŷ ,

where, as before, the hat denotes the Fourier transform in s. This leads to the system

U ′ = −VW − iaV

∫
k2e−k2

Ȳ (k) dk,(B.4)

V ′ = WU + iaU

∫
k2e−k2

Ȳ (k) dk,(B.5)

W ′ = −UV,(B.6)

X̄ ′ = −Ȳ ,(B.7)

Ȳ ′ = Ω2X̄ +
ia

2π
UV,(B.8)

where ′ = d/dτ and Ω is the scaled frequency defined in (4.4). The large-τ behavior of
the solutions, needed for matching, can be obtained by expanding in inverse powers of τ .
Specifically, we let

U = i

∞∑
n=1

Un

τ2n−1
, V =

∞∑
n=1

Vn

τ2n−1
, W = i

∞∑
n=1

Wn

τ2n−1
,

X̄ =

∞∑
n=1

X̄n(k)

τ2n
, and Ȳ =

∞∑
n=1

Ȳn(k)

τ2n+1
,

and obtain a set of recurrence relations for the (real) coefficients Un, Vn, etc. With the initial
conditions

U1 = −1, V1 = −1, W1 = 1, X̄1 =
a

2πΩ2
, and Ȳ1 = 2X̄1,
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Figure 9. Coefficients λn(k) defined in (B.10) as a function of iteration number n for a = 2 and b = 1.
Four values of k are shown, corresponding to the first four zeros of the Hermite polynomial H101, namely,
k0 = 0 (◦), k1 = 0.22 (�), k2 = 0.44 (�), and k3 = 0.66 (�). For j = 0, 1, 2, the λn(kj) converge to finite
values λ(kj) as n → ∞, but λ(k3) diverges (as do the λn(kj) for j ≥ 3).

found by matching with the leading-order outer solution, these recurrence relations can be
solved numerically by discretizing the k-dependence of X̄n and Ȳn in some way. The integrals
in (B.4)–(B.5) can be computed efficiently using Gauss–Hermite quadrature, so we take the
discrete values kj , j = 0, 1, 2, . . . ,M , of the wavenumber to be the nonnegative zeros of a
Hermite polynomial of sufficiently high order 2M + 1. We thus obtain 2M + 5 coupled,
nonlinear recurrence relations for the coefficients Un, Vn, Wn, X̄n(kj), and Ȳn(kj) which we
solve numerically.

What matters for the estimation of the Stokes multiplier C(k) is the behavior of these
coefficients for n � 1. We can concentrate on X̄n. By analogy with the treatment of the LK
model [34], we expect the linear terms in the recurrence to dominate for n � 1, leading to
the asymptotics

X̄n ∼ (−1)n+1(2n− 1)!λ(k)

2πΩ2n
(B.9)

for some function λ(k) which depends on the early-term behavior and needs to be determined
numerically. (The factor 2π in the denominator is introduced for convenience.) The numerical
determination of λ(k) is achieved by computing

λn(k) =
(−1)n+12πΩ2n

(2n− 1)!
X̄n(B.10)

for n large enough. Our computations indicate that the convergence λn(k) → λ(k) occurs
only for k small enough; in other words, the asymptotic behavior (B.9) holds true only for
small k. This is illustrated by Figure 9, obtained for a = 2, b = 1, and M = 50. The
divergence for k of order unity occurs because for such k, the recurrence relations are not
dominated by their linear parts for n � 1 as is assumed to obtain (B.9). This divergence is
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inconsequential, however: as shown below, the asymptotics of xw for ε → 0 is controlled by
the small-k behavior of λ(k), indeed by λ(0).

Assuming this, we rely on (B.9) and use a Borel-summation technique [16, 17] to relate
the behavior of X̄(k, τ) for Re τ < 0 and Re τ > 0. We write (formally)

X̄ =

∫ ∞

0

e−s

s
B(s/τ) ds, where B(·) =

∞∑
n=1

X̄n

(2n− 1)!
(·)2n,(B.11)

and note that the late behavior (B.9) is associated with the existence of a pole of B(s/τ), in
the neighborhood of which

B(s/τ) ∼ λ(k)s2

2π(s2 + Ω2τ2)
.

This pole yields an oscillatory (or wave) contribution to (B.11) for Re τ > 0, i.e., after the
Stokes line is crossed. Evaluating this leads to the wave part of X̄ in the form

X̄w = − iλ(k)

2
e−iΩτ = − iλ(k)

2
e−iω(t−t∗),

with ω > 0. Taking into account the contribution of the complex-conjugate pole t̄∗ and
matching with (B.3) give the wave amplitude (4.8).

Multiplying (4.8) by exp(iks) and integrating over k then give an estimate for xw. The
smallness of ε can be used to approximate the resulting integral using the steepest-descent
method. The saddle is located at k = 0, indicating that wavenumbers k = O(ε1/2) dominate
the integral. This suggests the natural rescaling of the spatial variable as S = ε1/2s. Assuming
this to be O(1), we obtain (4.9). Note that an estimate valid uniformly in s could be obtained
by including the term iks in the saddle-point calculation.

Acknowledgments. The author thanks O. Bokhove and D. Wirosoetisno for useful com-
ments on the manuscript.
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